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1. Data

We have analysed publicly available MACHO lights curves of 6833
stars that were originally classified as eclipsing binaries. A careful re-
determination of the periods and a new classification based on the light
curve shapes showed that only 3031 stars are genuine eclipsing or el-
lipsoidal variables, the rest being Cepheids, RR Lyraes and other non-
eclipsing variable stars.
The main aim of this project will be to find eclipsing binaries with pul-
sating components (work in progress).

Fig. 1. The Large Magellanic Cloud in R-band showing
the observed fields.

2. Period distribution

The period distribution of the sample is bimodal. The majority of systems
have short periods, peaking between 1 and 2 days. Roughly 20% of
stars have periods longer than 10 days, many of them with W UMa-like
light curve shapes, suggesting ellipsoidal variability with giant component
stars.
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Fig. 2. Orbital period distribution of 3031 eclipsing and
ellipsoidal variables in the LMC.

3. Roche-lobe classification

We classified the binary sample using Fourier-decomposition of their
phase diagrams. Two coefficients, a2 and a4, of the cosine decomposi-
tion

∑4
i=1 ai cos(2πiϕ) allow a well-defined distinction between detached,

semi-detached and contact binaries (Pojmański 2002). The results show
that the sample is dominated by bright main-sequence detached (50%)
and semi-detached (30%) binaries. Contact systems comprise 20% of the
sample; the short period systems are all foreground objects in the Milky
Way, while longer periods belong to red giant binaries.
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Fig. 3. Classification based on the light curve shape. The
boundary lines between categories were taken from

Pojmański (2002).

4. Color-Magnitude Diagram

We used the Color-Magnitude Diagram (CMD) to clean the sample of the
foreground objects. For this we took evolutionary models of Castellani et
al. (2003) and calculated the locations of certain minimal orbital period
values (where two identical model stars are in contact). The four plots
below show eclipsing stars with P < 0.5d, 0.5d < P < 1d, 1d < P < 10d,
10d < P, with which we identified systems whose positions in the CMD
and periods exclude LMC membership. The cleaned sample contains
about 2800 LMC binaries.
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Fig. 4. The CMD and four period ranges of the sample.

5. P–L relations

Detached and semi-detached binaries are spread uniformly in the period-
K magnitude plane, while there is a well-defined sequence for the contact
systems. In Fig. 5 we show their P–L sequence (labelled “E”) together
with LMC pulsating red giants. The widely accepted sequence of EBs
between Seqs. C and D, known as Seq. E, does not exist. The correct
position for Seq. E is at periods a factor of two greater, as shown. A
simple Roche-model describes Seq. E very well. Although Seq. E seems
to merge into Seq. D of the Long Secondary Periods (Wood et al. 2004),
the two groups are significantly different in their amplitude properties
(Derekas et al. 2006).
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Fig. 5. P–L relations of ellipsoidal variables (red pluses)
red giant pulsators (black dots). The two lines show a

simple model using evolutionary tracks and
Roche-geometry.

6. Period changes I.: Light–Time Effect

From the 8 years of MACHO observations we measured period changes
using the O–C method applied to seasonal subsets of the data. We found
about 80 parabolic and 45 cyclic period changes, the rest showing linear
O–C diagrams. A significant fraction of the former two groups are can-
didates for light-time effect in hierarchic triple systems. Three examples
are shown below.
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Fig. 6. Examples for parabolic and cyclic O–C diagrams.

7. Period changes II.: Apsidal Motion

In about 40 eccentric binaries we measured different O–C variations for
the primary and the secondary minima, which indicates apsidal motion.
With this we double the number of known binaries with apsidal motion
in the LMC (Michalska & Pigulski 2005).
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Fig. 7. Two examples for apsidal motion.

8. Secular amplitude variations

In a few objects we discovered gradual amplitude variation, which can
be explained by rapid variations in the orbital geometry, most notably in
inclination. A third body in the system can perturb the eclipsing pair in
such a way that the eclipse depth, as a sensitive indicator of the inclination
variations, follows these perturbations. In Fig. 7 we present an example
(Pecl = 0.77d), for which the large scatter in the O–C diagram may
suggest an orbital period of ≤ 100d for the hypothetical third companion.
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Fig. 7. An example for changing minimum depth.
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