Ejection of Runaway Massive Binaries

M. Virginia McSwain (Yale U.), Scott M. Ransom (NRAO), Tabetha S. Boyajian, Erika D. Grundstrom (Georgia State U.), Mallory S. E. Roberts (Eureka Scientific, Inc.) SB1 systems that were probably ejected from the open cluster grach receive a kick from a supernova in one member? We present new results from our investigation of the optical, UV, Xay, and radio properties of these binary systems to determine the probable ejection scenarios. with large peculiar space velocities. These runaway stars were multi-body interactions in the dense environment or by supernovae explosions in close binaries. Identifying the ominant scenario producing runaway stars can offer important clues to the evolution of close binary stars and open clusters.
Spectroscopic investigations of HD 14633 and HD 15137 have ound relatively short orbital periods and low mass companions (Boyajian et al. 2005; McSwain et al. 2006). HD 14633 was
ejected from the open cluster NGC 654 about 14 Myr ago, and Boyajian et al 2005).

Presumably, HD 14633 and
HD 15137 each obtained their high runaway velocities during supernova explosion in a cose binary, and the O stars remain bound to the stellar remnant. In this work, we collection of new observations and archival data across the electromagnetic spectrum.

Dynamical Ejection vs. Supernova Ejection
Both scenarios produce mostly isolated runaway stars Dynamical ejection will produce about 10% binaries (Leonard Duncan 1990)
Companion will be an optical star
> System may be observed as an SB2 or SB1
> A cool companion can be nearly impossible to detect Supernova in a close binary will produce 20-40\% runaway binaries (Portegies Zwart 2000) likely) function
Should be observable as an X-ray binary or radio pulsar

We use a simple model of stellar wind accretion onto the presumed neutron star companion to predict the X-ray flux from each binary (Lamers et al. 1976). This method uses the BondiHoyle accretion rate, S_{a}, which depends on:
the system separation, a, and eccentricity, e the relative wind and orbital velocities, $\mathrm{V}_{\text {rel }}$;
the stellar mass loss rate, $M_{\text {star }}$
the mass of the companion, M
the distance to the system,

Abstract

The runaway O-type stars HD 14633 and HD 15137 are both GC 654. Were these stars dynamically ejected by close

Introduction

Most O-type stars form in open clusters and stellar associations, but a small fraction are observed at high galactic latitudes and HD 15137 was ejected from the same cluster about 10 Myr ago

Table 1:
and Stellar Parameters

	HD 14633	HD 15137
$\mathrm{P}(\mathrm{d})$	15.407	$30.35(?)$
e	0.69	0.48
$\mathrm{f}(\mathrm{m})$	0.0041	0.004
$\mathrm{~T}_{\text {eff }}(\mathrm{K})$	35100	29700
$\log \mathrm{~g}$	3.95	3.5
$\mathrm{R}\left(\mathrm{R}_{\bullet}\right)$	8.3	13.2
$\mathrm{~d}(\mathrm{pc})$	2040	2420

Difficult to identify the ejection scenario from a single star

Companion will be a neutron star (or black hole, less
Observed as SB1 system with high eccentricity, low mass

Predicted X-ray Flux

Figures 1 and 2: The spectral energy distributions of HD 14633 (above) and HD 15137 (below). We compare the observed UV, optical, and IR fluxes to a smoothed TLUSTY model spectrum in
each case. Neither binary shows signs of an IR excess each case. Neither binary shows signs of an IR ex
from an accretion disk around a compact companion.

Figure 3: Measuring the terminal wind velocity (V) of HD 14633 From co-added IUE/SWP spectra, the blue saturated edge of the $\mathrm{N} V \lambda 1238.821$ line provides $\mathrm{V}_{5}=1677 \mathrm{~km} / \mathrm{s}$.

Figures 4 \& 5:
(top) Mass diagram for a range of inclination angles (dotted lines) and the most probable companion mass (solid lines), based on the statistical method of Mazeh \& Goldberg (1992).
(bottom) The predicted time-averaged X-ray flux (solid line) is at least an order of magnitude greater than the observed upper limits for $\mathbf{F}_{\mathbf{x}}$ from ROSAT/PSPC observations (dashed lines). This prediction assumes the minimum value of M_{x}, and a higher mass companion will produce an even greater F_{x}.

Pulsar Search Results

Although previous searches have failed to detect radio pulsars in runaway OB stars (Philp et al. 1996; Sayer, Nice, \& Kaspi 1996), we performed a new, more sensitive search to investigate the companions of both HD 14633 and HD 15137 . searches:

- Our new orbital ephemerides (McSwain et al. 2006) allowed us to schedule observations near the time of apastron, when the radio emission is least dispersed by the O stars' winds.
- We used higher frequencies that are more likely to detect radio pulses dispersed by the stellar winds.
- We obtained a better flux density sensitivity than previous searches.

We observed both targets using the National Radio Astronomy Observatory's $100-\mathrm{m}$ Green Bank Telescope and the Pulsar Spigot back-end (Kaplan et al. 2005). The details of each observation are summarized in Table 1, and the data were No pulsars were detected in either HD 14633 or HD 15137.

Table 2: Summary of Green Bank Telescope Observations

Star	Receiver	Frequency range (freq. resolution)	$\begin{gathered} \text { MJD- } \\ 2450000 \end{gathered}$	Orbital Phase	Exposure time (time resolution)
HD 14633	s-band	$\begin{aligned} & 1650-2250 \mathrm{MHz} \\ & (0.78125 \mathrm{MHz}) \end{aligned}$	3909.4194	0.390	$\begin{gathered} 6300 \mathrm{~s} \\ (81.92 \mu \mathrm{~s}) \end{gathered}$
	820 MHz	$\begin{aligned} & 795-845 \mathrm{MHz} \\ & (0.0488 \mathrm{MHz}) \end{aligned}$	3909.5085	0.396	$\begin{gathered} 6300 \mathrm{~s} \\ (81.92 \mu \mathrm{~s}) \end{gathered}$
HD 15137	S-band	$\begin{aligned} & 1650-2250 \mathrm{MHz} \\ & (0.78125 \mathrm{MHz}) \end{aligned}$	3897.4847	0.482	$\begin{gathered} 6300 \mathrm{~s} \\ (81.92 \mu \mathrm{~s}) \end{gathered}$
	820 MHz	$\begin{aligned} & 795-845 \mathrm{MHz} \\ & (0.0488 \mathrm{MHz}) \end{aligned}$	3897.5753	0.485	$\begin{gathered} 6300 \mathrm{~s} \\ (81.92 \mu \mathrm{~s}) \end{gathered}$

Test for Quiescent Neutron Stars
The conditions for wind accretion onto a neutron star depend strongly upon its spin rate and magnetic field (Lipunov 1992). A young neutron star in the ejector and propeller regimes will not accrete significant amounts of material because its fast
rotation and/or large magnetic field sweep material out of the rotation and/or large magnetic field sweep material out of the
system at a distance larger than the accretion radius, R_{a}. The neutron star spins down over time, and eventually the corotation radius, R_{c}, becomes larger than both the magnetospheric radius, $\mathrm{R}_{\text {mag' }}$ and R_{a}.
Using our measured stellar and orbital parameters with a few reasonable assumptions for the spin rates of the presumed neutron stars and their magnetic moments, we estimate these critical distances:

Unrestrained accretion requires $\mathrm{R}_{\text {mag }}<\mathrm{R}_{\mathrm{a}}$ and $\mathrm{R}_{\text {mag }}<\mathrm{R}_{\mathrm{c}}$, which Unrestrained accretion requires $R_{\text {mag }}<R_{a}$ and $R_{\text {mag }}<R_{c}$, which
may be possible in these systems. However, even a nonaccreting neutron star could be detected by its thermal or nonthermal spectrum with an X-ray luminosity of $10^{30}-10^{34} \mathrm{erg} / \mathrm{s}$ ($\mathrm{F}_{\mathrm{x}} \sim 10^{-15}-10^{-11} \mathrm{erg} / \mathrm{s} / \mathrm{cm}^{2}$; Lipunov 1992). Further X-ray observations are required to confirm or refute the presence of neutron stars in HD 14633 and HD 15137.

Conclusions

If HD 14633 and HD 15137 were ejected by supernovae these close binary systems, they should contain neutron star detectable as either radio pulsars and/or X -ray sources. Our search for pulsars with the Green Bank Telescope revealed no detections, and the predicted X-ray emission from wind accretion is much larger than the observed limits. Furthermore neither system exhibits an IR excess from an accretion disk around a compact companion. While a neutron star cannot be ruled out, the probabie companion mass supports a migner mass contain neutron stars, and we suggest that they may have been ejected from NGC 654 by dynamical interactions in the dense cluster environment.

References

Boyajian, T. S., et al. 2005, ApJ, 621, 978
Kaplan, D. L., et al. 2005, PASP, 117, 643
Kaplan, D. L., et al. 2005, PASP, 117, 643
Lamers, H. J. G. L. M., van den Heuvel, E. P. J., \& Petterson, J. A. 1976, A\&A, 49, 327

Leonard, P. J. T., \& Duncan, M. J. 1990, AJ, 99, 608 Lipunov, V. M. 1992, Astrophysics of Neutron Stars (Berlin: Springer-Verlag)
Mazeh, T., \& Goldber
Mazeh, T., \& Goldberg, D. 1992, ApJ, 394, 592
MCSwain, M. V., et al. 2007, Ap
Mcswain, M. V., et al. 2
(astro-ph/0608270)
Philp, C. J., Evans, C. R., Leonard, P. J. T., \& Frail, D. A. 1996,
AJ, 111, 1220
Portegies Zwart, S. F. 2000, ApJ, 544, 437
Ransom, S. M. 2001, Ph.D. thesis, Harvard University
Ransom, S. M. 2001, Ph.D. thesis, Harvard University
Sayer, R. W., Nice, D. J., \& Kaspi, V. M. 1996, ApJ, 461, 357

