

The Eclipsing Triple System U Ophiuchi Revisited

Luiz Paulo R. Vaz ${ }^{1}$ Johannes Andersen ${ }^{2,3}$ Antônio Claret ${ }^{4}$
${ }^{1}$ Departamento de Física - ICEx - UFMG - Brazil (lpv@fisica.ufmg.br) ${ }^{2}$ Niels Bohr Institute, Astronomical Observatory - Copenhagen - Denmark ${ }^{3}$ Nordic Optical Telescope Scientific Association - Santa Cruz de La Palma - Spain. ${ }^{4}$ Instituto de Astrofísica de Andalucía, CSIC - Granada - Spain

Abstract

The absolute dimensions of the mid B-type eclips ing triple system U Oph were determined through a fully consistent analysis, taking into account both the exceptionally short period ($\sim 21.2 \mathrm{yr}$) apsidal motion and both the third light and the lightime orbit around a tertiary star ($P_{3} \sim 38.4 \mathrm{yr}$). A new ephemeris was determined with the exac method proposed by Lacy and 353-229 primary, 124 secondary - times of minimum (selected out of $482-312$ primary and 170 secondary - times from the literature, many referring to the same minimum). A modified version of the WilsonDevinney (WD) code, adapted to treat systems with apsidal motion and/or light-time orbit effect with arbitrary atmosphere models for the stellar fluxes, was used to simultaneously analyze the 4 light ($u v b y \mathrm{H} \boldsymbol{\beta}$ system at the Strömgren Automatic Telescope at ESO, La Silla, Chile) and the radial velocity curves (Coudé spectrograph at the ESO 1.5 m telescope), with both the least-squares and he SIMPLEX minimization methods.
The derived absolute dimensions of UOph and hose of other 3 systems, whose components have similar masses, namely V760 Sco, MU Cas and DIHer, are used to control and compare the evolutionary models of the Padova Group and the ones by Claret, with the astrophysical quantities $\log g, \log T_{\text {eff }}, \log M$ and the derived luminosities

1. Introduction

Empirical stellar masses, radii, and luminosi ties are fundamental test data for stellar models, provided they are determined to high precision ($\leq 2 \%$) and without significant systematic error (Andersen 1991). While a substantial body of such data exists for stars below $\sim 4 \mathrm{M}_{\odot}$, the number of good determinations for higher-mass stars remains small. We have therefore undertaken to edetermine the absolute dimensions of the de tached, mid-B eclipsing binary U Ophiuchi from new spectroscopic and photometric observations The most recent comprehensive study of U Oph is by Holmgren et al. (1991), who summarised its previous observational history and redeter mined the masses from new Reticon spectra, us ing cross-correlation techniques. They also re analysed the then existing light curves. Later papers have added new photometry and polarimetry (Eritsian et al. 1998) and times of minimum Wolf et al. 2002), but not materially improved ou knowledge of the properties of the stars in U Oph

2. Observational data

34 coudé spectrograms of U Oph were obtained on fine-grain, high-contrast Illa-J plates during 1980-1986 with the ESO 1.5 m telescope and coudé spectrograph at La Silla, Chile, at dispersions of 20 and $12.4 \AA / \mathrm{mm}$. Mean exposure times were $\sim 10 \mathrm{~min}$, with observing and measuring procedures as described by Andersen \& Nordstrom 1983), who also discuss the zero-point and ac uracy of rv observations with this instrument The star eclipsed at primary eclipse has stronge and broader lines than those of the secondary star (see also Popper 1981, Fig.5). The spec ral type is \sim B4, with lines broadened by rotation The interstellar Ca II H and K lines are weak, but measurable. Fig. 1 shows the measured radia velocities and our computed orbits for U Oph

Figure 1. Observed radial velocities and computed orbits tor UOpht for the circular
(solid lines) as well as the eccentric dashen) solution. The only differences are due
Using the 6 -channel spectrograph-photometer and photon counting system of the $0.5-\mathrm{m}$ SAT elescope at ESO, La Silla, Chile (Nielsen e al. 1987), we observed U Oph in the Strömgren wvby $\mathrm{H} \boldsymbol{\beta}$ system during 4 nights in 1992 (JA), 3 in 1993, and 18 nights in 1994 (LPRV). A circular diaphragm of $17^{\prime \prime}$ diameter was used to ex clude the visual companion. Three comparison stars, HR 6367, HR 6353 and SAO 122251 ($d<3$ of U Oph) were observed alternately with U Oph

Figure $2 . y, b-y$, and $u-b$ magnitude and colour differences (instrumental sys-
em) between \cup Ooph and 1 HR 68677,645 points in each colour, 114 from 1992, 203

Fig shows
Fig. 2 shows our observed and theoretical light curves. We solved (with our improved version of the WD model) simultaneously the radial velocity curves of both components and the 4 light curves, taking fully account to both the apsidal motion and the light-time orbit, through the ephemeris derived in Sect. 3. Moreover, the model parameters (eg., $\log g$, limb-darkening coefficients) and the orbital parameters (eccentricity, periastron longitude, etc.) were derived iteratively and always fully consistent in all the solution steps.

3. New ephemeris

The ephemeris for eclipsing systems with apsidal motion is usually approximated by a series expansion of the solution to the transcendental equations involved (Giménez \& Bastero 1995, Giménez \& Garcia-Pelayo 1986). An exact method was proposed by Lacy (1992), based on Levenberg-Marquardt optimisation technique For UOph, we added the light-time effect to Lacy's method, using the equations given by Irwin (1952, 1959), which refer to the geometric centre of the orbit, not to the centre of mass of the sysem. After a careful study of literature data, we selected 353 (229 primary, 124 secondary) times of minimum and obtained the ephemeris shown in Fig. 3 and in Table 1 , where the mass funcion of the triple system, $f(\mathcal{M})$, is

$$
\begin{equation*}
f(\mathcal{M})=\frac{\left(\mathcal{M}_{3} \sin i_{3}\right)^{3}}{\left(\mathcal{M}_{1}+\mathcal{M}_{2}+\mathcal{M}_{3}\right)^{2}}=\frac{\left(a_{12,3} \sin i_{3}\right)^{3}}{\boldsymbol{P}_{3}^{2}} \tag{1}
\end{equation*}
$$

 Th | $\begin{array}{c}\text { Apsidal }\end{array}$ Motion | $\begin{array}{c}\text { Light-Time orbit } \\ \text { parameter }\end{array}$ | | final value | parameter | final value |
| :---: | :---: | :---: | :---: | :---: | :---: |

Figure 3. O-C curve from a linear ephemeris for UOph. Computations for primary
solid
olin) and deondary

4. Absolute dimensions

Table 2 shows the absolute dimensions and the physical parameters we derive for U Oph. Errors $<1.7 \%$ and 1.5% for the masses and $<0.57 \%$ and 1.1% for the radii of primary and secondary eclipsing components, respectively, together with the effective temperature determination, yielded o distance determination with an error $<2.3 \%$ much beter but in agreemen with Hiparcos value, probably disturbed by UOph being a hierarquical triple system). The chemical diversity of these young nearby systems (all < 100 Myr old) presents a challenge to models of galactic chemical evolution

5. Results

In Fig. 4 we show the eclipsing components of U Oph and of 3 other systems with components of similar masses, together with the theoretical models of Claret (2004), in $\log g$ versus both $\log \left(\boldsymbol{M} / \mathrm{M}_{\odot}\right)$ and $\log \boldsymbol{T}_{\text {eff }}$ diagrams. We plot the isochrones which best represent the secondaries of all 4 systems for $Z=0.01$ and 0.02 .

Assuming coevality, the theoretical isochrones should fit both components of a binary system. While UOph is very well represented by the $Z=0.02$ models at an log(age,yr)=7.60 (Fig.4), MU Cas and V760 Sco seem to require models with $Z<0.01$ to have isochrones with the right slope to reproduce their components. DI Her is clearly the youngest and models with $Z \sim 0.02$ seem to best reproduce the components.
U Oph is significantly evolved but still on the lower half of the MS phase, with Claret (2004) models giving a log(age,yr) $=7.60 \pm 0.02$, slightly younger as compared with his former models (Claret 1995, 1997) and with Padova P-93 7.63 ± 0.02, Girardi et al. 1996 and references therein) and P-99 (7.68 ± 0.02, Girardi et al. 2000) models ($X=0.70, Z=0.02$).
The $\log \bar{k}_{2, \text { obs }}$ for U Oph, corrected for relativistic contribution, is in very good agreement with the models. MU Cas has a theoretical apsidal motion period of $(17.5 \pm 2.6) 10^{3} \mathrm{yr}$, too long to be detected with the available span of times of minima. DI Her presents the problem of having a theoretical relativistic term much larger than the observed apsidal motion (Claret 1998).

References

Andersen, J. 1991, A\&AR 3, 91
Andersen, J., Nordström, B. 1983, A\&A, 122,23 Andersen, J., Clausen, J.V., Nordström, B., Reipurth, Bo 1983, A\&A, 121, 271
Claret, A. 1995, A\&AS, 109, 441
Claret, A. 997, A\&AS, 1. 1998, A\&A 330
Claret, A. 2004, A\&A, 242, 919
Eritsian, M.A., Docobo, J.A., Melikian, N.D., Tamazian, V.S. 1998, A\&A 329, 1075
Giménez, A., Bastero, M. 1995, Ap\&SS, 226, 99
Girardi L., Bressan A., Chiosi C. Bertelli G Nas, 92,203 A\&AS 117, 113 A., Chiosi C., Bertelí G., Nasi E., 1996, Girardi L., Bressan A., Bertelli G., Chiosi C., 2000, A\&AS Holmgren, D.E., Hill, G., Fisher, W. 1991, A\&A, 248, 129 Irwin, J.B. 1952, ApJ, 116,211
rwin, J.B. 1959, AJ, 64, 149
Irwin, J.B. 1959, AJ, 64, 149
Lacy, C.H.S. 1992, AJ, 104, 2213
Lacy, C.H.S. 1992, AJ, 104,2213
Lacy, C.H.S., Claret, A., Sabby, J.A 2004, AJ, 128, 1840 Lacy, C.H.S.., Claret, A., Sabby, J.A 2004, AJ, 128, 1840 Nielsen, R.F., Norregaard, P., Oisen
senger, 50,45
Popper, D.M. 1981, ApJS, 47,339
Popper, D.M. 1982, ApJ, 254., 203
Press, W.H., Flannery, B.P., Teukolsky S.A. Vetterling Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling,
W.T., 2000, Numerical Recipes, (Cambridge University
Press, New Delhi, India), 678 , Press, New Delhi, India), p. 6788
Wolf, M., Harmanec, P., Diethelm, R., Hornoch, K., Eenens, Wolf, M., Harmanec, P., D
P. 2002, A\&A, 383, 533

A (Primary)

B (Secondary)

$\omega / \omega_{\text {orb }}$
Photometric data:

)

