

“Pipeline or Pipedream: Gender Balance Legislation’s Effect on Women’s Presence in State Government”

Supplementary Appendix

A1. Two Sample T-Test Results Table 1.	2
Results from Two Sample T-Test Women Legislators	
Results from Two Sample T-Test Women Candidates	
A2: Alternative Generalized Synthetic Control Model	3
Figure 1. Alternative Generalized Synthetic Control Model Women Legislators	
Figure 2. Alternative Generalized Synthetic Control Model Women Candidates	
A3. Synthetic Control Model Iowa.....	4 - 6
Table 2. Iowa Results Synthetic Weights by Variable. Women Legislators	
Table 3. Iowa Results Synthetic Weights by Variable. Women Candidates	
Table 4. Iowa Results Synthetic Weights by State Women Legislators	
Table 5. Iowa Results Synthetic Weights by State Women Candidates	

A1. Two Sample T Test Results

The following table indicates the results from the two-sample T tests. The results indicate that when comparing the mean of women legislators and women candidates across states with and without GBL, the test statistic was statistically significant at less than 0.001. Consequently, I can reject the null hypothesis of $\mu = 0$, meaning there is statistically different means between the two groups. This difference contextualizes the results, but does not negate them. T-tests do not provide causal evidence, and only look at differences of the means.

Table 1: Two Sample T Test Results

	Test Statistic	Degrees of Freedom	95% Confidence Interval
Women Legislators	-9.43***	504	-4.59
Women Candidates	-9.05***	440.52	-3.81

Using Unequal Variances *p<0.1; **p<0.05; ***p<0.01

A2. Generalized Synthetic Control Results

I run an alternative generalized synthetic control models, dropping weaker states to assess if those states with weaker legislation are minimizing the average treatment effect. Strong states are Iowa, Connecticut, Montana, Rhode Island, Oregon, Florida, and North Carolina as all have some form of accountability measures. The weak GBL states are Illinois, Utah, New Hampshire, and North Dakota. Figure 1 indicates that the presence of GBL is associated with around a 0.306% increase in the number of women legislators. Figure 2 demonstrates that the average treatment effect associated with a .4-point increase in the number of women candidates for states with GBL. For both models, the average treatment effect is not statistically significant.

Figure 1. Estimates ATT Strong Legislation

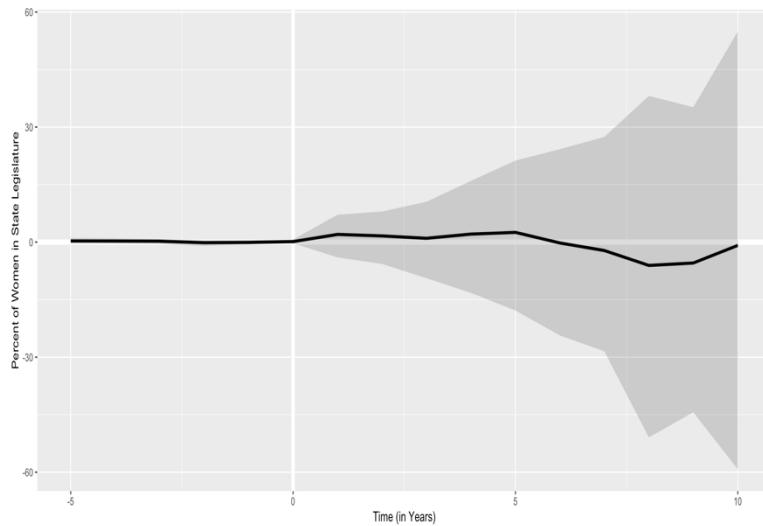
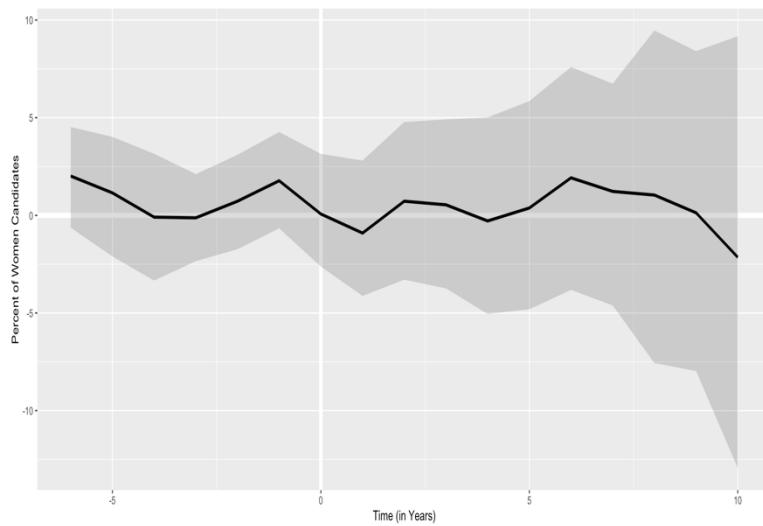



Figure 2. Estimates ATT Strong Legislation

A3. Synthetic Control Model Results for Iowa

As previously stated in the main paper, the results from the Iowa synthetic control model indicate a substantively small effect of GBL on the number of women serving in state legislatures. There is very little pre-treatment difference between the treated and synthetic Iowa variable weights, as evidenced by Table 2 and Table 3. Table 4 and 5 indicates the states composing synthetic Iowa, including many small states but primarily Indiana and Iowa.

Table 2: Iowa Weights, State Legislator Model

	Treated	Synthetic	Sample Mean
Population Density	152.153	152.151	163.401
House Turnover	0.500	0.500	0.484
Senate Turnover	0.250	0.253	0.326
Equal Pay	0	0.016	0.562
Party Control	0.500	0.500	0.643
State Salary	58.101	58.101	54.542

Table 3: Iowa Weight State Candidate Model

	Treated	Synthetic	Sample Mean
Population Density	152.312	152.312	164.067
House Turnover	0.667	0.664	0.611
Senate Turnover	0.333	0.333	0.390
Equal Pay	0	0.005	0.562
Party Control	0.500	0.500	0.622
State Salary	58.101	58.101	54.542

Table 4: Iowa State Weights Women Legislator Model

State	Weight
AK	0.038
AL	0.001
AR	0.001
AZ	0.000
CA	0.001
CO	0.001
CT	0.000
DE	0.245
FL	0.010
GA	0.001
HI	0.024
ID	0.001
IL	0.001
IN	0.238
KS	0.034
KY	0.001
LA	0.001
MA	0.000
MD	0.000
ME	0.001
MI	0.001
MN	0.107
MO	0.001
MS	0.001
MT	0.001
NC	0.001
ND	0.001
NH	0.000
NJ	0.001
NM	0.007
NV	0.030
NY	0.000
OH	0.001
OK	0.001
OR	0.001
PA	0.001
RI	0.000
SC	0.122
SD	0.000
TN	0.009
TX	0.034
UT	0.030
VA	0.041
VT	0.001
WA	0.008
WI	0.008
WV	0.001
WY	0.001

Table 5: Iowa State Weights Women Candidate Model

State	Weight
AK	0.005
AL	0.001
AR	0.000
AZ	0.000
CA	0.000
CO	0.000
CT	0.000
DE	0.230
FL	0.006
GA	0.000
HI	0.014
ID	0.001
IL	0.000
IN	0.234
KS	0.028
KY	0.000
LA	0.000
MA	0.000
MD	0.000
ME	0.000
MI	0.000
MN	0.027
MO	0.000
MS	0.001
MT	0.000
NC	0.001
ND	0.000
NH	0.000
NJ	0.000
NM	0.005
NV	0.025
NY	0.000
OH	0.000
OK	0.000
OR	0.000
PA	0.000
RI	0.000
SC	0.275
SD	0.000
TN	0.006
TX	0.092
UT	0.038
VA	0.005
VT	0.001
WA	0.000
WI	0.002
WV	0.000
WY	0.000