APPENDIX

The following consequences from Theorems 1 and 2 should be pointed out.
Theorem A. For all $\varepsilon>0$, there is $\delta>0$ such that if $A \subset S L_{3}(\mathbb{Z})$ is a finite set, then either
(1) there exist a nilpotent subgroup G and elements $z_{1}, \cdots, z_{\beta} \in S L_{3}(\mathbb{Z})$ with $\beta<|A|^{\varepsilon}$ such that

$$
A \subset \bigcup_{1 \leq i \leq \beta} z_{i} G,
$$

or
(2) $\left|A^{2}\right|>|A|^{1+\delta}$.

Remark. In particular Theorem 1 holds replacing (ii) by $\left|A^{2}\right|>|A|^{1+\delta}$.
Proof. Assume (2) fails. Thus $\left|A^{2}\right| \leq|A|^{1+\delta}$ for all $\delta>0$ and in particular

$$
E(A, A) \geq \frac{|A|^{4}}{\left|A^{2}\right|}>|A|^{3-\delta}
$$

Hence, there exists a $|A|^{c \delta}$-approximate group H in $S L_{3}(\mathbb{Z})$ with the following properties. (See [TV].)
(3) $|A| \leq|H|<|A|^{1+c \delta}$.
(4) $\left|H^{3}\right|<|A|^{c \delta}|H|$.
(5) $\left|A \cap H x_{0}\right|>|A|^{-c \delta}|H| \quad$ for some $x_{0} \in S L_{3}(\mathbb{Z})$.

Let $H_{0}=A x_{0}^{-1} \cap H$. Then (3)-(5) imply

$$
\left|H_{0}^{3}\right|<\left|H_{0}\right|^{1+\frac{2 c \delta}{1-c \delta}}<\left|H_{0}\right|^{1+c^{\prime} \delta} .
$$

Hence by Theorem 1, there exist a nilpotent subgroup G of $S L_{3}(\mathbb{Z})$ and an element $\xi \in S L_{3}(\mathbb{Z})$ so that

$$
\begin{equation*}
\left|H_{0} \cap \xi G\right|>\left|H_{0}\right|^{1-\varepsilon} \tag{6}
\end{equation*}
$$

where $\varepsilon=\varepsilon(\delta) \rightarrow 0$, as $\delta \rightarrow 0$.
Let $H_{1}=H_{0} \cap \xi G$ and take a maximal set $\left\{z_{i}\right\}_{1 \leq i \leq \beta}$ in A such that $z_{i} H_{1} \cap z_{j} H_{1}=\emptyset$ for $i \neq j$. Thus by construction

$$
\begin{equation*}
A \subset \bigcup_{1 \leq i \leq \beta} z_{i} H_{1} H_{1}^{-1} \tag{7}
\end{equation*}
$$

where $H_{1} H_{1}^{-1} \subset \xi G(\xi G)^{-1}=\xi G \xi^{-1}:=G_{1} \simeq G$.
To estimate β, we write

$$
\begin{equation*}
\beta=\frac{\left|\bigcup z_{i} H_{1}\right|}{\left|H_{1}\right|} \leq \frac{\left|A A x_{0}^{-1}\right|}{\left|H_{0}\right|^{1-\varepsilon}} \leq \frac{|A|^{1+\delta}}{|A|^{(1-c \delta)(1-\varepsilon)}}=|A|^{\varepsilon+(1+c-c \varepsilon) \delta} \tag{8}
\end{equation*}
$$

Theorem 2. Let $A \subset S L_{2}(\mathbb{C})$ be a finite set, and

$$
\begin{equation*}
\left|A^{2}\right|<K|A| . \tag{9}
\end{equation*}
$$

Then there exist a virtually abelian subgroup G of $S L_{2}(\mathbb{C})$ and elements $z_{1}, \cdots, z_{\beta} \in$ $S L_{2}(\mathbb{C})$, with $\beta \leq K^{c}$, such that

$$
A \subset \bigcup_{1 \leq i \leq \beta} z_{i} G
$$

Proof. Proceeding as before, we get an K^{c}-approximate group H in $S L_{2}(\mathbb{C})$ such that (10) $|A| \leq|H|<K^{c}|A|$.
(11) $\left|H^{3}\right|<K^{c}|H|$.
(12) $\left|A \cap H x_{0}\right|>K^{-c}|H| \quad$ for some $x_{0} \in S L_{2}(\mathbb{C})$.

Thus, $H_{0}=A x_{0}^{-1} \cap H$ satisfies $\left|H_{0}^{3}\right|<K^{2 c}\left|H_{0}\right|$. We apply Theorem 2 to the set H_{0}.

In alternative (ii), $\left|H_{0}^{3}\right|>c\left|H_{0}\right|^{1+\delta}$, hence by (10)-(12)

$$
K>\left|H_{0}\right|^{\frac{\delta}{2 c}}>\left(K^{-c}|A|\right)^{\frac{\delta}{2 c}}=K^{-\frac{\delta}{2}}|A|^{\frac{\delta}{2 c}}
$$

and

$$
K>|A|^{\frac{1}{c} \frac{\delta}{2+\delta}}>|A|^{\frac{\delta}{3 c}} .
$$

Obviously,

$$
A=\bigcup_{x \in A} x \cdot\{e\}
$$

where $\beta=|A|<K^{\frac{3 c}{\delta}}$.
In alternative (i), $H_{0} \subset G$, where G is virtually abelian.
Again, take a maximal set $\left\{z_{i}\right\}_{1 \leq i \leq \beta}$ in A such that $z_{i} H_{0}$ are disjoint. Hence

$$
A \subset \bigcup_{1 \leq i \leq \beta} z_{i} H_{0} H_{0}^{-1} \subset \bigcup_{1 \leq i \leq \beta} z_{i} G,
$$

and

$$
\beta \leq \frac{\left|A H_{0}\right|}{\left|H_{0}\right|} \leq \frac{\left|A A x_{0}^{-1}\right|}{\left|H_{0}\right|}=\frac{\left|A^{2}\right|}{\left|H_{0}\right|}<\frac{K|A|}{K^{-c}|A|}=K^{1+c} .
$$

