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D Stable and unstable NDC systems

In this appendix I make general assumptions concerning the notional interest rate ρ(a, t),

the adjustment rate ϑ(a, t) and the annuity conversion factor Γ(a, t) in order to see which

combination of the parameters will lead to a balanced deficit ratio of d(t) = 1. This

will allow to see why the conventional wisdom mostly fails (as discussed in section 5 and

proposition 2) and how to construct stable NDC systems (as discussed in section 6).

These general factors are:

ρ(a, t) = g(t) + µ(a, t− a) + θ1
γ

ωc(t)
, (27)

ϑ(a, t) = g(t) + θ2
γ

ωc(t)
+ θ3

γ

ωc(t)−Rc(t)
, (28)

Γ(a, t) =
ωc(t)− a

1 + λ+ χγ
, (29)

where χ = 0 if the annuity conversion factor is based on cohort life expectancy (as in 22a)

while χ = 1 if the factor is based on period life expectancy (as in 22b). To see this note that

for assumption (9) ec(a, t) = ωc(t)−a
1+λ

(see (10a))and ep(a, t + a) = ωc(t+a)−(1+γ)a
1+λ+γ

= ωc(t)−a
1+λ+γ

(see (10b)). Therefore χ = 0 captures the use of cohort life expectancy (22a) and χ = 1

the use of period life expectancy (22b). The parameters in the expressions of ρ(a, t) and

ϑ(a, t) follow the discussion in the text and some experimentation. Note that the growth

rate of life expectancy gω
c
(t) is given by gω

c
(t) = γ

ωc(t)
which is just the term that is

captured by the parameters θ1 and θ2.
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D.1 Increasing retirement with Rc(t) = ψωc(t) (and λ = 0)

In this part it is assumed that retirement age is proportional to longevity, i.e. Rc(t) =

ψωc(t). Note that I assume here rectangular survivorship and thus the term µ(a, t − a)

drops from equation (27). I will solve for the level of total expenditures as given in

(21) step-by-step in order to derive closed form expressions for E(t) and for d(t). For

convenience I repeat here the expression for E(t) for the assumption of λ = 0.

E(t) =τW (t)N

∫ ωp(t)

Rp(t)

Rc(t− a)

Γ(Rc(t− a), t− a)(
1

Rc(t− a)

∫ Rc(t−a)

0

e
∫Rc(t−a)
x (ρ(s,t−a+s)−g(t−a+s)) ds dx

)(
e
∫ a
Rc(t−a)(ϑ(s,t−a+s)−g(t−a+s)) ds

)
da.

The first term in the integral is a constant and given by:

Rc(t− a)

Γ(Rc(t− a), t− a)
=
ψ(1 + χγ)

1− ψ
.

Furthermore it holds that:

e
∫Rc(t−a)
x (ρ(s,t−a+s)−g(t−a+s)) ds = e

∫Rc(t−a)
x θ1

γ
ωc(t−a+s) ds = (1 + γψ)

(
ωc(t− a)

ωc(t− a+ x)

)θ1
.

This can be used to calculate that:

1

Rc(t− a)

∫ Rc(t−a)

0

e
∫Rc(t−a)
x (ρ(s,t−a+s)−g(t−a+s)) ds dx =

1

Rc(t− a)

∫ Rc(t−a)

0

(1 + γψ)

(
ωc(t− a)

ωc(t− a+ x)

)θ1
dx =

1 + γψ − (1 + γψ)θ1

γψ(1− θ1)
.

For the term involving the adjustment rates one can calculate that:

e
∫ a
Rc(t−a)(ϑ(s,t−a+s)−g(t−a+s)) ds =

e
∫ a
Rc(t−a)(θ2

γ
ωc(t−a+s)+θ3

γ
ωc(t−a+s)−Rc(t−a+s) ) ds =

(1 + γψ)−(θ2+
θ3

1−ψ )

(
ωc(t)

ωc(t− a)

)θ2+
θ3

1−ψ

.
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Table 6: The assumptions underlying table 1

Cohort Life Expectancy (χ = 0) Period Life Expectancy (χ = 1)

Notional Interest Rate
Average Wages Wage Bill Average Wages Wage Bill

A
dj
u
st
m
en

t
R
at
e

Average Wages θ1 = 0, θ2 = 0 θ1 = 1, θ2 = 0 θ1 = 0, θ2 = 0 θ1 = 1, θ2 = 0
(0.80) (0.87) (1.00) (1.09)

Wage Bill θ1 = 0, θ2 = 1 θ1 = 1, θ2 = 1 θ1 = 0, θ2 = 1 θ1 = 1, θ2 = 1
(0.82) (0.89) (1.03) (1.12)

Note: This table shows the parametrizations that lead to the corresponding entries in table 1. All
entries have θ3 = 0. In brackets I also show numerical values for the (non-approximated) deficit ratio
d(t) for the parameters γ = 0.25 and ψ = 3

4 .

Finally, one can put all terms together to derive an expression for E(t). Dividing this

expression by the level of I(t) = τWNRp(t) = τWN ψ
1+γψ

ωc(t) gives a closed form solution

for the deficit ratio d(t) = E(t)
I(t)

:

d(t) =

(1− χγ)

(
1 + γ − (1 + γψ)

(
1+γ

1+γψ

)θ2+
θ3

1−ψ

)(
1 + γψ − (1 + γψ)θ1

)
γ2(1 + γ)ψ(1− θ1)((1− ψ)(1− θ2)− θ3)

. (30)

This can be approximated around γ = 0 to derive that:

d(t) ≈ 1 +
γ

2
(2χ− 2 + ψ(θ1 − θ2) + θ2 + θ3) . (31)

The eight entries in table 1 all follow by inserting the appropriate parameters for θ1 to θ3

and χ into (30) and then eventually performing a first-order approximation around γ = 0.

The corresponding parameter choices are stated in table 6. In the following I report the

deficit ratio for the most interesting cases.

Indexation with the growth rate of the wage bill: For the case where the two

indexation rates are based on the growth rate of the wage bill (i.e. θ1 = θ2 = 1) one gets
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for cohort life expectancy (χ = 0):

d(t) =
(1 + ψγ) ln

(
1+γ

1+ψγ

)
ln(1 + ψγ)

γ2ψ(1− ψ)
≈ 1− γ

2
+
γ2

12
(4 + ψ(1− ψ)) ,

where I use a second-order approximation around γ = 0. For ψ = 3/4 and γ = 0.25 the

exact value for d(t) is 0.893, while the second-order and first-order approximations give

0.897 and 0.875, respectively.

For the use of period life expectancy (χ = 1) the deficit ratio comes out as:

d(t) =
(1 + γ)(1 + ψγ) ln

(
1+γ

1+ψγ

)
ln(1 + ψγ)

γ2ψ(1− ψ)
≈ 1 +

γ

2
− γ2

12
(2− ψ(1− ψ)) .

In the case of cohort life expectancy one faces a permanent surplus while for the case of

period life expectancy one has to deal with a permanent deficit.

Indexation with the average growth rate: For the case with average wage growth

indexation (i.e. θ1 = θ2 = 0) one does not need approximations to get concise results. In

fact equation (30) implies d(t) = 1
1+γ

(for cohort life expectancy with χ = 0) and d(t) = 1

(for period life expectancy with χ = 1).

Additional indexations: In section 6 I look at additional stable NDC systems.

For the use of cohort life expectancy (χ = 0) and θ1 = θ2 = 2 (and θ3 = 0) equation

(30) implies an exact value of d(t) = 1.

For the use of cohort life expectancy (χ = 0) and θ1 = θ2 = 0 and θ3 = 2 one gets

that:

d(t) =

(
(1 + γψ)

(
1+γ

1+γψ

) 2
1−ψ
)
− (1 + γ)

γ(1 + γ)(1 + ψ)
≈ 1− γ2ψ

3
,

which is close to d(t) = 1.

D.2 Constant retirement with Rc(t) = R (and λ = 0)

I follow the same steps as in appendix D.1 with the exception that retirement age is now

assumed to be constant, i.e. Rc(t) = R. I use the general parameters as laid done in (27),

(28) and (29) for λ = 0. The results are again related to the failures of the conventional
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wisdom (as discussed in section 5.1 and proposition 2) and to the construction of stable

NDC systems (as discussed in section 6).

The first term in the expressions for E(t) is no longer constant but given by:

Rc(t− a)

Γ(Rc(t− a), t− a)
=

R(1 + χγ)

ωc(t− a)−R
.

Furthermore it holds that:

e
∫Rc(t−a)
x (ρ(s,t−a+s)−g(t−a+s)) ds = e

∫Rc(t−a)
x θ1

γ
ωc(t−a+s) ds =

(
ωc(t− a+R)

ωc(t− a+ x)

)θ1
.

This can be used to calculate that:

1

Rc(t− a)

∫ Rc(t−a)

0

e
∫Rc(t−a)
x (ρ(s,t−a+s)−g(t−a+s)) ds dx =

1

Rc(t− a)

∫ Rc(t−a)

0

(
ωc(t− a+R)

ωc(t− a+ x)

)θ1
dx =

ωc(t− a+R)θ1
(
ωc(t− a+R)1−θ1 − ωc(t− a)1−θ1

)
Rγ(1− θ1)

.

For the term involving the adjustment rates one can calculate that:

e
∫ a
Rc(t−a)(ϑ(s,t−a+s)−g(t−a+s)) ds =

e
∫ a
Rc(t−a)(θ2

γ
ωc(t−a+s)+θ3

γ
ωc(t−a+s)−Rc(t−a+s) ) ds =(

ωc(t)

ωc(t− a+R)

)θ2 ( ωc(t)−R
ωc(t− a+R)−R

)θ3
.

Different to the case with Rc(t) = ψωc(t) it is not possible to derive a closed-form solution

for E(t) for general values of θ1, θ2 and θ3. I want to present the solutions for specific

cases that are also discussed in the text.

Indexation with the growth rate of the wage bill or average wage growth:

For the case with a constant retirement age these two indexation scheme coincide since

gL(t) = 0. For θ1 = θ2 = 0 (and θ3 = 0) one has that:

1

Rc(t− a)

∫ Rc(t−a)

0

e
∫Rc(t−a)
x (ρ(s,t−a+s)−g(t−a+s)) ds dx = 1.
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and

d(t) =
(1 + χγ) ln(1 + γ)

γ
.

This implies for cohort life expectancy (χ = 0) a deficit ratio of d(t) = ln(1+γ)
γ
≈ 1− γ

2
(1− γ

3
)

and for period life expectancy (χ = 1) a value of d(t) = (1+γ) ln(1+γ)
γ

≈ 1 + γ
2
(1− 2γ

3
).

Indexation with the corrected growth rate of the wage bill: This uses equations

(23c) and (24c) that correct the wage-bill growth for increases in the labor force that are

necessary to hold the dependency ratio constant. As argued in section 6.1 this means

that θ1 = θ2 = −1 (and θ3 = 0) and one can calculate for period life expectancy:

d(t) =
R(1 + γ)

ωc(t)

(
(2 + γ) ln(1 + γ)

2γ
− 1

)
+ 1, (32)

which, using a second-order Taylor expansion around γ = 0, is approximately d(t) =

1 + γ2 R
12ωc(t)

. Since the latter term is only of second order importance and rather small

one can conclude that this combination will implement an approximately stable NDC

system. For γ = 0.25, R = 45 and ωc(t) = 60 the exact value is d(t) = 1.0039, the

second-order approximation d(t) = 1.0039 and the first-order approximation d(t) = 1.

For cohort life expectancy one gets that:

d(t) =
R

ωc(t)

(
(2 + γ) ln(1 + γ)

2γ
− 1

)
+

1

1 + γ
≈ 1− γ + γ2

(
1 +

R

12ωc(t)

)
. (33)

Additional indexations: In section 6 I look at additional stable NDC systems.

For the use of cohort life expectancy and θ1 = θ2 = 1 (and θ3 = 0) the resulting

expression for d(t) is rather complicated. It can be approximated as:

d(t) = 1 + χγ − γ2R(3ωc(t)− 2R)

12ωc(t)
.

For cohort life expectancy with χ = 0 one thus gets that the deficit ratio is approximately

1. In fact, the approximation is again quite accurate. For the same parameters as above

the exact value is d(t) = 0.996 and the second-order approximation d(t) = 0.994.

For the use of θ1 = θ2 = 0 and θ3 = −1 one gets that:

d(t) ≈ 1− γ(1− χ) + γ2

(
1

2
− χ+

ωc(t)

2(ωc(t)−R)

)
.
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This means that for the use of period life expectancy (χ = 1) this is almost balanced.

In a similar fashion, for the use of θ1 = θ2 = 0 and θ3 = 1 one can approximate the

deficit ratio as:

d(t) ≈ 1 + γχ− γ2 R

2(ωc(t)−R)
.

This means that in this case the use of cohort life expectancy (χ = 0) leads to an almost

balanced budget.

D.3 Increasing retirement with Rc(t) = ψωc(t) (and λ = 1)

In this part it is again assumed that the retirement age is proportional to longevity, i.e.

Rc(t) = ψωc(t). I now assume, however, linear survivorship curves (λ = 1). In order to

simplify the discussion I will assume that ϑ(a, t) corresponds to ρ(a, t) and thus θ2 = θ1

and θ3 = 0 in equations (27) and (28).

The expression for E(t) (see (21)) can be written as:

E(t) =
τW (t)N

η

∫ ωp(t)

Rp(t)

∫ Rc(t−a)

0
S(x, t− a)e

∫ a
x

θ1γ
ωc(t−a+s) ds dx∫ ωc(t−a)

Rc(t−a)
S(x, t− a)dx

S(a, t− a)da,

where η = 1+λ
1+λ+χγ

. If the annuity conversion factor is based on cohort life expectancy

(χ = 0) then η = 1 while η = 1+λ
1+λ+γ

if it is based on period life expectancy (χ = 1).

This can be solved in closed form, although the resulting expressions for E(t) and d(t)

are rather lengthy. For θ1 = 2 and η = 1, however, it can be shown that d(t) = 1 holds

exactly. For θ1 = λ = 1 and η = 1+λ
1+γ+λ

, on the other hand, one can derive that:

E(t) = τW (t)N
2ωc(t)(γψ − (1 + γ) ln(1 + γψ))(γ(1− ψ)− (1 + γ)(ln(1 + γψ)− ln(1 + γ)))

γ4(1− ψ)2
.

This can be used to derive the deficit ratio which can then be approximated to yield:

d(t) ≈ 1 + γ(2−3ψ)
6(2−ψ)

which equals d(t) = 1 for ψ = 2
3
.

E Turnover duration (section 6.2)

The starting point is the definition of the pension liability as the present value of future

benefits to all persons to whom the pension system has a liability at the time of assessment

minus the present value of future contributions by the same individuals.
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One can distinguish between individuals that work and individuals that are already

retired. I focus on the case of rectangular survivorship (λ = 0) and a retirement pattern

following Rc(t) = ψωc(t).

Workers: For a worker of age a ∈ [0, Rp(t)] the contributions until retirement at age

Rc(t− a) are given by:∫ Rc(t−a)

a

τW (t) dx = τW (t) (Rc(t− a)− a) ,

where I use the growth rate of the wage level as discount factor. The future pension

benefits, on the other hand, amount to:∫ ωc(t−a)

Rc(t−a)

τW (t)Rc(t− a)

ωc(t− a)−Rc(t− a)
dx = τW (t)ψωc(t− a),

where the annuity conversion factor is based on cohort life expectancy.

Total net pension liabilities for workers are thus given by:

τW (t)

∫ Rp(t)

0

(ψωc(t− a)− (Rc(t− a)− a)) da = τW (t)

∫ Rp(t)

0

a da = τW (t)Rp(t)ApW (t),

(34)

where for the last step I use the definition of the average age of contributors (see (7))

given by ApW (t) =
∫Rp(t)
0 ada

Rp(t)
.

Retirees: The pension liabilities of a retiree of age a ∈ [Rp(t), ωp(t)] are given by:∫ ωc(t−a)

a

τW (t)Rc(t− a)

ωc(t− a)−Rc(t− a)
dx = τW (t)

ψ

1− ψ
(ωc(t− a)− a) .

The total liabilities of all retired cohorts comes out as:

∫ ωp(t)

Rp(t)

(
τW (t) ψ

1−ψ (ωc(t− a)− a)
)

da =

τW (t) ψ
1−ψ

(
ωc(t) (ωp(t)−Rp(t))− (1 + γ)

∫ ωp(t)

Rp(t)
a da

)
=

τW (t) ψ
1−ψ (ωp(t)−Rp(t)) (ωc(t)− (1 + γ)ApR(t)) =

τW (t)Rp(t) (ωp(t)− ApR(t)) ,

where I use ApR(t) =
∫ ωp(t)
Rp(t)

a da

ωp(t)−Rp(t)
and (ωp(t)−Rp(t)) = Rp(t) 1−ψ

ψ(1+γ)
.
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Total pension liabilities: Adding this expression and (34) gives the total net pension

liabilities. They come out as:

τW (t) (Rp(t)ApW (t) +Rp(t) (ωp(t)− ApR(t))) =

τW (t)Rp(t) (ApR(t)− ApW (t)) =

I(t)TD(t),

where I use ApW (t) + ωP (t) − ApR(t) = ApR(t) − ApW (t), I(t) = τW (t)Rp(t) and TD(t) =

(ApR(t)− ApW (t)).

F Required retirement age (section 7.1)

In this section I generalize method A, i.e. the period-based approach that is capable of

implementing a stable NDC system for the case of non-rectangular survivorship. The case

with rectangular survivorship has been treated in section 6.1 and is shown in tables 3 and

4. This approach is based on a “required retirement age” R∗p(t) that determines how the

retirement age has to evolve such that the basic NDC system with ρ(a, t) = gW (t)+µ(a, t)

and ϑ(a, t) = gW (t) stays balanced. In such a system the first pension of cohort t is given

by:

P F (t) =
τW (t)R∗c(t)

ep(R∗c(t), t+R∗c(t))

1

R∗c(t)

∫ R∗c(t)

0
S(x, t) dx

S(R∗c(t), t)
,

where 1
R∗c(t)

∫R∗c(t)
0 S(x,t) dx

S(R∗c(t),t)
give the inheritance gains that accrue to the surviving members

of cohort t at the moment of retirement at age R∗c(t). Since the adjustment factor is

simply given by the growth rate of average wages the average pension in period t is thus

given by:

P (t) =
1

M(t)

∫ ωp(t)

R∗p(t)

τW (t)R∗c(t− a)

ep(R∗c(t− a), t− a+R∗c(t− a))

1

R∗c(t− a)

∫ R∗c(t−a)

0
S(x, t− a) dx

S(R∗c(t− a), t− a)
S(a, t− a) da.

Note that:

ep(R∗c(t− a), t− a+R∗c(t− a)) =
ωc(t− a)−R∗c(t− a)

1 + γ + λ
.
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For a stable system it has to hold that total pension payments M(t)P (t) are equal to

total revenues τW (t)L(t) or:

M(t)P (t) =

∫ ωp(t)

R∗p(t)

R∗c(t− a)(1 + γ + λ)

ωc(t− a)−R∗c(t− a)
(35)

1

R∗c(t− a)

∫ R∗c(t−a)

0
S(x, t− a) dx

S(R∗c(t− a), t− a)
S(a, t− a) da

= L(t) =

∫ R∗p(t)

0

S(a, t− a) da.

My conjecture for a stable system is that the period retirement age has to be set according

to:

R∗p(t) = φ (ωc(t))1−λ . (36)

For λ = 0 this reduces to R∗p(t) = φωc(t). If one sets φ = ψ
1+γψ

then this implies that

R∗c(t) = ψωc(t) which corresponds to the case of assumption (13a). From section 6.1

it is already known that this corresponds to the retirement age that leads to a situation

where the aggregate support ratio L(t)
M(t)

is stabilized. For λ > 0 this can only be verified

by numerical simulations. It comes out that the use of R∗p(t) according to (36) leads to

a situation where (35) holds approximately. For λ = 1 expression (35) can be solved in

closed form. The resulting (lengthy) solution indicates that the use of (36) (which means

a constant R∗p(t) = φ for λ = 1) leads to an approximately balanced system for ψ = 2
3
.
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