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A The model

A.1 The population

The participant population of the pension fund consists of individuals of ages 25 to 99 years.

Individuals enter the fund at the age of 25 and remain with the fund for the rest of their life.

Further, we assume that they retire at age aR. The number of male and female participants of

age a at time t is denoted as Ma
t and F a

t , respectively, where a ∈ [25, 99]. Using projections

of survival probabilities we can calculate the size of these cohorts in the future. Concretely,

Ma+n
t+n = qm,na,t M

a
t and F a+n

t+n = qf,na,t F
a
t , where qm,na,t and qf,na,t are the probabilities that respec-

tively a male and female person aged a in period t will survive another n years. The survival

probabilities are deterministic. Hence, there is no longevity risk.

A.2 Wages

The wage level of the cohort of age a at time t is W a
t and it is updated each time period. We

assume a uniform wage level within each cohort, while over one’s life the wage level follows a

certain career profile. We set the wage levels of males and females equal. The nominal wage

level evolves as follows:

W a
t = W a−1

t−1 w
a−1
t−1 ,

where wa−1t−1 is the gross wage growth rate from period t − 1 to t for a cohort aged a − 1 in

period t−1. This factor is the product of the economy-wide gross wage growth rate wt−1 and a

component w̃a−1t−1 attributable to the progression of the career of someone of age a− 1 in period

t− 1:

wa−1t−1 = wt−1w̃
a−1
t−1 . (13)

We refer to w̃a−1t−1 as the (gross) promotion rate from period t − 1 to t for someone aged a − 1

in period t− 1. Note that w̃a−1t−1 is always greater than one if the career profile has an upward

sloping shape. We assume that the career profile remains constant over time, which implies

that w̃a−1t−1 = w̃a−1 in all periods. The economy-wide wage growth rate wt−1 is stochastic and is

modelled as explained in Section 4.
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A.3 The pension fund

A.3.1 Assets

Market value of the assets The market value of the fund’s assets at the beginning of the

next year, At+1, is equal to the asset value At at the beginning of this year, multiplied by its

gross rate of return Rt, plus the net money inflow times the gross return over the half year over

which it is on average invested:

At+1 = AtRt + (Ct −Bt)R
1/2
t , (14)

where Ct is the total amount of contributions received (calculated below) and Bt the total

amount of benefits paid out. Since the benefits and contributions are (usually) paid on a

monthly basis, while our model runs on a yearly basis, we assume that the payment of the

benefits and contributions takes place in the middle of the calendar year and, hence, the net

money inflow is invested on average for half a year until the beginning of the next year.

Calculation of the actuarial assets Pension fund assets in the U.S. are not measured at

their market value when they are used as an input for pension policy. Rather, pension funds in

the U.S. apply a smoothing procedure to come up with an actuarial value of their assets Aactt

in period t. Define the Investment Income Amount Of Immediate Recognition (IIAOIR) as a

target investment income based on the expected gross return R̄t:

IIAOIRt = At(R̄t − 1) + (Ct −Bt)(R̄
1/2
t − 1). (15)

The so-called Investment Income Market Total (IIMT ) denotes the actual realization of in-

vestment income, i.e. the difference between the market value of the assets at the end of the

year and the market value of the assets at the beginning of the year, less the net cash inflow

associated with the contributions and the benefits. From equation (14) we get:

IIMTt = At+1 − At − (Ct −Bt) = At(Rt − 1) + (Ct −Bt)(R
1/2
t − 1). (16)

Finally, the Investment Income Amount For Phased In Recognition (IIAFPIR) is realized

investment income in excess of expected investment income:

IIAFPIRt = IIMTt − IIAOIRt.

Hence, IIAFPIRt is positive when the actual investment return exceeds its expected value,

and vice versa. The usual smoothing procedure to calculate actuarial assets involves taking

the average of the excess investment incomes over the past. We define the Total Recognized
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Investment Gain (TRIG) as the average of IIAFPIR over a smoothing horizon of v years:

TRIGt =
1

v

v−1∑
i=0

IIAFPIRt−i.

Then, the actuarial value of the assets at the beginning of year t+1 will be determined by adding

to the actuarial value of the assets at the beginning of year t the net money inflows (contribution

payments minus the benefit pay-outs), investment income of immediate recognition and the

smoothed value of the excess investment income over the past v years:

Aactt+1 = Aactt + (Ct −Bt) + IIAOIRt + TRIGt. (17)

In short, the actuarial value of the assets at the end of the current year is equal to the actuarial

value at the end of previous year, plus the net cash flows into the fund, plus the projected

return on the assets, and a recognition of the smoothed difference between actual and expected

investment income. In the special case that the initial actuarial assets equal the initial market

value of the assets, Aact0 = A0, and the smoothing period is shrunk to a single period, one has

that Aactt = At, for all t ≥ 0. Hence, in this specific case the process of the actuarial assets

coincides with that of the market value of the assets.

Calculation of the actuarial liabilities This subsection sketches the calculation of the

actuarial liabilities, closely following Munnell et al. (2008b) and Novy-Marx and Rauh (2011).

This requires the calculation of the (projected) benefits of the pension fund participants. The

group of pension fund participants comprises the employees and the retired.

The fund’s actuarial liabilities are the sum of the actuarial liabilities Lact,mt and Lact,ft to the

male and female participants. The actuarial liabilities to each gender, in turn, are calculated

by multiplying the individual actuarial liability Lact,a,ζt to an age-a and gender-ζ individual by

the number of gender-ζ individuals in this cohort and then summing over the cohorts. Hence,

the fund’s actuarial liabilities are calculated as:

Lactt = Lact,mt + Lact,ft =
99∑

a=25

(
Ma

t L
act,a,m
t + F a

t L
act,a,f
t

)
,

Lact,a,ζt =
99−a∑

i=max (aR−a,0)

(
R̃

(i)
t

)−i
qζ,ia,tK

a+i
t,t+i,

(18)

where Ka+i
t,t+i is the projection at time t of the pension pay-out i years ahead for a participant

of age a and R̃
(i)
t is the gross interest rate that the pension fund uses to discount to period t

the cash flows materializing i periods into the future. It will be based on the median discount

rate used by the pension funds in our dataset. The discount rate used by U.S. public pension

plans is usually flat over the entire projection horizon and equal to the expected asset portfolio
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return. We notice that R̃
(0)
t = 1 and qζ,0a,t = 1. Summarizing, the liabilities to an individual of

a particular cohort depend on the number of years he/she will (still) receive benefits, the level

of the benefits, the discount rate and the survival probabilities.

Calculation of the pensioners’ benefits The current pay-out to a retiree equals the current

pension rights, Ba
t , while the projected pay-out i periods from now equals the current pension

rights adjusted for projected future indexation:

Ka
t,t = Ba

t ,∀a ∈ [aR, 99] ,

Ka+i
t,t+i = Ba

t

i∏
j=1

(
1 + πpt,t+j

)
, ∀i ∈ [1, 99− a] ,∀a ∈ [aR, 98] ,

where πpt,t+j is the projection in period t of the COLA in period t+ j. It is based on the average

actuarial annual inflation projection used by the pension funds in our dataset. Current pension

rights Ba
t equal the pension rights at the moment of retirement increased by the past realized

indexation since then:

Ba
t = BaR

t−(a−aR)

a−(aR+1)∏
j=0

(1 + COLAt−j) ,∀a ∈ [aR + 1, 99] .

For example, the pension rights of a 70-year old person, who retired at the age aR = 65, are

equal to the benefit calculated when that person reached the age of 65, plus the indexation

that has been awarded over the 5 years since then.

A common feature of the state pension plans in the U.S. is that benefits at the moment of

retirement are based on the average wage preceding the moment of exit from the workforce.

Concretely, the benefit of somebody retiring in year t−(a−aR) can be calculated as the product

of the accrual rate ε, the number of years in the workforce (here, 40), and the average wage

level over the past z years:

BaR
t−(a−aR) =

40ε

z

z∑
l=1

W aR−l
t−(a−aR)−l,∀a ∈ [aR, 99] .

The averaging period z varies from one to five years, with the majority of public plans applying

a three–year average (Munnell et al., 2012).

Calculation of the workers’ benefits The projected (at time t) pay-out to someone of age

a is given by its current pension rights Ba
t adjusted for the actuarially-projected COLAs during
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retirement:

Ka+i
t,t+i = Ba

t , i = aR − a,∀a ∈ [25, aR − 1] ,

Ka+i
t,t+i = Ba

t

i∏
j=aR+1−a

(
1 + πpt,t+j

)
, ∀i ∈ [aR + 1− a, 99− a] , ∀a ∈ [25, aR − 1] ,

where the first line gives the projected benefit during the first year of retirement, while the

second line gives the projected benefit during the ensuing years in retirement, which thus takes

into account the projection of the COLAs during retirement.

Methods for recognizing liabilities The value of a worker’s pension rights Ba
t depends

on the method used to recognizing liabilities. Under the ABO method only the pension rights

accrued until time t are taken into account:

B25
t = 0,

Ba
t =

(a− 25)ε

min(a− 25, z)

min(a−25,z)∑
l=1

W a−l
t−l ,∀a ∈ [26, aR] .

The youngest cohort of age 25 has just entered the fund and has no rights accrued yet. The

rights of the other young cohorts who do not yet have z years in service are based on the average

of the available wage history. For the cohorts that have at least z years of service, the pension

rights are the product of the years in the workforce, the accrual rate and the average pay over

the past z years. Hence, for an individual worker the ABO pension rights increase with each

additional year of service.

Under the PBO method, we also take into account the effect of expected future salary increases

on the rights accrued up to now. Hence, under this method Ba
t is the projected benefit level at

retirement when the actuarially-projected salary advances are taken into account:

B25
t = 0,

Ba
t =

(a− 25)ε

z

z∑
l=1

W p,aR−l
t,t+(aR−a)−l,∀a ∈ [26, aR − 1] .

where W p,aR−l
t,t+(aR−a)−l is the period-t actuarial projection of wage growth W aR−l

t+(aR−a)−l of someone

aged aR − l in period t + (aR − a)− l. The actuarial projection of the wage growth that took

place in the past or the current wage growth (e.g., if a = aR − 1 and l = 1), is equal to the

realized wage growth. Again, the youngest cohort, the 25 years old, has no accrual yet and,

hence, it has no pension rights in terms of the PBO. However, for a given age and a positive

nominal wage growth projection, the pension rights of the other working cohorts are higher

under the PBO method than under the ABO method.

Finally, state civil service jobs are relatively secure, so that the pension fund might in addition
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consider the rights that the employees will acquire in the future if they continue working in

their job until retirement. The PVB method takes this into account. Therefore, it defines the

pension rights Ba
t including future accrual due to new service:

Ba
t =

40ε

z

z∑
l=1

W p,aR−l
t,t+(aR−a)−l,∀a ∈ [25, aR − 1] . (19)

Hence, this measure is based on the accrual over a full working life.

A.4 Benefits

The total amount of pension benefits to be paid out in year t is:

Bt =
99∑

a=aR

(Ma
t + F a

t )Ba
t .

A.5 Inputs for calculating the contributions

A.5.1 The entry-age normal costing method

The most common method for calculating the normal cost in public plans is the so-called entry-

age normal costing (EAN) method. Under the EAN method, the employer’s annual normal

cost associated with an individual participant is calculated as a contribution throughout the

projected years of service needed to finance the PVB obligation. Due to salary growth pension

rights increase more than linearly over time. Hence, the method implies a component of front-

loading, because the employer is pre-paying some of the future accrual (Munnell et al., 2008b).

The so-called normal cost rate (NCR) of an active participant is calculated at the entry age as

the ratio of the actuarial (i.e., using the fund’s discount rate) present values of the actuarially-

projected benefits and career salary levels:

NCR25,ζ
t =

L25,ζ
t

PVW 25,ζ
t

, ζ ∈ {f ;m},

where L25,ζ
t is the actuarial liability to someone of gender ζ who enters the labor force in

period t as calculated in (18) on the basis of the PVB method, i.e. based on pension rights as

calculated in (19), and PVW 25,ζ
t is the actuarial present value of all future wages throughout

the participant’s career as projected at entry. Hence, the normal cost rate is the percentage

payment of a worker’s projected career salary needed to cover the cost of the projected pension

benefits for that worker at entry into the fund.
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Further, the actuarial present value of actuarially-projected wages of a worker of age a and

gender ζ is calculated as:

PVW a,ζ
t =

aR−1−a∑
i=0

(
R̃

(i)
t

)−i
qζ,ia,tW

p,a+i
t,t+i ,

which takes account of the survival probabilities.

Finally, the (actuarial) present value of the future normal cost (PV FNC) of a worker of age a

are the normal costs that will be recognized throughout her remaining years of service:

PV FNCa,ζ
t = PVW a,ζ

t ×NCR
25,ζ
t−(a−25).

Hence, this is the product of the actuarially discounted value of projected wages and the normal

cost rate determined at the time when the worker entered the fund.

A.5.2 The actuarial accrued liability

The actuarial accrued liability (Lactaccr) of a participant is the difference between the actuarial

liabilities to this participant, calculated as the actuarial liabilities, and the actuarial present

value of the future normal cost:

Lact,a,ζaccr,t = Lact,a,ζt − PV FNCa,ζ
t .

If we follow an individual worker over time, we will see that the actuarial present value of the

future normal cost will decrease, as there will be fewer remaining years to pay the normal cost.

Therefore, the actuarial accrued liability associated with an individual worker increases over

time.

The actuarial accrued liability of pensioners is simply equal to the actuarial liabilities, since

they should have paid the whole normal cost before reaching the retirement age. Therefore,

PV FNCa,ζ
t = 0⇒ Lact,a,ζaccr,t = Lact,a,ζt , ∀a ∈ [aR, 99] .

Finally, the fund’s actuarial accrued liability is the sum of the individual actuarial accrued

liabilities over genders and cohorts:

Lactaccr,t = Lact,maccr,t + Lact,faccr,t =
99∑

a=25

(
Ma

t L
act,a,m
accr,t + F a

t L
act,a,f
accr,t

)
. (20)
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A.6 Contributions

The aggregate volume of actuarial contributions by all the participants and the employer in

year t is:

Cact
t =

aR−1∑
a=25

(
NCR25,m

t−(a−25)M
a
tW

a
t +NCR25,f

t−(a−25)F
a
t W

a
t

)
+ λAMORTt,

where

AMORTt =

 1
u
UAALt if UAALt ≥ 0,

0 if UAALt < 0,

and λ is the fraction of the required amortization payment actually paid. Notice that the first

component of Cact
t is the sum over all working life ages and over the genders of the product of

the gender-specific normal cost rate times the aggregate wage volume earned by each gender.

The actuarial contribution rate cactt is expressed as a percentage of the total wage sum in year

t:

cactt =
Cact
t∑aR−1

a=25 (Ma
t + F a

t )W a
t

. (21)

A.7 The sponsor support

We define the sponsor support contribution rate as:

cSSt =
SSt∑aR−1

a=25 (Ma
t + F a

t )W a
t

, (22)

where

SSt =

0 if At ≥ Bt − Ct,

(Bt − Ct)− At if At < Bt − Ct.

Notice that the sponsor support is included in the calculation of the actuarial assets.

B Simulation procedure

This appendix provides the details on the simulation of both the classic ALM and the value-

based ALM model. In both cases we draw a set economic scenarios. Each scenario involves

drawing a path of 300 quarters of our state vector. Below we first discuss the pricing framework,
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followed by the calculation of the fund’s portfolio returns. Finally, we discuss the risk-neutral

sampling procedure used for the risk-neutral valuation.

B.1 Pricing framework

Consider some derivative with a pay-off of Zτ at time τ , which is a function of the path X1, X2, ...

of the state vector. The price of the derivative at time q is then given by13

Pt =
∞∑

τ=q+1

Eq

[
Zτ exp

τ∑
s=q+1

ms

]
,

where −mq+1 is the stochastic discount rate for the real-world scenarios. In line with the

literature (Campbell et al., 1996), we assume that the stochastic discount rate −mq+1 in period

q+1 for the real-world scenarios is given by the following function of the state vector generated

by our VAR model and the shocks to this state vector:

−mq+1 = e′yXq +
1

2
(β0 + β1Xq)

′Σ(β0 + β1Xq) + (β0 + β1Xq)
′εq+1, (23)

where β0 and β1 are respectively a vector and a matrix of parameters and ey indicates the

position of the short rate in the state vector:

ey = (1, 0, 0, 0)′.

In a complete market it is possible to sell the derivative at time q + 1 for its price Pq+1. Hence

the following must hold:

Pq = Eq [Pq+1 exp (mq+1)] , (24)

where Pq+1 is the total price based on the total return index where any pay-off is reinvested in

the same index. If we use lower-case letters to denote log-values so that

pq = logPq,

knowing that Xq+1 has a Gaussian distribution, and using the properties of the log-normal

distribution, we can derive from equation (24):

exp pq = Eq [exp pq+1 expmq+1] = Eq [exp(pq+1 +mq+1)]

= exp (Eq [pq+1 +mq+1] + 1/2 Varq [pq+1 +mq+1]) ,

Hence,

pq = Eq [pq+1 +mq+1] + 1
2

Varq [pq+1 +mq+1] . (25)

13Here, we index time by q to indicate that we now count time in terms of quarters (running from 1 to 300).
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Note that

Eq [mq+1] = −e′yXq − 1
2
(β0 + β1Xq)

′Σ(β0 + β1Xq), (26)

Varq [mq+1] = (β0 + β1Xq)
′Σ(β0 + β1Xq). (27)

We will now apply our pricing framework to the various assets that are relevant for us.

B.1.1 Nominal bonds

We determine the term structure using an affine model based on the state variables (e.g., see

Dai and Singleton (2000), Ang and Piazzesi (2003), Ang et al. (2008) and Le et al. (2010)).

Denote by p
(n)
q the quarter-q log price of a zero coupon nominal bond that matures at time

q + n and pays one unit of currency at maturity date. We assume that it is an affine function

of the state variables:

p(n)q = −Dn −H ′nXq. (28)

Its nominal yield Y
(n)
q satisfies the following relationship:

(
1 + Y (n)

q

)−n
= P n

q . (29)

Denote y
(n)
q ≡ ln(1 + Y

(n)
q ). Hence, equations (28) and (29) imply

y(n)q = − 1

n
p(n)q =

1

n
Dn +

1

n
H ′nXq. (30)

Applying the general pricing equation (25) to zero-coupon bonds and using equation (28) we

get:

p(n)q = Eq

[
p
(n−1)
q+1 +mq+1

]
+ 1/2 Varq

[
p
(n−1)
q+1 +mq+1

]
= −Dn−1 −H ′n−1 Eq [Xq+1]

+ Eq [mq+1]

+
1

2
V arq

[
−H ′n−1Xq+1

]
+

1

2
Varq [mq+1]

+ Covq
[
−H ′n−1Xq+1,mq+1

]
.

(31)

Using (26), (27) and Eq [Xq+1] = (I − Γ)µ+ ΓXq, we can rewrite (31) as
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p(n)q = −Dn−1 −H ′n−1 ((I − Γ)µ+ ΓXq)

− e′yXq −
1

2
(β0 + β1Xq)

′Σ(β0 + β1Xq)

+
1

2

(
H ′n−1ΣHn−1

)
+

1

2
(β0 + β1Xq)

′Σ(β0 + β1Xq)

+H ′n−1Σ(β0 + β1Xq),

where the last part follows from

Covq
[
−H ′n−1Xq+1,mq+1

]
= Covq[−H ′n−1 ((I − Γ)µ+ ΓXq + εq+1) ,

− e′yXq −
1

2
(β0 + β1Xq)

′Σ(β0 + β1Xq)− (β0 + β1Xq)
′εq+1]

= Eq

[
(−H ′n−1εq+1)(−(β0 + β1Xq)

′εq+1)
]

= Eq

[
(H ′n−1εq+1)(ε

′
q+1(β0 + β1Xq))

]
= H ′n−1 Eq

[
εq+1ε

′
q+1

]
(β0 + β1Xq)

= H ′n−1Σ(β0 + β1Xq).

We can further rewrite p
(n)
q as

p(n)q = −Dn−1 −H ′n−1(I − Γ)µ−H ′n−1ΓXq

− e′yXq

+
1

2
H ′n−1ΣHn−1

+H ′n−1Σβ0 +H ′n−1Σβ1Xq

= −Dn−1 −H ′n−1(I − Γ)µ+
1

2
H ′n−1ΣHn−1 +H ′n−1Σβ0

− (e′y +H ′n−1Γ−H ′n−1Σβ1)Xq.

The last equation is already of the affine structure as in equation (28) with parameters

Dn = Dn−1 +H ′n−1(I − Γ)µ− 1

2
H ′n−1ΣHn−1 −H ′n−1Σβ0,

Hn = ey + (Γ− Σβ1)
′Hn−1.

(32)

For n = 0 we have that:

p(0)q = lnP (0)
q = ln 1 = 0,

which is given by equation (28) with parameters

D0 = 0,

H0 = 0.
(33)
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Using (33) in (32) we get

D1 = 0,

H1 = ey.
(34)

This implies

p(1)q = −e′yXq = −y(1)q . (35)

The deflator is calibrated to the short rate so that this constraint is satisfied.

B.1.2 Real bonds

Denote by P
r(n)
s,q the price of a real bond at time q issued at time s ≤ q and maturing at time

q + n. Such a bond pays Πq+n/Πs at maturity, where Πq is the price index at time q. This

implies that:

P
r(n)
q−1,q =

Πq

Πq−1
P r(n)
q,q , (36)

which can be expressed in terms of logarithms as:

p
r(n)
q−1,q = πq + pr(n)q,q . (37)

At maturity the nominal pay-off of the real bond is equal to the inflation during the bond’s

life, so in real terms the pay-off is equal to one. The real n-period yield is thus:

Y r(n)
q =

(
1

P
r(n)
q,q

) 1
n

, (38)

which in logarithmic terms is:

yr(n)q = − 1

n
pr(n)q,q . (39)

Analogously to (28), we assume that p
r(n)
q,q is of affine structure:

pr(n)q,q = −Dr
n −Hr′

nXq. (40)

For n = 0 we have that:

pr(0)q,q = lnP r(0)
q,q = ln 1 = 0, (41)

which by equation (40) always holds if

Dr
0 = 0,

Hr
0 = 0.

(42)

We will assume that (40) is valid for n and deduce its validity for n+ 1.
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According to the general pricing formula (24), and using (37):

P r(n+1)
q,q = Eq

[
P
r(n)
q,q+1 expmq+1

]
= Eq

[
exp(πq+1 + p

r(n)
q+1,q+1 +mq+1)

]
. (43)

Applying (40) we get:

pr(n+1)
q,q = Eq

[
πq+1 + p

r(n)
q+1,q+1 +mq+1

]
+ 1/2 Varq

[
πq+1 + p

r(n)
q+1,q+1 +mq+1

]
= Eq [πq+1]

−Dr
n −Hr′

n Eq [Xq+1]

+ Eq [mq+1]

+
1

2
V arq [πq+1 −Hr′

nXq+1]

+
1

2
Varq [mq+1]

+ Covq [πq+1 −Hr′
nXq+1,mq+1] .

(44)

Let eπ indicate the position of the inflation in the state vector:

eπ = (0, 0, 1, 0)′, (45)

so that

πq+1 = e′πXq+1. (46)

Using (46), (26), (27) and Eq [Xq+1] = (I−Γ)µ+ ΓXq, we can rewrite (44) as

pr(n+1)
q,q = Eq

[
πq+1 + p

r(n)
q+1,q+1 +mq+1

]
+ 1/2 Varq

[
πq+1 + p

r(n)
q+1,q+1 +mq+1

]
= e′π ((I − Γ)µ+ ΓXq)

−Dr
n −Hr′

n ((I − Γ)µ+ ΓXq)

− e′yXq − 1
2
(β0 + β1Xq)

′Σ(β0 + β1Xq)

+
1

2
(e′π −Hr′

n )Σ(eπ −Hr
n)

+
1

2
(β0 + β1Xq)

′Σ(β0 + β1Xq)

+ (Hr′
n − e′π)Σ(β0 + β1Xq).

(47)
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where the last part follows from

Covq [πq+1 −Hr′
nXq+1,mq+1] = Covq [(e′π −Hr′

n )Xq+1,mq+1]

= Covq[(e
′
π −Hr′

n ) ((I − Γ)µ+ ΓXq + εq+1) ,

− e′yXq −
1

2
(β0 + β1Xq)

′Σ(β0 + β1Xq)− (β0 + β1Xq)
′εq+1]

= Eq [((e′π −Hr′
n )εq+1)(−(β0 + β1Xq)

′εq+1)]

= Eq

[
((Hr′

n − e′π)εq+1)(ε
′
q+1(β0 + β1Xq))

]
= (Hr′

n − e′π) Eq

[
εq+1ε

′
q+1

]
(β0 + β1Xq)

= (Hr′
n − e′π)Σ(β0 + β1Xq).

(48)

We can further rewrite p
r(n+1)
q,q as

pr(n+1)
q,q = −Dr

n + (e′π −Hr′
n )(I − Γ)µ+ (e′π −Hr′

n )ΓXq

− e′yXq

+
1

2
(eπ −Hr

n)′Σ(eπ −Hr
n)

+ (Hr′
n − e′π)Σβ0 + (Hr′

n − e′π)Σβ1Xq

= −Dr
n + (e′π −Hr′

n )(I − Γ)µ+
1

2
(eπ −Hr

n)′Σ(eπ −Hr
n) + (Hr′

n − e′π)Σβ0

+ ((e′π −Hr′
n )Γ− e′y + (Hr′

n − e′π)Σβ1)Xq.

(49)

The last equation is already of the affine structure as in equation (28) with parameters

Dr
n+1 = Dr

n + (Hr
n − eπ)′(I − Γ)µ− 1

2
(Hr

n − eπ)′Σ(Hr
n − eπ)− (Hr

n − eπ)′Σβ0,

Hr
n+1 = ey + (Γ− Σβ1)

′(Hr
n − eπ).

(50)

B.1.3 Stocks

The excess return on stocks is defined as follows and can be rearranged using (35):

rsq+1 − y(1)q = ln

(
P s
q+1

P s
q

)
− y(1)q = psq+1 − psq + p(1)q (51)

=⇒ psq+1 = rsq+1 − y(1)q + pq − p(1)q , (52)

where P s
q is the stock price and rsq is its return. Note that both rsq+1 and y

(1)
q are returns going

from period q to period q + 1, with y
(1)
q known in period q. Using (33) in (31) we get

p(1)q = Eq [mq+1] +
1

2
Varq [mq+1] . (53)
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From (25), (51) and (53) it follows that

Eq

[
rsq+1 − y(1)q

]
= Eq[p

s
q+1]−

(
Eq

[
psq+1 +mq+1

]
+ 1/2 Varq

[
psq+1 +mq+1

])
+ Eq [mq+1] +

1

2
Varq [mq+1]

= Eq[p
s
q+1]−

(
Eq

[
psq+1

]
+

1

2
Varq

[
psq+1

]
+ Covq

[
psq+1,mq+1

])
= −1

2
Varq

[
psq+1

]
− Covq

[
psq+1,mq+1

]
.

Using (52) and the fact that psq and p
(1)
q are known at time q, so that

Varq[p
s
q+1] = Varq[r

s
q+1 − y(1)q + psq − p(1)q ] = Varq[r

s
q+1 − y(1)q ], (54)

we get

Eq

[
rsq+1 − y(1)q

]
= −1

2
Varq

[
rsq+1 − y(1)q

]
− Covq

[
rsq+1 − y(1)q ,mq+1

]
. (55)

The excess return on stocks can also be written as

rsq+1 − y(1)q = e′xsXq+1 = e′xs ((I−Γ)µ+ ΓXq + εq+1) , (56)

where exs = (0, 1, 0, 0)′ is a unit vector representing the location of the excess return on stocks

in the state vector. Hence,

e′xs ((I−Γ)µ+ ΓXq) = Eq

[
rsq+1 − y(1)q

]
. (57)

It follows from equation (23), (55), (56) and (57) that

e′xs ((I−Γ)µ+ ΓXq) = −1

2
Varq [e′xsεq+1]− Covq [e′xsεq+1,−(β0 + β1Xq)

′εq+1]

= −(
1

2
e′xsΣexs)− Eq [(e′xsεq+1 − 0)(−(β0 + β1Xq)

′εq+1 − 0)]

= −(
1

2
e′xsΣexs)− Eq

[
−e′xsεq+1ε

′
q+1(β0 + β1Xq)

]
= −(

1

2
e′xsΣexs) + e′xsΣ(β0 + β1Xq).

Hence,

e′xs

(
(I−Γ)µ+ ΓXq +

1

2
Σexs − Σβ0 − Σβ1Xq

)
= 0

⇔ e′xs

((
(I−Γ)µ− Σβ0 +

1

2
Σexs

)
+ (Γ− Σβ1)Xq

)
= 0.
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This is satisfied for all values of Xq if:

e′xs ((I−Γ)µ− Σβ0) +
1

2
e′xsΣexs = 0,

e′xs (Γ− Σβ1) = 0.
(58)

The first equation yields one condition, whereas the second equation yields as many conditions

as there are state variables. It follows that the conditions in (58) must be satisfied for stocks.

These conditions determine the parameters β0 and β1 of the discount factor.

B.1.4 The inflation risk premium

We follow Grishchenko and Huang (2012) and assume that the inflation risk premium RP
π(n)
q

is defined by the following equation:

y(n)q − yr(n)q,q =
1

n

n∑
i=1

Eq[πq+i] +
1

2
e′πΣeπ +RP π(n)

q , (59)

where on the left-hand side we have the difference between the nominal and the real yield.

The first term on the right-hand side is n-period expected inflation and the second term is the

so-called Jensen’s correction - a convexity term that has little impact on the results.

Using the formula of the sum of a geometric series we have

Eq[Xq+i] = Γ0(I−Γ)µ+ Γ1(I−Γ)µ+ ...+ Γi−1(I−Γ)µ+ ΓiXq

= (I−Γ)µ(I−Γi)(I−Γ)−1 + ΓiXq

= µ+ Γi(Xq − µ).

(60)

It follows then that the expected inflation is

Eq[πq+i] = Eq[e
′
πXq+i] = e′πµ+ e′πΓi(Xq − µ), (61)

and
1

n

n∑
i=1

Eq[πq+i] =
1

n

n∑
i=1

e′πµ+
1

n

n∑
i=1

e′πΓi(Xq − µ)

= e′πµ+
1

n
e′π(

n∑
i=1

Γi(Xq − µ))

= e′πµ+
1

n
e′π((Xq − µ)(I−Γn+1)(I−Γ)−1 − (Xq − µ))

= e′πµ+
1

n
e′πΓ(I−Γn)(I−Γ)−1(Xq − µ).

(62)

Inserting

y(n)q =
1

n
Dn +

1

n
H ′nXq, (63)
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yr(n)q,q =
1

n
Dr
n +

1

n
Hr′
nXq, (64)

and (62) into (59), and multiplying by n, we obtain:

Dn +H ′nXq −Dr
n −Hr′

nXq = ne′πµ+ e′πΓ(I−Γn)(I−Γ)−1(Xq − µ) +
n

2
e′πΣeπ + nRP π(n)

q , (65)

or
0 = Dr

n −Dn + ne′πµ− e′πΓ(I−Γn)(I−Γ)−1µ+
n

2
e′πΣeπ + nRP π(n)

q

+ (Hr′
n −H ′n + e′πΓ(I−Γn)(I−Γ)−1)Xq.

(66)

Note that the risk premium is constant over time, hence RP
π(n)
q = RP π(n) for all q. Assuming

that this expression holds for all Xq, we can write for n = 1:

RP π = D1 −Dr
1 − e′πµ+ e′πΓµ− 1

2
e′πΣeπ,

Hr′
1 = H ′1 − e′πΓ.

(67)

where we have defined RP π = RP π(1). Using (34) and (50),

RP π = e′π(I − Γ)µ+
1

2
e′πΣeπ − e′πΣβ0 − e′πµ+ e′πΓµ− 1

2
e′πΣeπ,

ey − (Γ− Σβ1)
′eπ = ey − Γ′eπ.

(68)

Hence, we have the following constraints associated with the one-period inflation risk premium:

e′π(Σβ0) = −RP π,

e′π(Σβ1) = 0.
(69)

Following an analogous procedure, i.e. starting from an expression similar to (59) for the

difference between the yield on a nominal bond and a bond indexed to real wage growth, we

would obtain the following constraints associated with the one-period real-wage risk premium:

e′w(Σβ0) = −RPw,

e′w(Σβ1) = 0.
(70)

where

ew = (0, 0, 0, 1)′. (71)

B.2 Parameter optimization

In this subsection we obtain the model-induced values β̃0 and β̃1 for β0 and β1, respectively.

First, we obtain empirical estimates D̂n and Ĥn ofDn andHn, respectively, through multivariate

OLS estimation of equation (30) for some specific maturities using the historical time series
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of zero-coupon yields for those maturities and using the historical time series of the state

variables. The estimation is again at the quarterly level from the third quarter of 1990 up to

and including the second quarter of 2015. The same procedure is repeated for the real yields, in

order to obtain empirical estimates D̂r
n and Ĥr

n. For this purpose we use the historical data of

the real yields starting from 2003. The optimal β̃0 and β̃1 are obtained through an optimization

procedure exploiting several model-implied restrictions. The optimal values for β̃0 and β̃1 imply

specific values D̃n, H̃n, D̃r
n and H̃r

n for the model parameters Dn, Hn, Dr
n and Hr

n, respectively,

by using the recursion in equations (32) and (50). Specifically, given H0 = 0 and β̃1, we can

calculate H̃1, H̃2, and so on. Given D0 = 0, β̃0 and the path H0, H̃1, H̃2,..., we calculate D̃1,

D̃2, ... Similarly, given Hr
0 = 0 and β̃1, we can calculate H̃r

1 , H̃r
2 , and so on. Given Dr

0 = 0,

β̃0 and the path Hr
0 , H̃r

1 , H̃r
2 ,..., we calculate D̃r

1, D̃
r
2, ... The part of the objective function

constructed in order to solve for β̃1 aims at matching the historical yield exposures to the state

variables to the exposures in the model, i.e. bringing H̃n and H̃r
n as close as possible to Ĥn and

Ĥr
n. The part of the objective function constructed in order to solve for β̃0 aims at matching

the latest interest rate level in our model to the latest interest rate level in our sample period,

i.e. bringing D̃n and D̃r
n as close as possible to the levels implied by the most recent interest

rates and H̃n and H̃r
n. Once we have the series D̃n and H̃n, we have constructed the nominal

term structure that we use to calculate the returns on the fixed-income part of pension fund

portfolio. Once we have the series D̃r
n and H̃r

n, we have constructed the real term structure.

B.2.1 Optimization of β1 and β0

In the main analysis we use the µ̂ corresponding to the values indicated by the SPF, so that

the simulations generated from the model are based on an outlook for the economy that is as

close as possible to the current one. In our robustness analysis we use the direct estimate µ̂ of

µ. Further, note that the model constraints in the second lines of (58) and (69) are expressed

in terms of Σβ1, so it is easier to obtain first an estimate ˜(Σβ1) of the combination Σβ1 than

to obtain a direct estimate β̃1 of β1 itself. Analogously, the model constraints in the first lines

of (58) and (69) are expressed in terms of Σβ0, so it is easier to obtain an estimate ˜(Σβ0) of

the combination Σβ0 than to obtain a direct estimate β̃0 of β0 itself. Hence, we obtain β̃1 and

β̃0 in two steps. First, we obtain all elements of ˜(Σβ1) and ˜(Σβ0). Then, we obtain β̃1 and β̃0

from

β̃1 = Σ̂−1 ˜(Σβ1). (72)

β̃0 = Σ̂−1 ˜(Σβ0), (73)

where Σ̂ is obtained from the estimation of equation (6).

Let us move to the determination of ˜(Σβ1) and ˜(Σβ0). The elements in the ˜(Σβ1) row corre-

sponding to the excess returns are predetermined by the constraint (58).

e′xs
˜(Σβ1) = e′xsΓ̂, (74)
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Further, using the second line of the constraint (69) and the fact that we impose a zero real

wage risk premium, we can set the elements in the row of ˜(Σβ1) corresponding to inflation and

real wage growth to zeroes. The element of ˜(Σβ0) corresponding to the excess stock returns

follows straight away from the first line of (58):

e′xs(Σβ0) = e′xs(I − Γ̂)µ̂+
1

2
e′xsΣ̂exs, (75)

where µ̂ is based on imputation from the SPF in the main analysis and is the direct estimate

obtained from equation (6) in the robustness analysis. Γ̂ is obtained from the estimation of

equation (6). Finally, the element of ˜(Σβ0) corresponding to real wage growth is set to zero, as

we impose a zero real wage risk premium due to a lack of market information on it.

Our optimization procedure can be used to solve for the one-period risk premia associated with

inflation and real wage growth. This amounts to solving for the third and fourth elements of
˜(Σβ0), alongside the other elements of ˜(Σβ1) and ˜(Σβ0) that we need to optimize over below.

The first lines of (69) and/or (70) then determine the third and fourth element of ˜(Σβ0) directly.

However, to the best of our knowledge real-wage indexed bonds do not exist in practice. Hence,

it is not possible to match its model-implied term structure to one that is estimated on actual

data. Therefore, we directly impose a real wage growth risk premium of zero. This seems

reasonable in view of the fact that real wage growth exhibits limited volatility compared to

the other elements of the state vector. However, the inflation risk premium we keep as a free

parameter in the model.

We obtain the remaining elements of ˜(Σβ1) and ˜(Σβ0), i.e. the first row of ˜(Σβ1) and the first

and third element of ˜(Σβ0), by minimizing over these elements a criterion function that is the

sum of the following four components that will all receive an equal weight in the optimization

procedure.

The first component tries to match the model-implied exposures Hn of the nominal yield to the

state variables to their empirical values Ĥn:

∑
n∈τ

∥∥∥Hn − Ĥn

∥∥∥2 =
∑
n∈τ

∥∥∥ey + (Γ̂− Σβ1)
′Hn−1 − Ĥn

∥∥∥2 , (76)

where τ = {4, 8, 20, 40}. Note that Hn−1 is a function of Σβ1 through the recursion in the

second line of (32).

The second component is constructed analogously for the real yields:

∑
n∈τ

∥∥∥Hr
n − Ĥr

n

∥∥∥2 =
∑
n∈τ

∥∥∥ey + (Γ̂− Σβ1)
′Hr

n−1 − eπ)− Ĥr
n

∥∥∥2 , (77)

where τ = {4, 8, 20, 40}, where Hr
n−1 is a function of Σβ1 through the recursion in the second

line of (50).
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For the remaining components we will make use of the affine structure of the yields:

y(n)q =
1

n
Dn +

1

n
H ′nXq, (78)

and

yr(n)q =
1

n
Dr
n +

1

n
Hr′
nXq. (79)

The third component of the objective function tries to match the intercept Dn that follows from

the model to the difference between the last observation of the yields and the model prediction

without the intercept, so that the model matches the last interest rates as well as possible:

∑
n∈τ

∥∥∥∥(Dn−1 + H̃ ′n−1(I − Γ̂)µ̂− 1

2
H̃ ′n−1Σ̂H̃n−1 − H̃ ′n−1(Σβ0)

)
−
(

(y(n)qlast
− 1

n
H̃ ′nXqlast)n

)∥∥∥∥2
(80)

where τ = {4, 8, 20, 40}, qlast indicates the quarter of the last observation and we have used the

first line of (32).

The fourth component is constructed analogously for the real yields:

∑
n∈τ

∥∥∥∥(Dr
n−1 + (H̃r

n−1 − eπ)′(I − Γ̂)µ̂− 1

2
(H̃r

n−1 − eπ)′Σ̂(H̃r
n−1 − eπ)− (H̃r

n−1 − eπ)(Σβ0)

)
−
(

(yr(n)qlast
− 1

n
H̃r′
nXqlast)n

)∥∥∥∥2
(81)

where τ = {4, 8, 20, 40} and we have used the first line of (50).

Using H0 = Hr
0 = 0 and the optimal value β̃1 in combination with the second lines of (32)

and (50) we can thus calculate H̃1, H̃2,... and H̃r
1 , H̃r

2 ,..., which we will use further in the

model. Using D0 = Dr
0 = 0, the optimal value of β̃0 and the sequences H̃n and H̃r

n we can thus

construct D̃n and D̃r
n using the first lines in (32) and (50).

We now have the nominal and real term structures fully constructed.

B.3 Calculation of the portfolio returns

The model generates scenarios for the term structure of interest rates. The fixed-income port-

folio returns have to be extracted from this information. We assume that the fixed-income

component of the fund’s asset portfolio consists of zero-coupon bonds with a principal value of

one unit of currency to be repaid at maturity, τ years from now.

1 =
(

1 + Y
(4τ)
0

)−4τ
,

where we have assumed that the bond is priced at par. The interest rate Y
(4t)
0 is the quarterly

interest rate obtained from the construction of the term structure using the above affine struc-

ture model. Hence, the left-hand side is the bond’s price at issuance date when it is sold at par

61



value 1, while the right-hand side is the present discounted value of the cash flows associated

with the bond, i.e. the repayment of the principal, discounted back to issuance date. The bond

return is: (
1 + Y

(4τ−1)
1

)−(4τ−1)
−
(

1 + Y
(4τ)
0

)−4τ
=
(

1 + Y
(4τ−1)
1

)−(4τ−1)
− 1,

divided by the purchase price of the bond, which is one.

With the estimation of β0 and β1 we have constructed the term structure of interest rates, so

that, given the simulated state vector, we can compute, as just laid out, the return on the

fixed-income component of the fund’s asset portfolio, which consists of 10-year zero-coupon

bonds. Hence, τ = 10. It is rebalanced at the beginning of every time period so that it again

consists of 10-year maturity bonds. The return on the stock component of the fund’s portfolio

is obtained directly from the simulation of the state vector.

C Risk-neutral sampling

The price of a derivative paying a cash flow Z (which is a function of the path X1, X2, ...Xτ of

the state vector) at time τ is

P0 = E0

[
Zτ exp

τ∑
q=1

mq

]
.

Using (23) this equation can be rewritten as

P0 =

∫
Z(ε1, ε2, ..., ετ ) exp

[
−

τ∑
q=1

e′yXq−1

]

exp

[
−

τ∑
q=1

(
1

2
(β0 + β1Xq−1)

′Σ(β0 + β1Xq−1) + (β0 + β1Xq−1)
′εq

)]
1

(2π)kτ/2|Σ|τ/2
exp

[
−

τ∑
q=1

1

2
ε′qΣ

−1εq

]
dε1dε2...dετ .

where k is the dimension of the state vector (in our case, 4). Hence,

P0 =

∫
Z(ε1, ε2, ..., ετ ) exp

[
−

τ∑
q=1

y
(1)
q−1

]
1

(2π)kτ/2|Σ|τ/2

exp

[
−

τ∑
q=1

(
1

2
(εq + Σ(β0 + β1Xq−1))

′Σ−1 (εq + Σ(β0 + β1Xq−1))

)]
dε1dε2...dετ .

Here π is the number “pi” (to be distinguished from our symbol for inflation). This integral

can be evaluated numerically in a Monte Carlo simulation by drawing a number of time series
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{ε1, ε2, ..., ετ} from the multivariate normal density function

f =
1

(2π)kτ/2|Σ|τ/2
exp

[
−

τ∑
q=1

(
1

2
(εq + Σ(β0 + β1Xq−1))

′−1 (εq + Σ(β0 + β1Xq−1))

)]
, (82)

calculating for each time series the derivative pay-off discounted at the risk-free rate

exp

[
−

τ∑
q=1

y
(1)
q−1

]
· Z(ε̃1, ε̃2, ..., ε̃τ ),

and taking a simple average over the drawings. Hence, we have transformed the original problem

in which we draw from the multivariate normal density function of εq and discount cash flows

at the stochastic discount factor into a problem in which we draw from the multivariate normal

density function of ε̃q with mean −Σ(β0 + β1Xq−1) and the same original variance-covariance

matrix Σ, but discount cash flows at the risk-free rate.

We can draw ε̃1, ε̃2, ..., ε̃τ from the distribution f(ε̃1, ε̃2, ..., ε̃τ ) by first drawing ε̃1 from its

marginal distribution, then drawing ε̃2 from the conditional distribution f(ε̃2|ε̃1), and so on.

The conditional density f(ε̃q|ε̃q−1, ..., ε̃1) is obtained using the Bayes’ formula:

f(ε̃q|ε̃q−1, ..., ε̃1) =
f(ε̃q, ..., ε̃1)

f(ε̃q−1, ..., ε̃1)
.

Applying (82) to τ = q − 1 and τ = q, we obtain

f(ε̃q|ε̃q−1, ..., ε̃1) =

1

(2π)k/2|Σ|1/2
exp

[
−1

2
(ε̃q + Σ(β0 + β1Xq−1))

′Σ−1 (ε̃q + Σ(β0 + β1Xq−1))

]
.

Hence,

ε̃q|ε̃q−1, ..., ε̃1 ∼ N(−Σ(β0 + β1Xq−1),Σ).

D Generating scenarios

The economic scenarios are generated using the parameter estimates α̂, Γ̂, Σ̂, β̃0, β̃1, D̃n, H̃n,

D̃r
n and H̃r

n.

First, setting the initial value of the state vector at the imputed or estimated value for µ and

using (6) the path of the vector of state variables is simulated for the chosen horizon length.

Then, at each quarter into the horizon, the term structure of the nominal interest rate is

constructed using the above parameter estimates.

The same scenario-generating procedure is followed for both the real-world and risk-neutral

scenarios. The only difference lies in the mean of the shock vector. For the real-world simulation
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the error terms are drawn from the mean-zero normal distribution εq+1 ∼ N(0, Σ̂). Under

the risk-neutral scenarios, the error terms are normally distributed with ε̃q+1 ∼ N(−Σ̂(β̃0 +

β̃1Xq), Σ̂).

E Estimates of the VAR parameters

The parameter estimates of the VAR in equation (6) are:

µ̂ =


0.0022747

0.0207877

0.0047909

0.0038911

 , Σ̂ =


0.0000011 0.0000212 0.0000011 0.0000025

0.0000212 0.0072488 0.0000434 0.0003188

0.0000011 0.0000434 0.0000670 −0.0000548

0.0000025 0.0003188 −0.0000548 0.0001418


After the imputation with the SPF data we have for the quarterly vector of means:

µ̂ =


0.0066600

0.0031003

0.0051621

0.0041434

 ,

while Σ̂ is kept at its originally estimated value.

The correlation matrix for the state variables is as follows:

y xs cpi w

y 1.00000000 −0.01038369 0.22675373 0.08041977

xs −0.01038369 1.00000000 0.03858944 0.31787796

cpi 0.22675373 0.03858944 1.00000000 −0.53272535

w 0.08041977 0.31787796 −0.53272535 1.00000000

F Results of robustness analysis

Here, we provide the results of the simulations of the pension fund’s performance for a set of

1000 economic scenarios in order to save the simulation time.

F.1 Exogenous inflation risk premium

Tables 8 - 10 report the results when an inflation risk premium of zero is imposed, while Tables

11-13 report the corresponding results for an annual inflation risk premium of 20 basis points.
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Table 8: Classic ALM results under different policies after 75 years – zero inflation risk premium

(a) Contributions

Case Description
c cNC cAmort cSS

5% 50% 95% - 5% 50% 95% 5% 50% 95%

Baseline
0 baseline plan 26% 41% 47% 13% 12% 13% 14% 0% 15% 20%

Contribution
1.1 0% amortization paid 36% 41% 47% 13% 0% 0% 0% 23% 28% 34%
1.2 100% amortization paid 23% 36% 44% 13% 10% 23% 28% 0% 0% 4%
1.3 amortization in 10 years 16% 35% 44% 13% 3% 21% 31% 0% 0% 0%

Indexation
2.1 indexation is 0.5 CPI 20% 36% 42% 13% 7% 13% 14% 0% 10% 15%
2.2 conditional indexation 18% 31% 38% 13% 5% 12% 13% 0% 6% 12%

Portfolio composition
3.1 100% stocks 15% 41% 47% 13% 2% 13% 14% 0% 15% 20%
3.2 0% stocks 36% 41% 47% 13% 13% 13% 14% 10% 15% 20%

(b) Funding ratios and pension result

Case Description
FRP FRE PR

5% 50% 95% 5% 50% 95% 5% 50% 95%

Baseline
0 baseline plan 0% 0% 1% 0% 0% 1% 102% 106% 112%

Contribution
1.1 0% amortization paid 0% 0% 0% 0% 0% 0% 102% 106% 112%
1.2 100% amortization paid 0% 14% 61% 0% 11% 48% 102% 106% 112%
1.3 amortization in 10 years 26% 46% 95% 19% 36% 79% 102% 106% 112%

Indexation
2.1 indexation is 0.5 CPI 0% 0% 44% 0% 0% 36% 41% 49% 59%
2.2 conditional indexation 0% 0% 56% 0% 0% 45% 19% 26% 45%

Portfolio composition
3.1 100% stocks 0% 0% 80% 0% 0% 66% 102% 106% 112%
3.2 0% stocks 0% 0% 0% 0% 0% 0% 102% 106% 112%

Note: classic ALM results after 75 years for the 5%, 50% and 95% percentiles of (a) the total contribution rate

(c), which is the sum of the normal cost (cNC), amortization (cAmort) and sponsor support payment (cSS), all in

percentages of the wage sum, and (b) the policy funding ratio (FRP ), the economic funding ratio (FRE), and the

pension result (PR) for the base Plan 0 and alternative contribution (Plans 1.1-1.3), indexation (Plans 2.1-2.2)

and investment (Plans 3.1-3.2) policies. Note that the median values of the components of c do not necessarily

add up to the median value of c. The policy funding ratio is defined as actuarial assets over actuarial liabilities,

the economic funding ratio as market value of assets over economic liabilities and the pension result as the ratio

of cumulative granted indexation to cumulative price inflation.

65



Table 9: Likelihood of full depletion of assets – zero inflation risk premium

Case Description Probability Year, 5% Year, 50% Year, 95%

Baseline
0 baseline plan 94.5% 29 43 67

Contribution
1.1 0% amortization paid 98.8% 21 29 47
1.2 100% amortization paid 11.0% 52 66 74
1.3 amortization in 10 years 0.0% - - -

Indexation
2.1 indexation is 0.5 CPI 81.8% 32 51 70
2.2 conditional indexation 64.2% 37 58 73

Portfolio composition
3.1 100% stocks 89.4% 21 35 65
3.2 0% stocks 100.0% 40 44 47

Note: the first column reports the probability that the fund’s assets are fully depleted within the 75-year

simulation horizon. The following columns show the quantiles for the distribution of the years of depletion,

conditional on scenarios in which depletion takes place within the simulation horizon.

F.2 Extending the evaluation horizon to 100 years

Tables 14 - 15 report the results for a horizon of 100 years.

66



Table 10: Effects of plan changes on stakeholders – zero inflation risk premium

(a) Contract values to stakeholders

Case Description V PP,Y
0 V PP,O

0 V TP,Y
0 V TP,O

0

Baseline
0 baseline plan 4671 9235 -8239 -2865

Contribution
1.1 0% amortization paid 0 0 -384 381
1.2 100% amortization paid 0 0 676 -688
1.3 amortization in 10 years 0 0 1221 -1248
1.4 part. contr. rate doubled -1631 -1007 1367 1270

Indexation
2.1 indexation is 0.5 CPI -512 -1231 1453 294
2.2 conditional indexation -895 -2077 2522 444

Portfolio composition
3.1 100% stocks 0 0 339 -129
3.2 0% stocks 0 0 -96 43

(b) Relative effects

Plan Description ∆RV PP,Y
0 ∆RV PP,O

0 ∆RV TP,Y
0 ∆RV TP,O

0

Contribution
1.1 0% amortization paid 0% 0% -14% 14%
1.2 100% amortization paid 0% 0% 24% -25%
1.3 amortization 10 years 0% 0% 44% -45%
1.4 part. contr. rate doubled -59% -36% 49% 46%

Indexation
2.1 indexation is 0.5 CPI -18% -44% 52% 11%
2.2 conditional indexation -32% -75% 91% 16%

Portfolio composition
3.1 100% stocks 0% 0% 12% -5%
3.2 0% stocks 0% 0% -3% 2%

Note: the table reports the effects of switching from baseline Plan 0 to Plans 1.1-3.2 on future plan participants

(∆V PP,Y
0 , ∆RV PP,Y

0 ), current plan participants (∆V PP,O
0 , ∆RV PP,O

0 ), future tax payers (∆V TP,Y
0 , ∆RV TP,Y

0 )

and current tax payers (∆V TP,O
0 , ∆RV TP,O

0 ). Panel (a) reports the value of the baseline plan and the change

in value of switching from the baseline to an alternative plan in billions of dollars. Panel (b) reports relative

changes as percentages of the fund’s initial assets A0. Negative numbers imply a deterioration of the value for

that stakeholder.
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Table 11: Classic ALM results under different policies after 75 years – inflation risk premium
20 bp

(a) Contributions

Case Description
c cNC cAmort cSS

5% 50% 95% - 5% 50% 95% 5% 50% 95%

Baseline
0 baseline plan 25% 41% 47% 13% 12% 13% 14% 0% 15% 20%

Contribution
1.1 0% amortization paid 36% 41% 47% 13% 0% 0% 0% 23% 28% 34%
1.2 100% amortization paid 23% 36% 44% 13% 10% 23% 28% 0% 0% 4%
1.3 amortization in 10 years 15% 34% 43% 13% 2% 21% 30% 0% 0% 0%

Indexation
2.1 indexation is 0.5 CPI 19% 36% 42% 13% 6% 13% 14% 0% 10% 15%
2.2 conditional indexation 18% 31% 38% 13% 5% 12% 13% 0% 5% 12%

Portfolio composition
3.1 100% stocks 15% 41% 47% 13% 2% 13% 14% 0% 15% 20%
3.2 0% stocks 36% 41% 47% 13% 13% 13% 14% 10% 15% 20%

(b) Funding ratios and pension result

Case Description
FRP FRE PR

5% 50% 95% 5% 50% 95% 5% 50% 95%

Baseline
0 baseline plan 0% 0% 4% 0% 0% 3% 102% 106% 112%

Contribution
1.1 0% amortization paid 0% 0% 0% 0% 0% 0% 102% 106% 112%
1.2 100% amortization paid 0% 15% 63% 0% 12% 51% 102% 106% 112%
1.3 amortization in 10 years 27% 47% 97% 19% 37% 83% 102% 106% 112%

Indexation
2.1 indexation is 0.5 CPI 0% 0% 48% 0% 0% 40% 41% 49% 59%
2.2 conditional indexation 0% 0% 59% 0% 0% 48% 19% 26% 46%

Portfolio composition
3.1 100% stocks 0% 0% 80% 0% 0% 67% 102% 106% 112%
3.2 0% stocks 0% 0% 0% 0% 0% 0% 102% 106% 112%

Note: classic ALM results after 75 years for the 5%, 50% and 95% percentiles of (a) the total contribution rate

(c), which is the sum of the normal cost (cNC), amortization (cAmort) and sponsor support payment (cSS), all in

percentages of the wage sum, and (b) the policy funding ratio (FRP ), the economic funding ratio (FRE), and the

pension result (PR) for the base Plan 0 and alternative contribution (Plans 1.1-1.3), indexation (Plans 2.1-2.2)

and investment (Plans 3.1-3.2) policies. Note that the median values of the components of c do not necessarily

add up to the median value of c. The policy funding ratio is defined as actuarial assets over actuarial liabilities,

the economic funding ratio as market value of assets over economic liabilities and the pension result as the ratio

of cumulative granted indexation to cumulative price inflation.
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Table 12: Likelihood of full depletion of assets – inflation risk premium 20 bp

Case Description Probability Year, 5% Year, 50% Year, 95%

Baseline
0 baseline plan 93.8% 29 44 67

Contribution
1.1 0% amortization paid 98.7% 21 29 48
1.2 100% amortization paid 10.7% 52 67 75
1.3 amortization in 10 years 0.0% - - -

Indexation
2.1 indexation is 0.5 CPI 80.9% 33 51 70
2.2 conditional indexation 62.7% 37 58 73

Portfolio composition
3.1 100% stocks 89.4% 21 35 65
3.2 0% stocks 100.0% 41 44 48

Note: the first column reports the probability that the fund’s assets are fully depleted within the 75-year

simulation horizon. The following columns show the quantiles for the distribution of the years of depletion,

conditional on scenarios in which depletion takes place within the simulation horizon.
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Table 13: Effects of plan changes on stakeholders – inflation risk premium 20 bp

(a) Contract values to stakeholders

Case Description V PP,Y
0 V PP,O

0 V TP,Y
0 V TP,O

0

Baseline
0 baseline plan 5063 9456 -8781 -2936

Contribution
1.1 0% amortization paid 0 0 -391 388
1.2 100% amortization paid 0 0 701 -713
1.3 amortization in 10 years 0 0 1265 -1294
1.4 part. contr. rate doubled -1713 -1024 1441 1296

Indexation
2.1 indexation is 0.5 CPI -577 -1344 1610 316
2.2 conditional indexation -1006 -2260 2788 471

Portfolio composition
3.1 100% stocks 0 0 338 -127
3.2 0% stocks 0 0 -96 42

(b) Relative effects

Plan Description ∆RV PP,Y
0 ∆RV PP,O

0 ∆RV TP,Y
0 ∆RV TP,O

0

Contribution
1.1 0% amortization paid 0% 0% -14% 14%
1.2 100% amortization paid 0% 0% 25% -26%
1.3 amortization in 10 years 0% 0% 46% -47%
1.4 part. contr. rate doubled -62% -37% 52% 47%

Indexation
2.1 indexation is 0.5 CPI -21% -49% 58% 11%
2.2 conditional indexation -36% -82% 101% 17%

Portfolio composition
3.1 100% stocks 0% 0% 12% -5%
3.2 0% stocks 0% 0% -3% 2%

Note: the table reports the effects of switching from baseline Plan 0 to Plans 1.1-3.2 on future plan participants

(∆V PP,Y
0 , ∆RV PP,Y

0 ), current plan participants (∆V PP,O
0 , ∆RV PP,O

0 ), future tax payers (∆V TP,Y
0 , ∆RV TP,Y

0 )

and current tax payers (∆V TP,O
0 , ∆RV TP,O

0 ). Panel (a) reports the value of the baseline plan and the change

in value of switching from the baseline to an alternative plan in billions of dollars. Panel (b) reports relative

changes as percentages of the fund’s initial assets A0. Negative numbers imply a deterioration of the value for

that stakeholder.
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Table 14: Classic ALM results under different policies – evaluation horizon 100 years

(a) Contributions

Case Description
c cNC cAmort cSS

5% 50% 95% - 5% 50% 95% 5% 50% 95%

Baseline
0 baseline plan 37% 43% 50% 13% 13% 14% 15% 11% 16% 21%

Contribution
1.1 0% amortization paid 38% 43% 50% 13% 0% 0% 0% 24% 30% 36%
1.2 100% amortization paid 33% 40% 49% 13% 19% 27% 30% 0% 0% 6%
1.3 amortization in 10 years 23% 38% 47% 13% 10% 25% 33% 0% 0% 0%

Indexation
2.1 indexation is 0.5 CPI 32% 38% 44% 13% 13% 13% 14% 6% 11% 16%
2.2 conditional indexation 24% 34% 40% 13% 11% 13% 14% 0% 7% 13%

Portfolio composition
3.1 100% stocks 27% 43% 49% 13% 13% 14% 15% 0% 15% 21%
3.2 0% stocks 38% 43% 50% 13% 13% 14% 15% 11% 16% 21%

(b) Funding ratios and pension result

Case Description
FRP FRE PR

5% 50% 95% 5% 50% 95% 5% 50% 95%

Baseline
0 baseline plan 0% 0% 0% 0% 0% 0% 103% 108% 115%

Contribution
1.1 0% amortization paid 0% 0% 0% 0% 0% 0% 103% 108% 115%
1.2 100% amortization paid 0% 2% 30% 0% 2% 22% 103% 108% 115%
1.3 amortization in 10 years 24% 41% 77% 15% 28% 59% 103% 108% 115%

Indexation
2.1 indexation is 0.5 CPI 0% 0% 0% 0% 0% 0% 31% 38% 47%
2.2 conditional indexation 0% 0% 14% 0% 0% 10% 10% 15% 25%

Portfolio composition
3.1 100% stocks 0% 0% 1% 0% 0% 1% 103% 108% 115%
3.2 0% stocks 0% 0% 0% 0% 0% 0% 103% 108% 115%

Note: classic ALM results after 100 years for the 5%, 50% and 95% percentiles of (a) the total contribution

rate (c), which is the sum of the normal cost (cNC), amortization (cAmort) and sponsor support payment

(cSS), all in percentages of the wage sum, and (b) the policy funding ratio (FRP ), the economic funding ratio

(FRE), and the pension result (PR) for the base Plan 0 and alternative contribution (Plans 1.1-1.3), indexation

(Plans 2.1-2.2) and investment (Plans 3.1-3.2) policies. Note that the median values of the components of c

do not necessarily add up to the median value of c. The policy funding ratio is defined as actuarial assets

over actuarial liabilities, the economic funding ratio as market value of assets over economic liabilities and the

pension result as the ratio of cumulative granted indexation to cumulative price inflation.
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Table 15: Effects of plan changes on stakeholders – evaluation horizon 100 years

(a) Contract values to stakeholders

Case Description V PP,Y
0 V PP,O

0 V TP,Y
0 V TP,O

0

Benchmark
0 baseline plan 5681 9209 -9241 -2853

Contribution
1.1 0% amortization paid 0 0 -349 342
1.2 100% amortization paid 0 0 637 -630
1.3 amortization 10 years 0 0 1180 -1170
1.4 part. contr. rate doubled -1902 -978 1642 1237

Indexation
2.1 indexation is 0.5 CPI -658 -955 1367 253
2.2 conditional indexation -1195 -1656 2456 403

Portfolio composition
3.1 100% stocks 0 0 247 -145
3.2 0% stocks 0 0 -71 51

(b) Relative effects

Plan Description ∆RV PP,Y
0 ∆RV PP,O

0 ∆RV TP,Y
0 ∆RV TP,O

0

Contribution
1.1 0% amortization paid 0% 0% -13% 12%
1.2 100% amortization paid 0% 0% 23% -23%
1.3 amortization 10 years 0% 0% 43% -42%
1.4 part. contr. rate doubled -69% -35% 59% 45%

Indexation
2.1 indexation is 0.5 CPI -24% -34% 49% 9%
2.2 conditional indexation -43% -60% 89% 15%

Portfolio composition
3.1 100% stocks 0% 0% 9% -5%
3.2 0% stocks 0% 0% -3% 2%

Note: the table reports the effects of switching from baseline Plan 0 to Plans 1.1-3.2 on future plan participants

(∆V PP,Y
0 , ∆RV PP,Y

0 ), current plan participants (∆V PP,O
0 , ∆RV PP,O

0 ), future tax payers (∆V TP,Y
0 , ∆RV TP,Y

0 )

and current tax payers (∆V TP,O
0 , ∆RV TP,O

0 ). Panel (a) reports the value of the baseline plan and the change

in value of switching from the baseline to an alternative plan in billions of dollars. Panel (b) reports relative

changes as percentages of the fund’s initial assets A0. Negative numbers imply a deterioration of the value for

that stakeholder.
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