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Technical appendix

ONLINE APPENDIX, NOT INTENDED FOR PUBLICATION

A.1 Introduction

In this appendix, we present more detailed derivations and information about the
stochastic overlapping-generations model presented in the main part of the paper.
Section A.2 explains the solution method which is based on a log-linearization tech-
nique around the stochastic steady state. Section A.3 provides the derivations of the
analytical results and propositions presented in Section 3 of the paper. In Section A.4
we present a baseline simulation of the model.

Throughout this appendix, we use exactly the same notational convention as in the
paper. In addition, we use the notation r̂ ≡ log(1 + r) for log returns and ŷt ≡ log yt

for the log of any other variable yt. Variables without a time index refer to steady-state
values.

A.2 Solving the model

A.2.1 The model

The model presented in the paper is summarized in Table A.1.24 There are various
ways to solve this model. One way is to solve the model numerically using dy-
namic programming methods or using perturbation methods around the determin-
istic steady state (see, for instance, Collard and Juillard, 2001 or Schmitt-Grohé and
Uribe, 2004). Another possibility is to approximate the model using log-linearization
around the steady state. The latter gives a bit more insight into the working of the
model, and it is the road we will take. It should be understood that log-linearization
is a small-shock approximation or an approximation to shocks with bounded sup-
port (Samuelson, 1970). Despite these limitations of log-linear approximations, this
method clearly helps to explore the most important economic factors that affect the
interaction between retirement behaviour and portfolio choice. As such, it provides a
useful starting point for further qualitative explorations with higher-order numerical
techniques.25

24To construct equation (A.1.1) we have substituted equations (15) and (16) in (9). Equation (A.1.2) is
the result of inserting the portfolio rate of return (8) and the equilibrium conditions (16) and (17) into
equation (10). The remaining equations, equation (A.1.4)-(A.1.7b), just repeat equation (11) (for j = k
and j = b) and equations (2), (3), (12) and equation (13).

25We also checked our results with higher order approximations using Dynare++. Although quanti-
tatively the results give some small differences, the qualitative observations are exactly the same.
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Table A.1: The model

wt − cy,t − rb,tb = b + kt+1 (A.1.1)

co,t = (1 + rb,t)b + (1 + rk,t)kt + ztwt (A.1.2)

c−γ
y,t = βEt

[
(1 + rk,t+1)c

−ρ
o,t+1u(co,t+1, zt+1)

ρ−ϕ
]

(A.1.3)

c−γ
y,t = β(1 + rb,t+1)Et

[
c−ρ

o,t+1u(co,t+1, zt+1)
ρ−ϕ
]

(A.1.4)

wt = (1− α)Atkα
t (1 + zt)

−α (A.1.5)

rk,t + δt = αAtkα−1
t (1 + zt)

1−α (A.1.6)(
co,t+1

1− zt+1

)ρ

=
wt+1

θ
(A.1.7a)

Et

[
wt+1c−ρ

o,t+1u(co,t+1, zt+1)
ρ−ϕ
]
=

θ(1− zt+1)
−ρEt

[
u(co,t+1, zt+1)

ρ−ϕ
]

(A.1.7b)

A.2.2 Steady state

A linearization around a deterministic steady state is sufficient for understanding
macroeconomic dynamics, but it is not necessarily sufficient for an economic analy-
sis involving uncertainty, such as questions about precautionary savings and asset-
pricing issues. Following Juillard and Kamenik (2005), Bovenberg and Uhlig (2008)
and Beetsma and Bovenberg (2009), we therefore use the concept of a stochastic steady
state. This concept is defined as a situation in which each period shocks are equal to
their expectations but agents are not aware of this (i.e., conditional variances are not
zero). This point is solved from a non-linear system, and hence the solution does not
generally correspond to the expected values of the variables involved.26

This non-linear system of steady-state equations is described in Table A.2. Notice
that equations (A.2.1), (A.2.2), (A.2.5), (A.2.6) and (A.2.7a) have the same form as
the original model equations of Table A.1. The remaining expectational equations,
i.e., equations (A.2.3), (A.2.4) and (A.2.7b), are derived using second-order Taylor ap-
proximations of the original first-order conditions.

26Since the solution is not necessarily equal to expected values of the variables, Beetsma and Boven-
berg (2009) label this solution as the median solution. We prefer to use the term stochastic steady state to
indicate that the steady state is adjusted for risk.
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Table A.2: The steady state

w− cy − rbb = b + k (A.2.1)

co = (1 + rb)b + (1 + rk)k + zw (A.2.2)

c−γ
y = β(1 + rk)c

−ϕ
o (1− z)θ(ρ−ϕ) exp

(
1
2

σ2
rk−u

)
(A.2.3)

c−γ
y = β(1 + rb)c

−ϕ
o (1− z)θ(ρ−ϕ) exp

(
1
2

σ2
u

)
(A.2.4)

w = (1− α)Akα(1 + z)−α (A.2.5)

rk + δ = αAkα−1(1 + z)1−α (A.2.6)(
co

1− z

)ρ

=
w
θ

(A.2.7a)(
co

1− z

)ρ

=
w
θ

exp
[

1
2
(
σ2

w−co
− σ2

co

)]
(A.2.7b)

Derivation expectational equations

We can write equation (A.1.3) as,

1 = Et

{
exp

[
log β + log r̂k + γĉy,t − ρĉo,t+1 + (ρ− ϕ)ût+1︸ ︷︷ ︸

xt+1

]}
(A.1)

Taking a second-order Taylor expansion of exp(xt+1) around Etxt+1 ≡ x̄t, we obtain,

1 ≈ Et

{
exp (x̄t)

[
1 + xt+1 − x̄t +

1
2
(xt+1 − x̄t)

2
]}

= exp (x̄t)

(
1 +

1
2

Vartxt+1

)
(A.2)

Then, a first-order Taylor expansion around zero gives the result,

1 ≈ 1 + x̄t +
1
2

Vartxt+1

= exp
(

x̄t +
1
2

Vartxt+1

)
(A.3)
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Recall that the per-period utility function is given by:

u(co, 1− z) =
[
(1− η)c1−ρ

o + η(1− z)1−ρ
] 1

(1−ρ)(1−η) (A.4)

where η defines the relative preference for leisure and ρ represents the inverse of
the elasticity of substitution between consumption and leisure in the second period.
Taking logs of equation (A.4) gives:

û =
log
{

exp
[
log(1− η) + (1− ρ)ĉy

]
+ exp [log η + (1− ρ) log(1− z)]

}
(1− ρ)(1− η)

(A.5)

Taking a first-order Taylor expansion around zero then gives:

û ≈ ĉy + θ log(1− z) (A.6)

with θ ≡ η/(1− η). Combining equations (A.3) and (A.6), we obtain the steady-state
Euler equation regarding capital investments, equation (A.2.3):

c−γ
y = β(1 + rk)c

−ϕ
o (1− z)θ(ρ−ϕ) exp

(
1
2

σ2
rk−u

)
(A.7)

with σ2
rk−u defined by:

σ2
rk−u ≡ Vart [log(1 + rk,t+1)− ϕ log co,t+1 + θ(ρ− ϕ) log(1− zt+1)] (A.8)

The derivation of the Euler equation regarding government bonds investments,
equation (A.2.4), and that of the optimality condition with respect to fixed retirement,
equation (A.2.7b), are similar to the one above and will therefore not be discussed.
The conditional (co)variances σ2

u , σ2
w−co

and σ2
co

which appear in these other first-order
conditions are defined as:

σ2
u ≡ Vart [−ϕ log co,t+1 + θ(ρ− ϕ) log(1− zt+1)] (A.9)

σ2
w−co

≡ Vart (log wt+1 − ϕ log co,t+1) (A.10)

σ2
co
≡ Vart [(ρ− ϕ) log co,t+1] (A.11)

At this point, we implicitly assume that the variances are constant over time. This
will be justified in Section A.2.4, when solving for the linear recursive law of motion
of the log-linearized system.

Special case: deterministic steady state

In general, the system in Table A.2 cannot be solved analytically. Only for a particular
situation we are able to obtain explicit solutions, namely if: i) life-time utility is log-
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linear in consumption and leisure (γ = ρ = 1); ii) there is full depreciation (δ = 1) and
iii) all conditional covariances are perceived to be zero (deterministic steady state).

In this specific case, ignoring the risk terms or assuming a non-stochastic steady
state implies that rk = rb ≡ r. Then inserting equation (A.2.1) and equation (A.2.2) in
the Euler equation (A.2.3) (or equation (A.2.4)) gives:

1 + β

β
k = w− rb− 1 + β

β
b− w

(1 + r)β
z (A.12)

From the optimality condition with respect to leisure, equation (A.2.7a) (or equation
(A.2.7b)), we derive:

k =
w

(1 + r)θ
(1− z)− w

1 + r
z− b (A.13)

Substituting equation (A.13) in (A.12) and solving for z gives:

z =
1 + β− βθ(1 + r)

(
1− rb

w

)
1 + β + βθ

(A.14)

Inserting equation (A.13) in equation (A.12) and solving for k leads to:

k =
β(1 + θ)w

(
1− rb

w

)
− w

1+r − (1 + β + βθ)b

1 + β + βθ
(A.15)

Using the factor prices, equation (A.2.5) and equation (A.2.6), we can rewrite equation
(A.15) into:

1 + z =
β(1 + θ)

(
1− rb

w

)
(1− α)

(
k

1+z

)α−1
− 1−α

α

(1 + β + βθ)
(

1 + b
k

) (A.16)

In the same way, we can rewrite (A.14) into:

1 + z =
2(1 + β) + βθ − βθ

(
1− rb

w

)
αA
(

k
1+z

)α−1

1 + β + βθ
(A.17)

Equations (A.16) and (A.17) form a closed system in k and z. Solving these equations
gives for the capital-labour ratio,

k
1 + z

=


(

1− α + θ + θα b
k

)
αβ
(

1− rb
w

)
1− α +

(
1 + b

k

)
α(2 + 2β + βθ)


1

1−α

(A.18)

and for labour supply:

z =
1− α− αθ − αθ b

k

1 + θ − α + αθ b
k

(A.19)
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Using the definition λ ≡ k/(b + k) in equation (A.19), gives the labour supply deci-
sion as function of the portfolio choice:

z =
λ(1− α)− αθ

λ(1 + θ − α) + (1− λ)αθ
(A.20)

Notice that equation (A.18) still depends on w and r, which are functions of the
capital-labour ratio. Again using equations (A.2.5) and (A.2.6), we derive:

rb
w

=
αA
(

k
1+z

)α−1
− 1

(1− α)
(

k
1+z

)α−1
b
k
(1 + z) (A.21)

Finally, substituting this expression in equation (A.18) and using equation (A.19), we
obtain:

k
1 + z

=

 αβA
(

1 + θ − α− 2α b
k

)
1 + α + αβ(2 + θ) + 2α b

k


1

1−α

(A.22)

Using the definition λ in equation (A.22), gives the capital-labour ratio as function of
the portfolio choice:

k
1 + z

=

[
αβA(1 + θ + α)λ− 2α2βA
(1− α)λ + αβ(2 + θ)λ + 2α

] 1
1−α

(A.23)

Notice from these expressions that both labour supply and the capital-labour ratio
positively depend on the portfolio share λ invested in firm stocks: if λ decreases, for
example because of a higher government debt, this leads to a crowding out of firm
stocks which reduces the capital-labour ratio. In general equilibrium, a lower capital-
labour ratio reduces the wage rate and, hence, labour supply incentives. Simulations
confirm that this property of the model also holds under more general assumptions
for which analytical results are not available. Given a solution to equations (A.20) and
(A.23), all other steady-state variables can be calculated.

A.2.3 The log-linearized model

We now use a "tilde" on variables to denote the log-linearization of the model vari-
ables around the stochastic steady state. That is:

x̃t ≡ log xt − log x

The complete log-linearized model is reported in Table A.3.
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Table A.3: The log-linearized model

ww̃t − cy c̃y,t = kk̃t+1 + rbbr̃b,t (A.3.1)

co c̃o,t = rkkr̃k,t + (1 + rk)kk̃t + rbbr̃b,t + zw(z̃t + w̃t) (A.3.2)

ϕEt c̃o,t+1 − γc̃y,t =
rk

1 + rk
Etr̃k,t+1 − θ(ρ− ϕ)

z
1− z

Et z̃t+1 (A.3.3)

ϕEt c̃o,t+1 − γc̃y,t =
rb

1 + rb
r̃b,t+1 − θ(ρ− ϕ)

z
1− z

Et z̃t+1 (A.3.4)

w̃t = αk̃t − α
z

1 + z
z̃t + ωA,t (A.3.5)

r̃k,t +
δ

rk
δ̃t =

rk + δ

rk

[
(1− α)

z
1 + z

z̃t − (1− α)k̃t + ωA,t

]
(A.3.6)

z̃t+1 =
1− z

ρz
w̃t+1 −

1− z
z

c̃o,t+1 (A.3.7a)

z̃t+1 =
1− z

ρz
Etw̃t+1 −

1− z
z

Et c̃o,t+1 (A.3.7b)

A.2.4 The recursive law of motion

In the usual situation of no uncertainty, the steady state can be computed separately
from the recursive law of motion. With a stochastic steady state, though, this pro-
cedure does no longer apply. In this case, deriving the recursive law involves the
calculation of a fixed point: note from equations (A.2.3), (A.2.4) and (A.2.7b) that the
steady state requires knowledge of the conditional variances, which can be calculated,
given the log-linear recursive law of motion. But the latter are solutions to a system of
equations of which the coefficients depend on the steady state. Hence, we are forced
to simultaneously solve for the steady state and the log-linear model.

Solving for the log-linearized equilibrium law involves a three-step procedure:

• Step 1: Rewriting the linear system. The first step is to write the log-linearized
endogenous variables as function of the endogenous and exogenous state vari-
ables. Our model contains two exogenous state variables, productivity shocks
(ωA,t) and depreciation shocks (ωδ) and one endogenous state variable, which
is the capital stock (k̃t). Recall that the return on government bonds (r̃b,t) and
labour supply in case of retirement inflexibility (z̃t) are predetermined variables
at time t. It turns out, however, that both variables are proportional to the capi-
tal stock so that they can be eliminated from the state space.
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The proportional (and negative) relation between the return on bonds and the
capital stock follows from capital market equilibrium: a higher capital stock
combined with a constant level of government debt has to result in a more ag-
gressive asset portfolio. To make this happen, the risk-free return on bonds will
fall. The proportional relation between labour supply and the capital stock in
case of retirement inflexibility can either be positive or negative, depending on
the relative strength of income and substitution effects: a higher next-period
capital stock leads to higher future wage expectations. Hence, rational agents,
who plan to retire before shocks are revealed under retirement inflexibility, will
postpone retirement if the substitution effect dominates and will advance retire-
ment if the income effect dominates.

Accordingly, the capital stock is the only endogenous state variable in the model
and we thus want to rewrite the log-linearized model of Table A.3 in the follow-
ing linear system:

k̃t+1 = πk,k k̃t + πk,A ωA,t + πk,δ ωδ,t (A.24)

and: 

c̃y,t

c̃o,t

r̃k,t

w̃t

r̃b,t+1

z̃t or z̃t+1


=



πcy,k

πco ,k

πrk ,k

πw,k

πrb,k

πz,k


k̃t +



πcy,A πcy,δ

πco ,A πco ,δ

πrk ,A πrk ,δ

πw,A πw,δ

πrb,A πrb,δ

πz,A πz,δ


[

ωA,t

ωδ,t

]
(A.25)

where πx,y denotes the partial elasticity of endogenous variable x with respect to
state variable y. With retirement flexibility, the recursive law for labour supply
is based on z̃t. With retirement inflexibility, it is based on z̃t+1 because retirement
is predetermined at time t.

We wish to solve for the partial derivatives πx,y such that the linear recursive
law of motion satisfies the log-linearized equations. Preserving the derivations
to Section A.2.5, the solution of the linear system ultimately provides expres-
sions for the partial derivatives which will depend on the steady state.

• Step 2: determining the conditional variances. As a second step, we use the
derived recursive law from the previous step to write the conditional variances
in terms of the steady-state values and the exogenous shock terms. When doing
this, we obtain the following variance terms of the consumption Euler equa-
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tions:

σ2
rk−u = ∑

i=A,δ

[
rk

1 + rk
πrk ,i − ϕπco ,i −

θ(ρ− ϕ)z
1− z

πz,i

]2

σ2
i (A.26)

σ2
u = ∑

i=A,δ

[
−ϕπco ,i −

θ(ρ− ϕ)z
1− z

πz,i

]2

σ2
i (A.27)

Note that these variances are indeed constant over time, as assumed in the pre-
vious subsection. Equations (A.26) and (A.27) apply to the flexible retirement
setting as well as to the inflexible retirement setting, although the partial elas-
ticities differ in both cases. With retirement inflexibility, we also have to derive
the covariance terms that show up in the optimality condition of labour supply.
These covariances are equal to:

σ2
w−co

= ∑
i=A,δ

(πw,i − ϕπco ,i)
2 σ2

i (A.28)

σ2
co
= ∑

i=A,δ
[(ρ− ϕ)πco ,i]

2 σ2
i (A.29)

• Step 3: Solving the linear system. In the final step, we numerically solve for the
steady-state variables, given the derived expressions for the conditional vari-
ances of the previous step. In case of retirement flexibility, this boils down to
solving equations (A.2.1)-(A.2.7a), equation (A.26) and equation (A.27). For re-
tirement inflexibility, the complete system of equations is described by equa-
tions (A.2.1)-(A.2.6), (A.2.7b) and (A.26)-(A.29). Once solved for the steady state,
this solution can be substituted in the expressions for the partial derivatives (to
be derived in the next section) and then the whole solution procedure is fin-
ished.

A.2.5 Derivation partial derivatives

In this section, we provide more information on how to solve for the partial elasticities
(as discussed in Step 1 of Section A.2.4). We start with the flexible retirement setting
and then turn to the fixed retirement setting.

Flexible retirement

Note that equations (A.3.2), (A.3.5), (A.3.6) and (A.3.7a) form an independent system
of the endogenous variables c̃o,t, w̃t, r̃k,t and z̃t in the predetermined variables k̃t and
˜rb,t and the exogenous shocks ωA,t and ωδ,t. From this system we can infer the partial

elasticities with respect to productivity and depreciation shocks. To save on notation,
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we define the following two variables:

Γ ≡ w1− 1
ρ θ

1
ρ (A.30)

∆ ≡ (1− z)α + (1 + z)ρ(1 + Γ) + ραΓ (A.31)

Then the partial elasticities with respect to productivity shocks are:

πco ,A =
(1− z + ρz + αρ)y

co∆
> 0 (A.32)

πrk ,A =
(rk + δ)(ρ + ρz + ρΓ + 1− z)

rk∆
> 0 (A.33)

πw,A =
ρ(1 + z)(1 + Γ− α)

(1− α)∆
> 0 (A.34)

πz,A =
(1 + z) [(1− z)(1− α)− ρΓ(α + z)]

z(1− α)∆
(A.35)

Note that the sign of πz,A is ambiguous; it can either be positive or negative, depend-
ing on the substitution between consumption and leisure. For the partial elasticities
with respect to depreciation shocks we have:

πco ,δ = −δk(ρ + α− αz + ρz)
co∆

< 0 (A.36)

πrk ,δ = −δ [ρ(1 + z) + (1− z)α + ρΓ(1 + z− αz)]
rk∆

< 0 (A.37)

πw,δ = −ρ(1− z)δkα

co∆
< 0 (A.38)

πz,δ =
(1 + z)(1− z)ρδk

coz∆
> 0 (A.39)

Noting that EtωA,t+1 = Etωδ,t+1 = 0 and using the Euler equations (A.3.3) and
(A.3.4), we now can express the bond return r̃b,t+1, the conditional expectations Et c̃o,t+1

and Et c̃rk ,t+1 together with first-period consumption c̃y,t as functions of the next-period
capital stock k̃t+1. This ultimately gives:

r̃b,t+1 = Ψrb k̃t+1 (A.40)

Et c̃o,t+1 = Ψco k̃t+1 (A.41)

c̃y,t = Ψcy k̃t+1 (A.42)

Et z̃t+1 = Ψz k̃t+1 (A.43)
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where the partial elasticities are equal to,

Ψrb ≡ − (1 + rb)ρ(1 + z)y [(rk + δ)(1 + Γ− α) + α(1− δ)Γ]
rby∆(1 + rk) + rb(1 + rb)ρ(rk + δ)Γ(1 + z)b

Ψco ≡
[ρ + α + z(ρ− α)] [(1− δ)k + rbbΨrb ] + α [1− z + ρ(z + α)] y

co∆

Ψcy ≡
1
γ

[
ϕΨco −

rbΨrb

1 + rb
+

θ(ρ− ϕ)zΨz

1− z

]
Ψz ≡

(1− z)(1 + z) [αco − αρ(y− w)− ρ(1− δ)k− ρrbbΨrb ]

coz∆

Notice from equation (A.40) that r̃b,t and k̃t, the two predetermined variables, move
proportionally. Therefore, we can substitute out r̃b,t from the state space.

To obtain the equilibrium law of the capital stock, (A.24), we substitute equation
(A.42) in the budget restriction, equation (A.3.1). This gives the following partial
elasticities for the capital stock:

πk,k =
wπw,k − rbbΨrb

cyΨcy + k
(A.44)

πk,A =
wπw,A

cyΨcy + k
(A.45)

πk,δ =
wπw,δ

cyΨcy + k
(A.46)

The system is stable if and only if πk,k < 1.

The equilibrium law for k̃t pins down the solutions of the remaining endogenous
variables in the model as shown in equation (A.25). Notice that the equilibrium laws
of r̃b,t+1 and c̃y,t follow from equations (A.40) and (A.42), respectively. This implies
that πrb,i = Ψrb πk,i and πcy,i = Ψcy πk,i with i = {k, A, δ}. The solutions for c̃o,t, w̃t, r̃k,t

and z̃t then follow from equations (A.3.2), (A.3.5), (A.3.6) and (A.3.7a). This gives the
remaining partial elasticities with respect to the capital stock:

πco ,k = Ψco (A.47)

πrk ,k =
rk + δ

rk

[
α(ρ + ρz + ρΓ + 1− z)

∆

−Γρ(1 + z)(k− δk + rbbΨrb)

y∆
− 1
]

(A.48)

πw,k =
αρ(1 + z)(1 + Γ− α)

(1− α)∆
+

αρ(1− z)(k− δk + rbbΨrb)

co∆
(A.49)

πz,k = Ψz (A.50)
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Fixed retirement

The derivation of the solution with fixed retirement mainly follows the same steps
as that of the flexible retirement setting. When retirement is fixed, equations (A.3.2),
(A.3.5) and (A.3.6) form an independent system of the endogenous variables c̃o,t, w̃t

and r̃k,t in terms of the predetermined variables k̃t, r̃b,t and z̃t and the exogenous
shocks ωA,t and ωδ,t. From this system, we can directly solve for the partial elasticities
with respect to the shock terms. For productivity shocks we have:

πco ,A =
y− w

co
> 0 (A.51)

πrk ,A =
rk + δ

rk
> 0 (A.52)

πw,A = 1 (A.53)

and for depreciation shocks:

πco ,δ = −δk
co

< 0 (A.54)

πrk ,δ = − δ

rk
< 0 (A.55)

πw,δ = 0 (A.56)

With inflexible retirement, equations (A.40)-(A.42) do not change except that the
definition of Γ (used in the Ψ-terms) now becomes,

Γ ≡ w1− 1
ρ θ

1
ρ exp

[
1

2ρ

(
σ2

co
− σ2

w−co

)]
(A.57)

Consequently, the dynamic solution of the capital stock is still given by equations
(A.44)-(A.46). Therefore, we retain the solution πrb,i = Ψrb πk,i and πcy,i = Ψcy πk,i with
i = {k, A, δ}. In addition, the elasticities of c̃o,t, w̃t and r̃k,t with respect to the capital
stock, as given by equations (A.47)-(A.49), are also still satisfied. Note from equation
(A.53) that πw,δ = 0. Equation (A.46) then implies πk,δ = 0 which also means that
πrb,δ = 0 and πcy,δ = 0.

Equation (A.43) is no longer satisfied, though, and becomes z̃t = Ψz k̃t. For the
partial elasticities this means: πz,k = Ψzπk,k, πz,A = Ψzπk,A and πz,δ = 0.

A.3 Appendix to Section 3

Suppose that we have log-linear life-time utility in consumption and leisure (i.e., ρ =

γ = 1). Assume further that wages are non-stochastic.
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A.3.1 Flexible retirement

Portfolio choice

Consumption in the second period is given by:

co,t+1 = (1 + rt+1)st + zt+1wt+1 (A.58)

People invest a fraction λ of private savings in firm stocks (with stochastic return
rk,t+1) and a fraction 1− λ in government bonds (with risk-free return rb,t+1). Hence,
the return on the asset portfolio equals:

rt+1 ≡ (1− λt)rb,t+1 + λtrk,t+1 (A.59)

Inserting equation (A.1.7a) in equation (A.58), and using equation (A.59), we obtain:

co,t+1 =
1

1 + θ
(1 + rT,t+1)

(
st +

wt+1

1 + rb,t+1

)
(A.60)

with,

rT,t+1 ≡ (1− at)rb,t+1 + atrk,t+1 (A.61)

at ≡
λtst

st +
wt+1

1+rb,t+1

(A.62)

Note that co,t+1 is decomposed in non-stochastic terms (the first and third term) and
a stochastic term (the second one). Substituting (A.60) in the two Euler equations,
equations (A.1.3) and (A.1.4), and subtracting both, we have:

Et

[
(1 + rT,t+1)

−1(rk,t+1 − rb,t+1)
]
= 0 (A.63)

Taking logs of equation (A.63), we obtain:

Etr̂k,t+1 +
1
2

Vartr̂k,t+1 − r̂b,t+1 = Covt(r̂T,t+1, r̂k,t+1) (A.64)

where we have used Jensen’s inequality condition for a lognormal variable, log Etxt+1 =

Et log xt+1 + 1/2Vart log xt+1. To derive the term on the left-hand side of equation
(A.64), we follow Campbell and Viceira (2002) and use a second-order Taylor approx-
imation of the portfolio return, rT,t+1. This gives,

r̂T,t+1 ≈ r̂b,t+1 + at(r̂k,t+1 − r̂b,t+1) +
1
2

at(1− at)Vartr̂k,t+1 (A.65)

Hence,
Covt(r̂T,t+1, r̂k,t+1) = atVartr̂k,t+1 (A.66)
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Substituting equation (A.66) into (A.64) then gives:

at =
Etr̂k,t+1 − r̂b,t+1 +

1
2 Vartr̂k,t+1

Vartr̂k,t+1
(A.67)

Finally, inserting (A.67) in (A.62), we end up with the portfolio allocation in terms of
financial wealth:

λF
t =

[
1 +

wt+1

(1 + rb,t+1)st

]
log Et(1 + rk,t+1)− log(1 + rb,t+1)

Vart log(1 + rk,t+1)
(A.68)

Consumption and leisure

Substituting equation (A.60) in equation (A.1.4) and rearranging gives:

c−1
y,t = β(1 + θ)(1 + rb,t+1)Et(1 + rT,t+1)

−1
(

wt − τt − cy,t +
wt+1

1 + rb,t+1

)−1

(A.69)

Notice that:

(1 + rb,t+1)Et(1 + rT,t+1)
−1 = (1 + rb,t+1)Et(1 + rT,t+1)

−1

+ atEt

[
(1 + rT,t+1)

−1(rk,t+1 − rb,t+1)
]

= 1 (A.70)

Hence, first-period consumption satisfies:

cy,t =
1

1 + β(1 + θ)

(
wt − τt +

wt+1

1 + rb,t+1

)
(A.71)

Note that the propensity to consume is the same as under certainty. Hence, there is no
precautionary saving motive, which is a direct implication of the log-utility specifica-
tion (see Sandmo, 1970). Combining (A.71) and (A.60), we obtain for second-period
consumption:

co,t+1 =
β(1 + rT,t+1)

1 + β(1 + θ)

(
wt − τt +

wt+1

1 + rb,t+1

)
(A.72)

Substituting (A.72) in (A.1.7a), we obtain the expression for labour supply:

zF
t+1 = 1− θβ(1 + rT,t+1)

1 + β(1 + θ)

(
wt − τt

wt+1
+

1
1 + rb,t+1

)
(A.73)
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A.3.2 Fixed retirement

Portfolio choice

Consider now the fixed retirement setting. Then the intertemporal budget constraint
becomes:

co,t+1 = (1 + rT,t+1)

(
st +

wt+1zt+1

1 + rb,t+1

)
(A.74)

with rT,t+1 again defined as in (A.61) but where at now satisfies:

at =
λtst

st +
wt+1zt+1
1+rb,t+1

(A.75)

Inserting (A.74) in the two Euler equations (for j = rb and j = rk) again gives condi-
tion (A.63). Hence, at is still given by equation (A.67). Inserting (A.67) into (A.75) we
end up with the portfolio share in terms of financial wealth:

λI
t =

[
1 +

wt+1zt+1

(1 + rb,t+1)st

]
log Et(1 + rk,t+1)− log(1 + rb,t+1)

Vart log(1 + rk,t+1)
(A.76)

Consumption and leisure

The fact that wages are non-stochastic implies that the first-order condition with re-
spect to leisure consumption, equation (A.1.7b), becomes:

θ

1− zt+1
= wt+1Etc−1

o,t+1 (A.77)

Combining (A.77) and (A.1.4) gives:

(1− zt+1)wt+1 = θβ(1 + rb,t+1)cy,t (A.78)

Substituting (A.74) in (A.1.4) and rearranging gives:

c−1
y,t = β

(
wt − τt − cy,t +

wt+1zt+1

1 + rb,t+1

)−1

(A.79)

where we (again) used equality (A.70). Substitution of (A.78) in (A.79) gives:

c−1
y,t = β

[
wt − τt +

wt+1

1 + rb,t+1
− (1 + θβ)cy,t

]−1

(A.80)

Hence,

cy,t =
1

1 + β(1 + θ)

(
wt − τt +

wt+1

1 + τb,t+1

)
(A.81)
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Note that consumption (and thus savings) under fixed labour supply is exactly equal
to consumption under flexible labour supply. Substituting (A.81) in (A.78) and solv-
ing for zt+1, we ultimately obtain the optimal retirement decision:

zI
t+1 = 1− θβ(1 + rb,t+1)

1 + β(1 + θ)

(
wt − τt

wt+1
+

1
1 + rb,t+1

)
(A.82)

A.4 Simulation results

Table A.4 shows the unconditional mean and standard deviation of the most impor-
tant endogenous variables. These moments are calculated by simulating the derived
recursive laws.27 From this table we draw the same conclusions as from the steady-
state results, discussed in the main text. With depreciation risk, retirement flexibility
indeed offers a way to insure against adverse investment outcomes as stressed by
Bodie et al. (1992). In this situation, the equity premium is lower than in case of in-
flexible retirement and agents are able to retire earlier on average. With productivity
risk, however, we again have the opposite result. Then the equity premium under
flexible retirement is higher than under inflexible retirement and agents choose to
retire later on average. From a welfare perspective, , flexibility is preferable to inflex-
ibility. Note that expected life-time utility is unambiguously higher in the first case,
irrespective of whether depreciation risk or productivity risk is the sole risk factor.

Table A.4: Statistical moments of general equilibrium models

Depreciation risk Productivity risk
Fixed Flexible Fixed Flexible

Mean Stdev Mean Stdev Mean Stdev Mean Stdev
cy/y 36.72 0.00 37.82 3.36 37.59 1.27 37.47 1.88
co/y 53.71 15.71 50.98 11.37 49.59 3.04 49.70 2.13
rk 2.94 8.20 2.69 7.66 2.64 8.20 2.65 8.22
rb 2.09 0.00 2.08 0.58 2.18 6.40 2.14 6.27
z 21.12 0.00 20.65 14.50 16.54 0.67 17.13 2.11
k/y 15.63 0.00 16.80 1.23 19.55 10.40 19.53 10.43
U −6.60 0.97 −6.46 0.98 −6.68 2.37 −6.67 2.34

Note: the return on capital and the return on government debt are annualized figures. All figures
are expressed in percentages.

27These simulations are based on the same parameterization as in the paper (see Section 4.1).
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