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1 Summary of the Life-Cycle Problem

We optimize over consumption and asset allocation dynamically. The exogenous state variables are
the risk free rate and inflation, the endogenous state variable is wealth. Agents receive means-tested
benefits and the amount depends on wealth and income. The optimization problem is solved via
dynamic programming and we proceed backwards to find the optimal investment and consumption
strategy. In the last period the individual consumes all remaining wealth, hence we exactly know
the utility from terminal wealth. Specifically the value at time T is equal to

JT (WT , R
f
T , πT ) =

(WT + Y I
T + Y II

T +MT )1−γ

1− γ
(1)

We solve the following Bellman equation:

Vt(Wt, R
f
t , πt) = max

wt,Ct

(
C1−γ
t

1− γ
+ βpt+1Et(Vt+1(Wt+1, R

f
t+1, πt+1))

)
(2)

subject to
Wt+1 = (Wt + Y I

t + Y II
t +Mt − Ct)(1 +Rf

t + (Rt+1 −Rf
t )wt), . (3)

If the agent receives means-tested benefits, his consumption is always at least as high as the guar-
anteed income level, M̃t.
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The individual faces a number of constraints on the consumption and investment decisions.
First, we assume that the retiree faces borrowing and short-sales constraints

wt ≥ 0 and wt ≤ 1. (4)

Second, we impose that the investor is borrowing constrained

Ct ≤ Wt, (5)

which implies that the individual cannot borrow against future annuity income to increase con-
sumption today.

We define the portfolio return as:

RP
t+1 = 1 +Rf

t + (Rt+1 −Rf
t )wt (6)

Furthermore we denote the wealth level after annuity income, consumption, and means-tested
benefits as:

At = Wt + Y I
t + Y II

t − Ct + max(0,Mt) (7)

2 Optimality conditions

In order to find the optimal consumption and investment decisions we derive the Euler conditions.
The optimal asset allocation follows from

∂Vt
∂wt

= Et

(
1

Πt+1

C∗−γt+1 (Rt+1 −Rf
t )

)
= 0. (8)

To obtain the consumption policies we take the first order condition with respect to Ct

∂Vt
∂Ct

= C∗−γt − βpt+1Et

(
∂Vt+1

∂Wt+1

ΠtR
P∗
t+1

)
= 0. (9)
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Using the envelope theorem, we find

∂Vt
∂Wt

= βpt+1Et

(
∂Vt+1

∂Wt+1

RP∗
t+1

)
if M̃t − Y I

t − Y II
t − rWt − gWt ≤ 0 (10)

∂Vt
∂Wt

= βpt+1(1− r − g)Et

(
∂Vt+1

∂Wt+1

RP∗
t+1

)
if M̃t − Y I

t − Y II
t − rWt − gWt > 0. (11)

To solve for the optimal consumption, substitute (10) and (11) into (9) to get the following
Euler condition

C∗−γt = βpt+1Et

(
Πt

Πt+1

C∗−γt+1 R
P∗
t+1

)
if M̃t − Y I

t − Y II
t − rWt − gWt ≤ 0 (12)

C∗−γt = βpt+1(1− r − g)Et

(
Πt

Πt+1

C∗−γt+1 R
P∗
t+1

)
if M̃t − Y I

t − Y II
t − rWt − gWt > 0 (13)

3 Optimization procedure for optimal asset weights

Due to the richness and complexity of the model it cannot be solved analytically hence we em-
ploy numerical techniques instead. We use the method proposed by Brandt et al. (2005) and Car-
roll (2006) with several extensions added by Koijen et al. (2010). Brandt et al. (2005) adopt
a simulation-based method which can deal with many exogenous state variables. In our case
Xt = (Rf

t , πt) is the relevant exogenous state variable. Wealth acts as an endogenous state vari-
able. For this reason, following Carroll (2006), we specify a grid for wealth after (annuity) income
and consumption. As a result, it is not required to do numerical rootfinding to find the optimal
consumption decision.

In each period we find the optimal asset weights by considering the following first order con-
dition

Et(C
∗−γ
t+1 (Rt+1 −Rf

t )/Πt+1) = 0, (14)

where C∗t+1 denotes the optimal real consumption level. Because we solve the optimization prob-
lem via backwards recursion we know C∗t+1 at time t+ 1. Furthermore we simulate the exogenous
state variables for N trajectories and T time periods hence we can calculate the realizations of
C∗−γt+1 (Rt+1 − Rf

t )/Πt+1. We regress these realizations on a polynomial expansion in the state
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variables to obtain an approximation of the conditional expectation of the Euler condition

E
(
C∗−γt+1 (Rt+1 −Rf

t )/Πt+1

)
' X̃ ′pθh. (15)

In addition we employ a further extension introduced in Koijen et al. (2010). They found that the
regression coefficients θh are smooth functions of the asset weights and consequently we approxi-
mate the regression coefficients θh by projecting them further on polynomial expansion in the asset
weights:

θ′h ' g(w)ψ. (16)

The Euler condition must be set to zero to find the optimal asset weights

X̃ ′pψg(w)′ = 0. (17)

Due to the maximization function in the budget constraint the Euler condition can be described
by two equations, one for when the agent does receive means-tested benefits and a second for when
the agent does not receive means-tested benefits:

C∗−γt = βpt+1Et

(
Πt

Πt+1

C∗−γt+1 R
P∗
t+1

)
if Mt = 0, (18)

C∗−γt = βpt+1(1− r − g)Et

(
Πt

Πt+1

C∗−γt+1 R
P∗
t+1

)
if Mt > 0. (19)

4 Optimization procedure for optimal consumption

Similarly to the case of the optimal asset weights, we regress the different realizations of the
argument of the Euler condition on a polynomial expansion in the state variables to obtain an ap-
proximation of the conditional expectation of the Euler condition. However, now we calculate two
potential optimal consumption levels, one for each Euler condition (12) and (13), corresponding to
whether or not the agent receives means-tested benefits. Note that C∗mtbt > C∗nomtbt , where C∗mtbt

is the optimal consumption if an agent receives means-tested benefits and C∗nomtbt is the optimal
consumption if the agent does not receive means-tested benefits. This can be seen from (12) and
(13) that the optimal consumption with means-tested benefits derived from the maximization pro-
cedure is always higher due to the additional factor (1− r − g)−(1/γ), which is always higher than
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1. The means-tested benefits can be calculated once we know the optimal consumption levels:

Mmtb
t =

M̃t − Y I
t − Y II

t − (r + g)(At + C∗mtbt − Y I
t − Y II

t )

1− r − g
(20)

Mnomtb
t = M̃t − Y I

t − Y II
t − (r + g)(At + C∗nomtbt − Y I

t − Y II
t ). (21)

Hence for every time period and every trajectory we find a set of consumption and means-tested
benefits: (C∗mtbt ,Mmtb

t ) and (C∗nomtbt ,Mnomtb
t ). However, we need to determine which set is

the optimal set. First, note that if the income level is higher than the guaranteed consumption
level, then an agent does not receive means-tested benefits and the optimal consumption level is
C∗nomtbt . On the other hand, when Yt < M̃t, then the optimal consumption results from applying
the following rules:

If Mmtb
t > 0 and Mnomtb

t > 0 then C∗mtbt is optimal (22)

If Mmtb
t > 0 and Mnomtb

t < 0 then C∗mtbt is optimal (23)

If Mmtb
t ≤ 0 and Mnomtb

t < 0 then C∗nomtbt is optimal (24)

If Mmtb
t ≤ 0 and Mnomtb

t > 0 and |Mnomtb
t | < |Mmtb

t |

then C∗nomtbt is optimal otherwise C∗mtbt is optimal . (25)

These rules are based on whether the implied means-tested benefits derived from the optimal con-
sumption level are viable and/or optimal.
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