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Proof of Proposition 1.

M, k |= I

iff M, k |= ¬•> by Definition of I

iff M, k |= ¬•[0..ω)> by Definition of •
iff M, k 6|= •[0..ω)> by Proposition 4 and 3

iff M, k − 1 6|= > or k = 0 or τ(k)− τ(k − 1) 6∈ [0..ω) by Definition 2(6)

iff k = 0 or τ(k)− τ(k − 1) 6∈ [0..ω) M, k |= > for all k ∈ [0..λ)

iff k = 0 since τ(k − 1) ≤ τ(k)

M, k |= •̂Iϕ
iff M, k |= •I> → •Iϕ by Definition of •̂I
iff M, k 6|= •I> or M, k |= •Iϕ since •I> behaves classically

iff k = 0 or τ(k)− τ(k − 1) 6∈ I or M, k |= •Iϕ by the satisfaction of •I>
iff k = 0 or τ(k)− τ(k − 1) 6∈ I or M, k − 1 |= ϕ by the satisfaction of •Iϕ

and some propositional reasoning.
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M, k |= �Iϕ

iff M, k |= > SI ϕ by Definition of �I

iff for some i ∈ [0..k] with τ(k)− τ(i) ∈ I
we have M, i |= ϕ and M, j |= > for all j ∈ (i..k] by Definition 2(7)

iff M, i |= ϕ for some i ∈ [0..k] with τ(k)− τ(i) ∈ I M, k |= > for all k ∈ [0..λ)

M, k |= �Iϕ

iff M, k |= ⊥ TI ϕ by Definition of �I

iff for all i ∈ [0..k] with τ(k)− τ(i) ∈ I,we have M, i |= ϕ or

M, j |= ⊥ for some j ∈ (i..k] by Definition 2(8)

iff M, i |= ϕ for all i ∈ [0..k] with τ(k)− τ(i) ∈ I M, k 6|= ⊥ for all k ∈ [0..λ)

For the resp. future cases 16-19 the same reasoning applies.

Proof of Proposition 2. For the complete definition of THT satisfaction, we refer the

reader to (Aguado et al. 2023). Here, it suffices to observe that, when we use interval

I = [0..ω) in all operators, all conditions x ∈ I in Definition 2 (MHT satisfaction) become

trivially true, so that the use of τ is irrelevant and the remaining conditions happen to

coincide with THT satisfaction.

Proof of Proposition 3. The proof follows by structural induction on the formula ϕ.

Note that universal quantification of k ∈ [0..λ) is part of the induction hypothesis. In

what follows, we denote M = (〈H,T〉, τ).

• If ϕ = ⊥, the property holds trivially because M, k 6|= ⊥.

• If ϕ is an atom p, M, k |= p implies p ∈ Hk ⊆ Tk and so (〈T,T〉, τ), k |= p

• For conjunction, disjunction and implication the proof follows the same steps as

with persistence in (non-temporal) HT

• If ϕ = ◦Iα then k + 1 < λ, τ(k+1) − τ(k) ∈ I and M, k+1 |= α. By induc-

tion, the latter implies (〈T,T〉, τ), k+1 |= α so we get the conditions to conclude

(〈T,T〉, τ), k |= ◦Iα.

• If ϕ = αUIβ then M, k |= αUIβ implies that for some j ∈ [k..λ) with τ(j)−τ(k) ∈ I,

we have M, j |= β and M, i |= α for all i ∈ [k..j). Since the induction hypothesis

applies on any time point, we can apply it to subformulas β and α to conclude for

some j ∈ [k..λ) with τ(j)−τ(k) ∈ I, we have (〈T,T〉, τ), j |= β and (〈T,T〉, τ), i |= α

for all i ∈ [k..j). But the latter amounts to (〈T,T〉, τ), k |= αUI β.

• The proofs for •I and SI are completely analogous to the two previous steps,

respectively.

Proof of Corollary 1. By referring to MTLf -satisfiability as defined in (Koymans
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1990), it is obvious that MHTf -satisfiability for total traces collapes to MTLf -satisfiability.

Therefore we claim that a formula ϕ is satisfiable in MHTf iff ϕ is satisfiable in MTLf .

This together with the decidability of MTLf (Ouaknine and Worrell 2007) would imply

that MHTf is decidable.

The claim is proved as follows: from left to right, let us assume that ϕ is MHTf -

satisfiable. Therefore, there exists a MHTf model (〈H,T〉, τ) such that (〈H,T〉, τ), 0 |= ϕ.

By Proposition 3, (〈T,T〉, τ), 0 |= ϕ. Therefore, ϕ is MTLf -satisfiable.

Conversely, if ϕ is MTLf -satisfiable then there exists a MTLf model (T, τ) such that

(T, τ), 0 |= ϕ. (T, τ) can be turned into the MHTf model (〈T,T〉, τ) satisfying ϕ at 0.

Therefore, ϕ is MHTf -satisfiable.

Proof of Proposition 4. Note that (〈H,T〉, τ), k |= ¬ϕ amounts to (〈H,T〉, τ), k |=
ϕ→ ⊥ and the latter is equivalent to M, k 6|= ϕ or M, k |= ⊥, for both M = (〈H,T〉, τ)

and M = (〈T,T〉, τ). Since M, k |= ⊥ never holds, we get that this condition is equivalent

to both (〈H,T〉, τ), k 6|= ϕ and (〈T,T〉, τ), k 6|= ϕ. However, by Proposition 3 (persistence),

the latter implies the former, so we get that this is just equivalent to (〈T,T〉, τ), k 6|= ϕ.

Proof of Proposition 5. From left to right, assume by contradiction that H 6= T. By

construction of an HT-trace, Hj ⊆ Tj for all 0 ≤ j < λ, but as H 6= T, the subset

relation must be strict Hi ⊂ Ti for some 0 ≤ i < λ. This means that there exists

p ∈ A such that p ∈ Ti \Hi. Therefore, (〈H,T〉, τ) 6|= p ∨ ¬p. Since i ≥ 0 and, clearly,

τ(i) − τ(0) ∈ [0..ω), we obtain that (〈H,T〉, τ), 0 6|= � (p ∨ ¬p). As a consequence we

get (〈H,T〉, τ), 0 6|= EM(A): a contradiction. Conversely, assume by contradiction that

(〈H,T〉, τ), 0 6|= EM(A). Therefore, there exists 0 ≤ i < λ such that τ(i)− τ(0) ∈ [0..ω)

and (〈H,T〉, τ), i 6|= p ∨ ¬p. This means that p ∈ Ti \Hi so Hi ⊂ Ti. As a consequence,

H 6= T: a contradiction.

Proof of Proposition 6. The proof follows similar steps to Proposition 10 in (Aguado

et al. 2023) for the non-metric case (and LTL instead of MTL). For a proof sketch, note

that if no implication or negation is involved, the evaluation of the formula is exclusively

performed on trace H, while the there-component T is never used, becoming irrelevant

(we are free to choose any trace T ≥ H). Thus, checking the equivalence on total traces

(〈H,H〉, τ) does not lose generality, whereas total traces exactly correspond to MTL

satisfaction.

Proof of Lemma 1. The proof follows similar steps to Lemma 2 in (Aguado et al. 2023)

for the non-metric case. Again, we define %(M) as the timed trace (〈H′,T′〉, τ ′) where

H ′i = Hλ−1−i and T ′i = Tλ−1−i for all i ∈ [0..λ). The only difference here is that we

must also “reverse” the time function τ defining τ ′(i) = τ(λ−1)− τ(λ−1−i) to keep the

same relative distances but in reversed order. Then, the proof follows from the complete

temporal symmetry of satisfaction of operators (when the trace is finite).

Proof of Theorem 1. The proof follows similar steps to Theorem 3 in (Aguado et al.

2023) for the non-metric case but relying here on Lemma 1 instead.
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Proof of Proposition 7.

M, k |= ◦I (ϕ ∨ ψ)

iff M, k + 1 |= ϕ ∨ ψ and τ(k + 1)− τ(k) ∈ I by Definition 2(9)

iff (M, k + 1 |= ϕ or M, k + 1 |= ψ) and τ(k + 1)− τ(k) ∈ I by Definition 2(4)

iff (M, k + 1 |= ϕ and τ(k + 1)− τ(k) ∈ I) by Distributivity

or (M, k + 1 |= ψ and τ(k + 1)− τ(k) ∈ I)

iff M, k |= ◦Iϕ ∨ ◦Iψ by Definition 2(9)

M, k |= ◦I (ϕ ∧ ψ)

iff M, k + 1 |= ϕ ∧ ψ and τ(k + 1)− τ(k) ∈ I by Definition 2(9)

iff (M, k + 1 |= ϕ and M, k + 1 |= ψ) and τ(k + 1)− τ(k) ∈ I by Definition 2(3)

iff (M, k + 1 |= ϕ and τ(k + 1)− τ(k) ∈ I) by Distributivity

and (M, k + 1 |= ψ and τ(k + 1)− τ(k) ∈ I)

iff M, k |= ◦Iϕ ∧ ◦Iψ by Definition 2(9)

M, k |= ◦̂I (ϕ ∨ ψ)

iff k + 1 = λ or M, k + 1 |= ϕ ∨ ψ or τ(k + 1)− τ(k) 6∈ I by Proposition 1(17)

iff k + 1 = λ or (M, k + 1 |= ϕ or M, k + 1 |= ψ) or τ(k + 1)− τ(k) 6∈ I by Definition 2(4)

iff (k + 1 = λ or M, k + 1 |= ϕ or τ(k + 1)− τ(k) 6∈ I) by Distributivity

or (k + 1 = λ or M, k + 1 |= ψ or τ(k + 1)− τ(k) 6∈ I)

iff M, k |= ◦̂Iϕ ∨ ◦̂Iψ by Proposition 1(17)

M, k |= ◦̂I (ϕ ∧ ψ)

iff k + 1 = λ or M, k + 1 |= ϕ ∧ ψ or τ(k + 1)− τ(k) 6∈ I by Proposition 1(17)

iff k + 1 = λ or (M, k + 1 |= ϕ and M, k + 1 |= ψ) or τ(k + 1)− τ(k) 6∈ I by Definition 2(3)

iff (k + 1 = λ or M, k + 1 |= ϕ or τ(k + 1)− τ(k) 6∈ I) by Distributivity

and (k + 1 = λ or M, k + 1 |= ψ or τ(k + 1)− τ(k) 6∈ I)

iff M, k |= ◦̂Iϕ ∧ ◦̂Iψ by Proposition 1(17)
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M, k |= ♦I (ϕ ∨ ψ)

iff M, i |= ϕ ∨ ψ for some i ∈ [k..λ) with τ(i)− τ(k) ∈ I by Definition 2(18)

iff (M, i |= ϕ or M, i |= ψ) for some i ∈ [k..λ) with τ(i)− τ(k) ∈ I by Definition 2(4)

iff (M, i |= ϕ for some i ∈ [k..λ) with τ(i)− τ(k) ∈ I) by Distributivity

or (M, i |= ψ for some i ∈ [k..λ) with τ(i)− τ(k) ∈ I)

iff M, k |= ♦Iϕ ∨ ♦Iψ by Definition 2(18)

M, k |= �I (ϕ ∧ ψ)

iff M, i |= ϕ ∧ ψ for all i ∈ [k..λ) with τ(i)− τ(k) ∈ I by Definition 2(19)

iff (M, i |= ϕ and M, i |= ψ) for all i ∈ [k..λ) with τ(i)− τ(k) ∈ I by Definition 2(3)

iff (M, i |= ϕ for some i ∈ [k..λ) with τ(i)− τ(k) ∈ I) by Distributivity

and (M, i |= ψ for some i ∈ [k..λ) with τ(i)− τ(k) ∈ I)

iff M, k |= �Iϕ ∧�Iψ by Definition 2(19)

M, k |= ϕUI (χ ∨ ψ)

iff M, i |= χ ∨ ψ for some i ∈ [k..λ) with τ(i)− τ(k) ∈ I
and M, j |= ϕ for all j ∈ [k..i) by Definition 2(10)

iff (M, i |= χ or M, i |= ψ) for some i ∈ [k..λ) with τ(i)− τ(k) ∈ I
and M, j |= ϕ for all j ∈ [k..i) by Definition 2(3)

iff M, i |= χ for some i ∈ [k..λ) with τ(i)− τ(k) ∈ I or by Distributivity

M, i |= ψ for some i ∈ [k..λ) with τ(i)− τ(k) ∈ I
and M, j |= ϕ for all j ∈ [k..i)

iff M, k |= (ϕUI χ) ∨ (ϕUI ψ) by Definition 2(10)
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M, k |= (ϕ ∧ χ) UI ψ

iff M, i |= ψ for some i ∈ [k..λ) with τ(i)− τ(k) ∈ I
and M, j |= ϕ ∧ ψ for all j ∈ [k..i) by Definition 2(10)

iff M, i |= ψ for some i ∈ [k..λ) with τ(i)− τ(k) ∈ I by Definition 2(3)

and M, j |= ϕ and M, j |= ψ for all j ∈ [k..i)

iff M, i |= ψ for some i ∈ [k..λ) with τ(i)− τ(k) ∈ I by Distributivity

and M, j |= ϕ for all j ∈ [k..i) and

M, i |= ψ for some i ∈ [k..λ) with τ(i)− τ(k) ∈ I
and M, j |= χ for all j ∈ [k..i)

iff M, k |= (ϕUI ψ) and M, k |= (χUI ψ) by Definition 2(10)

M, k |= ϕ RI (χ ∧ ψ)

iff for all i with τ(i)− τ(k) ∈ I, we have by Definition 2(11)

M, i |= χ ∧ ψ or M, j |= ϕ for some j ∈ [k..i)

iff for all i with τ(i)− τ(k) ∈ I, we have

M, i |= χ and M, i |= ψ or M, j |= ϕ for some j ∈ [k..i) by Definition 2(3)

iff for all i with τ(i)− τ(k) ∈ I, we have

M, i |= χ or M, j |= ϕ for some j ∈ [k..i)

and iff for all i with τ(i)− τ(k) ∈ I, we have

M, i |= ψ or M, j |= ϕ for some j ∈ [k..i) by Distributivity

iff M, k |= (ϕ RI χ) and (ϕ RI ψ) by Definition 2(11)

iff M, k |= (ϕ RI χ) ∧ (ϕ RI ψ) by Definition 2(3)

M, k |= (ϕ ∨ χ) RI ψ

iff for all i with τ(i)− τ(k) ∈ I, we have by Definition 2(11)

M, i |= ψ or M, j |= ϕ ∨ χ for some j ∈ [k..i)

iff for all i with τ(i)− τ(k) ∈ I, we have by Definition 2(4)

M, i |= ψ or M, j |= ϕ or M, j |= χ for some j ∈ [k..i)

iff for all i with τ(i)− τ(k) ∈ I, we have by Distributivity

M, i |= ψ or M, j |= ϕ for some j ∈ [k..i) or

iff for all i with τ(i)− τ(k) ∈ I, we have

M, i |= ψ or M, j |= χ for some j ∈ [k..i)

iff M, k |= (ϕ RI ψ) or (χ RI ψ) by Definition 2(11)

iff M, k |= (ϕ RI ψ) ∨ (χ RI ψ) by Definition 2(4)

For the resp. past cases 11-20 the same reasoning applies.
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Proof of Proposition 8. We consider the first equivalence. From left to right, assume

towards a contradiction that (〈H,T〉, τ), i 6|= ¬ϕ RI ¬ψ. Therefore, there exists j ∈ [i..λ)

such that τ(j)− τ(i) ∈ I, (〈H,T〉, τ), j 6|= ¬ψ and for all k ∈ [i..j), (〈H,T〉, τ), k 6|= ¬ϕ.

By Proposition 4, (〈T,T〉, τ), j |= ψ and (〈T,T〉, τ), k |= ϕ for all k ∈ [i..j). By the

semantics of the until operator we obtain that (〈T,T〉, τ), i |= ϕUI ψ. By Proposition 4

it follows that 〈H,T〉, i 6|= ¬ (ϕUI ψ): a contradiction.

From right to left, if 〈H,T〉, i 6|= ¬ (ϕUI ψ) then, by Proposition 4, (〈T,T〉, τ), i |=
ϕ UI ψ. Therefore there exists j ∈ [i..λ) such that τ(j) − τ(i) ∈ I, (〈T,T〉, τ), j |= ψ

and for all k ∈ [i..j), (〈T,T〉, τ), k |= ϕ. Since (〈T,T〉, τ) satisfies the law of excluded

middle, it follows that (〈T,T〉, τ), j 6|= ¬ψ and for all k ∈ [i..j), (〈T,T〉, τ), k 6|= ¬ϕ. By

the semantics, (〈T,T〉, τ), i 6|= ¬ϕ RI ¬ψ. By persistency, (〈H,T〉, τ) 6|= ¬ϕ RI ¬ψ.

The remaining equivalences can be verified in a similar way.

Proof of Proposition 9.

M, k |= (ϕUI ψ) iff M, i |= ψ for some i ∈ [k..λ) with τ(i)− τ(k) ∈ I
and M, j |= ϕ for all j ∈ [k..i) by Definition 2(10)

implies M, i |= ψ for some i ∈ [k..λ) with τ(i)− τ(k) ∈ J
and M, j |= ϕ for all j ∈ [k..i) since I ⊆ J

iff M, k |= (ϕUJ ψ) by Definition 2(10)

M, k |= (ϕ RJ ψ) iff for all j ∈ [k..λ) with τ(i)− τ(k) ∈ J
we have M, i |= ψ or M, j |= ϕ for some j ∈ [k..i) by Definition 2(11)

implies for all j ∈ [k..λ) with τ(i)− τ(k) ∈ I
we have M, i |= ψ or M, j |= ϕ for some j ∈ [k..i) since I ⊆ J

iff M, k |= (ϕ RI ψ) by Definition 2(11)

The cases 2 and 4 work analogously

Proof of equivalences (4)-(6).

• Equivalence (4): Take any i ∈ [0, λ). (〈H,T〉, τ), i |= ϕU0 ψ iff there exists j ∈ [i, λ)

such that τ(j)−τ(i) = 0, (〈H,T〉, τ), j |= ψ and for all i ≤ k < j, (〈H,T〉, τ), k |= ϕ.

From τ(j)− τ(i) = 0 it follows that τ(j) = τ(i). Under strict semantics, it follows

j = i. From this we get the iff (〈H,T〉, τ), i |= ψ. Furthermore,

(〈H,T〉, τ), i |= ϕ R0 ψ iff for all j ∈ [i, λ) if τ(j)− τ(i) = 0 and (〈H,T〉, τ), j 6|= ψ

then there exists i ≤ k < j such that (〈H,T〉, τ), k |= ϕ.

From τ(j)− τ(i) = 0 it follows that τ(j) = τ(i). Under strict semantics, it follows

j = i. From this we get the iff (〈H,T〉, τ), i |= ψ.

• Equivalence (5): For the case of ◦0ϕ we have that (〈H,T〉, τ), i |= ◦0ϕ iff i+ 1 < λ,

τ(i + 1) − τ(i) = 0 and (〈H,T〉, τ), i + 1 |= ϕ. Since we are considering strict

semantics, we get that τ(i+ 1)− τ(i) 6= 0 and we can derive ⊥. We can follow a

similar reasoning for the case of •0ϕ.

• Equivalence (6): For the case of ◦̂0ϕ we have that (〈H,T〉, τ), i |= ◦̂0ϕ iff if i+1 < λ

and τ(i+ 1)− τ(i) = 0 then (〈H,T〉, τ), i+ 1 |= ϕ. Since we are considering strict
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semantics, we get that τ(i+ 1)− τ(i) 6= 0 and we can derive >. We can follow a

similar reasoning for the case of •̂0ϕ.

Proof of Proposition 10.

• Equivalence (15): In case m ≥ n then [m · · ·n) is empty so
∨n−1
i=m ◦iϕ ≡ ⊥. It

follows that M, k 6|= ◦[..[m···n)]ϕ and M, k 6|= ⊥. Otherwise, from left to right, if

M, k 6|= ◦[..[m···n)]ϕ then M, k + 1 |= ϕ and τ(k + 1)− τ(k) ∈ [m · · ·n). This means

that there exists t ∈ [m..n) such that τ(k+1)−τ(k) = t. From this and M, k+1 |= ϕ

we get that M, k |= ◦tϕ so M, k |=
∨n−1
i=m ◦iϕ. Conversely, if M, k |=

∨n−1
i=m ◦iϕ

then there exists t ∈ [m..n) such that M, k |= ◦t. Therefore, M, k + 1 |= ϕ and

τ(k+1)−τ(k) = t. Since t ∈ [m..n) and τ(k+1)−τ(k) = t, τ(k+1)−τ(k) ∈ [m · · ·n)

so M, k |= ◦[m···n)ϕ.

• Equivalence (16): In case m ≥ n then [m · · ·n) is empty so
∧n−1
i=m ◦̂iϕ ≡ >. It

follows that M, k |= ◦̂[..[m···n)]ϕ and M, i |= >. Otherwise, from left to right, if

M, k 6|=
∧n−1
i=m ◦̂iϕ then there exists t ∈ [m..n) such that M, k 6|= ◦̂t. Therefore,

M, k + 1 6|= ϕ and τ(k + 1) − τ(k) = t. Since t ∈ [m..n) and τ(k + 1) − τ(k) = t,

τ(k + 1) − τ(k) ∈ [m · · ·n) so M, k 6|= ◦̂[m···n)ϕ: a contradiction. Conversely, if

M, k 6|= ◦̂[..[m···n)]ϕ then M, k + 1 6|= ϕ and τ(k + 1)− τ(k) ∈ [m · · ·n). This means

that there exists t ∈ [m..n) such that τ(k+1)−τ(k) = t. From this and M, k+1 6|= ϕ

we get that M, k 6|= ◦̂tϕ. Therefore, M, k 6|=
∧n−1
i=m ◦̂iϕ: a contradiction.
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