
Under consideration for publication in Theory and Practice of Logic Programming 1

Supplementary material:
An efficient solver for ASP(Q) ∗

WOLFGANG FABER1

GIUSEPPE MAZZOTTA2

FRANCESCO RICCA2

1Alpen-Adria Universität Klagenfurt, Austria
2University of Calabria, Rende, Italy

submitted xx xx xxxx; revised xx xx xxxx; accepted xx xx xxxx

1 Additional experimental data

This section reports some more data on the Experiments described in Section ??, reported

here to provide a more detailed view on our results for the reviewers.

Table 1 shows the PAR2 score for all the compared systems. Recall that the PAR-2

score of a solver is defined as the sum of all execution times for solved instances and 2

times the timeout for unsolved ones. The lower the score, the better the performance.

Table 2 shows the average memory usage for all the compared systems. Memory usage

(measured in MB) is aggregated for instances solved within the time limit (Complete),

instances that exceeded the time limit (Timeout) and over all the instances (Total). The

lower the memory usage, the better the performance.

Table 3 shows, for each system variant, the number of solved instances, timeouts and

memory out for each benchmark and also the total number of solved instances overall.

Table 4 reports the comparison with qasp and st-unst implementation (respectively

4a 4b). We considered the best variants of pyqasp against the other systems, qasp

with supported back-end solvers and st-unst. For each of them, the number of solved

instances for each benchmark and the overall number of solved instances is reported.

2 Implementation Details

This section reports a more detailed description of the process used by pyqasp to evaluate

an ASP(Q) program.

2.1 Base solver

PyQASP has been entirely developed in Python and it is made by different modules that

we will describe in this section. The evaluation of an ASP(Q) program is, basically, done

∗ This work was partially supported by MUR under PRIN project PINPOINT Prot. 2020FNEB27, CUP
H23C22000280006, and PNRR project PE0000013-FAIR, Spoke 9 - Green-aware AI – WP9.1.



2 W. Faber, G. Mazzotta, F. Ricca

Solver Par Arg.Cohe. Minmax Cli. QBF

qaspDEPS 771,235.84 321,279.33 36,427.46 546,292.46
pyqaspDEPS 645,221.78 348,019.17 43,217.22 654,649.81
pyqaspDEPS

WF 589,804.20 299,694.65 21,414.65 619,824.33
pyqaspDEPS

WF+GC 588,632.92 314,896.34 1,322.85 513,758.82

qaspQBS 822,400.00 369,190.24 553.76 768,291.40
pyqaspQBS 822,400.00 382,814.62 587.20 795,651.07

pyqaspQBS
WF 822,400.00 362,715.16 458.76 749,836.74

pyqaspQBS
WF+GC 822,400.00 481,788.14 524.75 749,905.75

qaspRQS 190,769.32 231,845.74 38,109.56 1,054,759.98
pyqaspRQS 239,202.25 261,084.28 41,908.61 1,091,812.72

pyqaspRQS
WF 180,695.99 218,876.82 36,427.19 1,067,281.23

pyqaspRQS
WF+GC 180,692.43 499,799.74 8,876.10 1,059,731.92

Table 1: PAR-2 score in seconds for each system variants on: (i) Paracoherent ASP (Par.

Comp, Par. Rand.); (ii) Argumentation Coherence (Arg. Cohe.); (iii) Minmax Clique

(Minmax Cli.); (iv) Quantified Boolean Formula (QBF)

Solver Complete Timeout Total

qaspDEPS 359.06 1281.35 856.37
pyqaspDEPS 108.41 657.65 394.71
pyqaspDEPS

WF 168.15 607.33 374.97
pyqaspDEPS

WF+GC 170.56 789.57 445.17

qaspQBS 553.15 1892.40 1701.98
pyqaspQBS 272.02 1022.99 874.03

pyqaspQBS
WF 343.78 1232.27 1014.53

pyqaspQBS
WF+GC 379.94 1304.55 1077.01

qaspRQS 356.44 1409.87 847.78
pyqaspRQS 103.73 701.44 398.42

pyqaspRQS
WF 152.70 634.67 380.00

pyqaspRQS
WF+GC 177.27 632.06 432.74

Table 2: Average memory consumption in megabyte for each system variant

in two steps that are encoding and solving. In the encoding phase an ASP(Q) program

is parsed, identifying ASP programs enclosed under the quantifiers’ scope. Then, each

ASP subprogram Pi passes through the following pipeline:

1. Rewriting Module. This modules is designed to compute syntactical properties

of Pi, in order to check whether it is a Guess&Check or trivial subprogram and sub-



An efficient solver for ASP(Q) 3

sequently apply the appropriate rewriting techniques described in this paper. First

of all, Pi is rewritten, taking into account a previous Guess&Check subprogram

Pj with j < i, if any exists. Then, if the resulting program is trivial, this module

returns atoms defined at the current level with an empty program. Otherwise, if it

is a Guess&Check program and it is universally quantified then Pi is split into GPi

and CPi
. Moreover, the module computes the result of the transformation τ , intro-

ducing a fresh propositional atom ui, that will be used for rewriting the following

levels. As a result, it returns the atoms defined in the guess split of the current

subprogram with an empty program. In all the other cases this module returns the

current program together with symbols defined at the current level.

2. Well-founded Module. This module computes the well-founded model together

with the residual program by means of DLV2 as a back-end system and stores the

truth values of literals belonging to the well-founded model.

3. CNF Encoder Module. This module takes as input the residual program pro-

duced by the well-founded module and encodes it into a CNF formula. In particular,

if the residual program is incoherent then it is encoded as the empty clause that is

equivalent to ⊥ and then it breaks the pipeline. Otherwise, if the residual program

is empty it is encoded as an empty CNF. In all the other cases the residual program

is encoded into a CNF by means of ASPTOOLS.

4. QBF Builder. This module produces the final QBF formula by associating the

symbols produced by Rewriting Module with the respective quantifiers and join-

ing the CNFs produced by the previous module in the final conjunction.

The last step of the encoding phase is combining previous CNFs into the formula ϕc.

As a result, a QBF formula in QCIR format is obtained. The solving step is mainly

performed by the solver module, which is a wrapper module for the various QBF solvers.

In order to use a solver, the first step in the wrapper is to convert the QCIR formula

into an equivalent formula in the solver’s input format. Then, the external QBF solver

Table 3: Comparison of system variants on Paracoherent ASP (PAR), Argumentation

Coherence (AC), Minmax Clique (MMC), QBF and overall (TOTAL).

Solver
PAR AC MMC QBF TOTAL

#SO #MO #TO #SO #MO #TO #SO #MO #TO #SO #MO #TO #SO

qaspDEPS 37 0 477 133 0 193 25 0 20 682 1 309 877

pyqaspDEPS 157 0 357 117 0 209 20 0 25 626 1 365 920

pyqaspDEPS
WF 189 0 325 148 0 178 35 0 10 648 1 343 869

pyqaspDEPS
WF+GC 189 0 325 130 0 196 45 0 0 699 1 292 918

qaspQBS 0 6 508 102 26 198 45 0 0 530 20 442 677

pyqaspQBS 0 0 514 96 0 230 45 0 0 518 19 455 659

pyqaspQBS
WF 0 0 514 107 0 219 45 0 0 546 19 427 698

pyqaspQBS
WF+GC 0 0 514 26 0 300 45 0 0 547 13 432 618

qaspRQS 442 0 72 197 0 129 23 0 22 350 1 641 1012

pyqaspRQS 442 0 72 176 0 150 22 0 23 331 1 660 971

pyqaspRQS
WF 442 0 72 205 0 121 24 0 21 345 1 646 1016

pyqaspRQS
WF+GC 442 0 72 14 0 312 42 0 3 351 1 640 849

pyqaspAuto 442 0 72 222 0 104 44 0 1 718 7 267 1426



4 W. Faber, G. Mazzotta, F. Ricca

is executed on the converted formula and the final outcome is computed. In the current

implementation we provide the following solver wrappers:

• QuabsWapper. It uses the QBF solver quabs and doesn’t require any format con-

version since the solver directly accepts QCIR formulas.

• RareqsWrapper This wrapper uses the QBF solver rareqs whose input format

is gq. The conversion from QCIR to gp is implemented by the external module

qcir-conv provided by (ref to qcir-conv).

• DepqbfWrapper It uses the QBF solver depqbf equipped with the QBF pre-processor

bloqqer. This solver takes as input formulas in QDIMACS format and so, transla-

tion to CNF is required. In particular, if all universally quantified subprograms were

Guess&Check then we know that the produced formula is, indeed, in CNF. So a

direct mapping into QDIMACS format exists, just reporting quantifiers and clauses

of intermediate CNFs. Otherwise, the external module qcir-conv combined with

fmla is used in order to translate the input formula into an equivalent QDIMACS

one. Note that this translation could introduce extra symbols and clauses leading

to a bigger formula.

2.2 Automatic selection of the back-end

The automatic back-end selection has been realized by exploiting machine learning mod-

els that have been trained on dataset reporting syntactical properties of benchmarks pro-

posed for ASP(Q). For this task we extended our system by adding a module (aspstats)

that analyzes ground programs during encoding phase and then, a Random Forest Classi-

fier is used to predict the back-end solver to be used. In order to train the employed model

we considered a dataset containing instances from all our benchmarks: Argumentation

Coherence, Paracoherent ASP, Minmax Clique, Point of No Return, QBF and 2QBF.

In particular, for each instance the features reported in Table 5 have been computed by

using aspstats module. As required by the ME-ASP methodology, training set has been

constructed by considering only those instances that have been solved exactly by one

back-end solver that indeed is the target label, and considered the best oracles available

Table 4: Comparison with qasp and st-unst: Solved instances.

Solver PAR AC MMC QBF TOTAL

qaspDEPS 37 133 25 682 877
pyqaspDEPS

WF+GC 189 130 45 699 1063

qaspQBS 0 102 45 530 677

pyqaspQBS
WF 0 107 45 546 698

qaspRQS 442 197 23 350 1012

pyqaspRQS
WF 442 205 24 345 1016

pyqaspAuto 442 222 44 718 1426

(a) Comparison with qasp.

Solver PAR PONR 2-QBF TOTAL

st-unst 60 30 1416 1506

pyqaspDEPS
WF+GC 189 0 2048 2237

pyqaspQBS
WF 0 63 346 409

pyqaspRQS
WF 442 94 0 536

pyqaspAuto 442 88 2048 2578

(b) Comparison with st-unst.



An efficient solver for ASP(Q) 5

R Rule count
A Number of atoms
(R/A) Ratio between rules count and atoms count
(R/A)2 Squared ratio between rules count and atoms count
(R/A)3 Cube ratio between rules count and atoms count
(A/R) Ratio between atoms count and rules count
(A/R)2 Squared ratio between atoms count and rules count
(A/R)3 Cube ratio between atoms count and rules count
R1 Rule with body of length 1
R2 Rule with body of length 2
R3 Rule with body of length 3
PR Positive rule count
F Normal facts count
DF Disjunctive facts count
NR Normal rule count
NC Constraint count
V F Universal atoms count
V E Existantial atoms count
QF Universial levels count
QE Existantial levels count
QL Quantification levels count

Table 5: aspstats features

as labels for multinomial classification. Regarding training phase we used a Random For-

est Classifier made of 100 trees that have been trained by using Gini impurity criterion

and bootstrap sampling technique.

3 Examples encoding of qasp program into qbf formula

Consider a ASP(Q) program Π of the form: ∃P1∀P2 : C, where

P1 P2 C

{a; b} ← c← not a, not b ← e, c

← a, not b d← a, b ← e, d

{e} ←

The first step of the encoding produces the following programs by adding interface from

previous levels:

G1 G2 G3

{a; b} ← c← not a, not b ← e, c

← a, not b d← a, b ← e, d

{e} ← {a; b; c; d; e} ←
{a; b} ←



6 W. Faber, G. Mazzotta, F. Ricca

The resulting CNF encodings are the following:

CNF (G1) : (b ∨ aux1) ∧ (−b ∨ −aux1) ∧ (a ∨ aux2) ∧ (−a ∨ −aux2) ∧ (−a ∨ b)

CNF (G2) : (a ∨ aux3) ∧ (−a ∨ −aux3) ∧ (b ∨ aux4) ∧ (−b ∨ −aux4)∧
(d ∨ −b ∨ −a) ∧ (−d ∨ b) ∧ (−d ∨ a)∧
(c ∨ a ∨ b) ∧ (−c ∨ −b) ∧ (−c ∨ −a)∧
(e ∨ aux5) ∧ (−e ∨ −aux5)

CNF (G3) : (a ∨ aux6) ∧ (−a ∨ −aux6) ∧ (b ∨ aux7) ∧ (−b ∨ −aux7)∧
(c ∨ aux8) ∧ (−c ∨ −aux8) ∧ (d ∨ aux9) ∧ (−d ∨ −aux9)∧
(e ∨ aux10) ∧ (−e ∨ −aux10)∧
(−e ∨ −d) ∧ (−e ∨ −c)

where auxi are hidden atoms are fresh propositional variables introduced by translation

The final qbf formula Φ(Π):

∃ a, b, aux1, aux2

∀ c, d, e, aux3, aux4, aux5

∃ aux6, aux7, aux8, aux9, aux10

((ϕ1 ↔ CNF (G1)) ∧ (ϕ2 ↔ CNF (G2)) ∧ (ϕ3 ↔ CNF (G3)))∧
(ϕ1 ∧ (ϕ2 ∨ ϕ3))

4 Example of Guess&Check rewriting procedure

Consider a ASP(Q) program Π of the form: ∀P1∃P2 : C, where C is empty and

P1 P2

{a(1); a(2)} ← b(1)←
← a(1), a(2) b(2)←

c(1)← b(1)

c(2)← b(2)

Program P1 is a guess&check program and so Π it can be rewritten as ∀P ′
1∃P ′

2 : C ′:

P ′
1 P ′

2 C ′ = ∅
{a(1); a(2)} ← b(1)← unsat

b(2)← unsat

c(1)← b(1), unsat

c(2)← b(2), unsat

unsat← a(1), a(2)

The resulting program contains only one universal level, that is a trivial program and so

it can be directly encoded in a QBF formula in CNF. However, well-founded optimization

can be further applied but this is a corner case in which the combination of well-founded

and guess check optimization results in larger programs. Once we compute the well-

founded of P2’ (with the interface from previous level) we are unable to derive new

knowledge, and all the rules of P2’ are kept. On the other hand, if we only apply the

the well-founded simplification to P2 (with the interface from previous level) we derive

b(1),b(2),c(1),c(2), and we are able to simplify all the rules.


