Supplementary material: An efficient solver for $A S P(Q)$ *

WOLFGANG FABER ${ }^{1}$
GIUSEPPE MAZZOTTA ${ }^{2}$
FRANCESCO RICCA ${ }^{2}$
${ }^{1}$ Alpen-Adria Universität Klagenfurt, Austria
${ }^{2}$ University of Calabria, Rende, Italy

submitted $x x$ xx xxxx; revised $x x$ xx xxxx; accepted $x x x x$ xxxx

1 Additional experimental data

This section reports some more data on the Experiments described in Section ??, reported here to provide a more detailed view on our results for the reviewers.

Table 1 shows the PAR2 score for all the compared systems. Recall that the PAR-2 score of a solver is defined as the sum of all execution times for solved instances and 2 times the timeout for unsolved ones. The lower the score, the better the performance.

Table 2 shows the average memory usage for all the compared systems. Memory usage (measured in MB) is aggregated for instances solved within the time limit (Complete), instances that exceeded the time limit (Timeout) and over all the instances (Total). The lower the memory usage, the better the performance.

Table 3 shows, for each system variant, the number of solved instances, timeouts and memory out for each benchmark and also the total number of solved instances overall.

Table 4 reports the comparison with QASP and ST-UNST implementation (respectively 4a 4b). We considered the best variants of PYQASP against the other systems, QASP with supported back-end solvers and ST-UnSt. For each of them, the number of solved instances for each benchmark and the overall number of solved instances is reported.

2 Implementation Details

This section reports a more detailed description of the process used by PYQASP to evaluate an $\operatorname{ASP}(\mathrm{Q})$ program.

2.1 Base solver

PyQASP has been entirely developed in Python and it is made by different modules that we will describe in this section. The evaluation of an $\operatorname{ASP}(\mathrm{Q})$ program is, basically, done

[^0]| Solver | Par | Arg. Cohe. | Minmax Cli. | QBF |
| :---: | :---: | :---: | :---: | :---: |
| QASP ${ }^{\text {DEPS }}$ | 771,235.84 | 321,279.33 | 36,427.46 | 546,292.46 |
| PYQASP ${ }^{\text {DEPS }}$ | 645,221.78 | 348,019.17 | 43,217.22 | 654,649.81 |
| PYQASP ${ }_{\text {WF }}^{\text {WEPS }}$ | 589,804.20 | 299,694.65 | 21,414.65 | 619,824.33 |
| PYQASP ${ }_{W F+G C}^{\text {DEPS }}$ | 588,632.92 | 314,896.34 | 1,322.85 | 513,758.82 |
| QASP ${ }^{\text {QBS }}$ | 822,400.00 | 369,190.24 | 553.76 | 768,291.40 |
| PYQASP ${ }^{\text {QBS }}$ | 822,400.00 | 382,814.62 | 587.20 | 795,651.07 |
| | $822,400.00$ | $362,715.16$ | 458.76 | $749,836.74$ |
| $\operatorname{PYQASP}_{W F+G C}^{Q F S}$ | $822,400.00$ | 481,788.14 | 524.75 | 749,905.75 |
| | 190,769.32 | 231,845.74 | 38,109.56 | 1,054,759.98 |
| PYQASP ${ }^{R Q S}$ | 239,202.25 | 261,084.28 | 41,908.61 | 1,091,812.72 |
| PYQASP ${ }_{W F}^{R Q S}$ | 180,695.99 | 218,876.82 | 36,427.19 | 1,067,281.23 |
| PYQASP ${ }_{W F+G C}^{R Q S}$ | 180,692.43 | 499,799.74 | 8,876.10 | 1,059,731.92 |

Table 1: PAR-2 score in seconds for each system variants on: (i) Paracoherent ASP (Par. Comp, Par. Rand.); (ii) Argumentation Coherence (Arg. Cohe.); (iii) Minmax Clique (Minmax Cli.); (iv) Quantified Boolean Formula (QBF)

Solver	Complete	Timeout	Total
QASP $^{D E P S}$	359.06	1281.35	856.37
PYQASP $^{D E P S}$	108.41	657.65	394.71
PYQASP $_{W F}^{D E P}$	168.15	607.33	$\mathbf{3 7 4 . 9 7}$
PYQASP $_{W F+G C}^{D E P}$	170.56	789.57	445.17
QASP $^{Q B S}$			
$\operatorname{PYQASP}^{Q B S}$	553.15	1892.40	1701.98
PYQASP $_{W F}^{Q B S}$	272.02	1022.99	$\mathbf{8 7 4 . 0 3}$
PYQASP $_{W F+G C}^{Q B S}$	343.78	1304.27	1014.53
QASP $^{R Q S}$	379.94	1409.87	1077.01
PYQASP $^{R Q S}$	356.44	701.44	847.78
PYQASP $_{W F}^{R Q S}$	103.73	634.67	398.42
PYQASP $_{W F+G C}^{R Q S}$	152.70	632.06	$\mathbf{3 8 0 . 0 0}$

Table 2: Average memory consumption in megabyte for each system variant
in two steps that are encoding and solving. In the encoding phase an ASP(Q) program is parsed, identifying ASP programs enclosed under the quantifiers' scope. Then, each ASP subprogram P_{i} passes through the following pipeline:

1. Rewriting Module. This modules is designed to compute syntactical properties of P_{i}, in order to check whether it is a Guess\&Check or trivial subprogram and sub-
sequently apply the appropriate rewriting techniques described in this paper. First of all, P_{i} is rewritten, taking into account a previous Guess\&Check subprogram P_{j} with $j<i$, if any exists. Then, if the resulting program is trivial, this module returns atoms defined at the current level with an empty program. Otherwise, if it is a Guess\&Check program and it is universally quantified then P_{i} is split into $G_{P_{i}}$ and $C_{P_{i}}$. Moreover, the module computes the result of the transformation τ, introducing a fresh propositional atom u_{i}, that will be used for rewriting the following levels. As a result, it returns the atoms defined in the guess split of the current subprogram with an empty program. In all the other cases this module returns the current program together with symbols defined at the current level.
2. Well-founded Module. This module computes the well-founded model together with the residual program by means of DLV2 as a back-end system and stores the truth values of literals belonging to the well-founded model.
3. CNF Encoder Module. This module takes as input the residual program produced by the well-founded module and encodes it into a CNF formula. In particular, if the residual program is incoherent then it is encoded as the empty clause that is equivalent to \perp and then it breaks the pipeline. Otherwise, if the residual program is empty it is encoded as an empty CNF. In all the other cases the residual program is encoded into a CNF by means of ASPTOOLS.
4. QBF Builder. This module produces the final QBF formula by associating the symbols produced by Rewriting Module with the respective quantifiers and joining the CNFs produced by the previous module in the final conjunction.

The last step of the encoding phase is combining previous CNFs into the formula ϕ_{c}. As a result, a QBF formula in QCIR format is obtained. The solving step is mainly performed by the solver module, which is a wrapper module for the various QBF solvers. In order to use a solver, the first step in the wrapper is to convert the QCIR formula into an equivalent formula in the solver's input format. Then, the external QBF solver

Table 3: Comparison of system variants on Paracoherent ASP (PAR), Argumentation Coherence (AC), Minmax Clique (MMC), QBF and overall (TOTAL).

Solver	PAR			AC			MMC			QBF			$\frac{\text { TOTAL }}{\# \text { SO }}$
	\#SO	\#MO	\# TO										
QASP ${ }^{\text {DEPS }}$	37	0	477	133	0	193	25	0	20	682	1	309	877
PYQASP ${ }^{\text {DEPS }}$	157	0	357	117	0	209	20	0	25	626	1	365	920
$\text { PYQASP }_{W F}^{D E P S}$	189	0	325	148	0	178	35	0	10	648	1	343	869
$\text { PYQASP }{ }_{W F+G C}^{D E P S}$	189	0	325	130	0	196	45	0	0	699	1	292	918
QASP ${ }^{\text {QBS }}$	0	6	508	102	26	198	45	0	0	530	20	442	677
PYQASP ${ }^{\text {QBS }}$	0	0	514	96	0	230	45	0	0	518	19	455	659
$\operatorname{PYQASP}_{W F_{c}}^{Q B S}$	0	0	514	107	0	219	45	0	0	546	19	427	698
$\operatorname{PYQASP}_{W F+G C}^{Q B S}$	0	0	514	26	0	300	45	0	0	547	13	432	618
QASP ${ }^{R Q S}$	442	0	72	197	0	129	23	0	22	350	1	641	1012
PYQASP ${ }^{R Q S}$	442	0	72	176	0	150	22	0	23	331	1	660	971
$\operatorname{PYQASP}_{W F_{S}}^{R Q S}$	442	0	72	205	0	121	24	0	21	345	1	646	1016
$\operatorname{PYQASP}_{W F+G C}^{R Q S}$	442	0	72	14	0	312	42	0	3	351	1	640	849
PYQASP ${ }^{\text {Auto }}$	442	0	72	222	0	104	44	0	1	718	7	267	1426

is executed on the converted formula and the final outcome is computed. In the current implementation we provide the following solver wrappers:

- QuabsWapper. It uses the QBF solver quabs and doesn't require any format conversion since the solver directly accepts QCIR formulas.
- RareqsWrapper This wrapper uses the QBF solver rareqs whose input format is gq. The conversion from QCIR to $g p$ is implemented by the external module qcir-conv provided by (ref to qcir-conv).
- DepqbfWrapper It uses the QBF solver depqbf equipped with the QBF pre-processor bloqqer. This solver takes as input formulas in QDIMACS format and so, translation to CNF is required. In particular, if all universally quantified subprograms were Guess\&Check then we know that the produced formula is, indeed, in CNF. So a direct mapping into QDIMACS format exists, just reporting quantifiers and clauses of intermediate CNFs. Otherwise, the external module qcir-conv combined with fmla is used in order to translate the input formula into an equivalent QDIMACS one. Note that this translation could introduce extra symbols and clauses leading to a bigger formula.

2.2 Automatic selection of the back-end

The automatic back-end selection has been realized by exploiting machine learning models that have been trained on dataset reporting syntactical properties of benchmarks proposed for $\operatorname{ASP}(\mathrm{Q})$. For this task we extended our system by adding a module (ASPSTATS) that analyzes ground programs during encoding phase and then, a Random Forest Classifier is used to predict the back-end solver to be used. In order to train the employed model we considered a dataset containing instances from all our benchmarks: Argumentation Coherence, Paracoherent ASP, Minmax Clique, Point of No Return, QBF and 2QBF. In particular, for each instance the features reported in Table 5 have been computed by using aspstats module. As required by the ME-ASP methodology, training set has been constructed by considering only those instances that have been solved exactly by one back-end solver that indeed is the target label, and considered the best oracles available

Table 4: Comparison with QASP and ST-UNST: Solved instances.

Solver	PAR	AC	MMC	QBF	TOTAL
QASP $^{D E P S}$ PYQASP $_{W F+G C}^{D E P S}$ 37 139 130 $\mathbf{4 5}$ 699	1063				
QASP $^{Q B S}$	0	102	$\mathbf{4 5}$	530	677
PYQASP $_{W F}^{Q B S}$	0	107	$\mathbf{4 5}$	546	698
QASP $^{R Q S}$	$\mathbf{4 4 2}$	197	23	350	1012
PYQASP $_{W F}^{R Q S}$	$\mathbf{4 4 2}$	205	24	345	1016
PYQASP $^{\text {Auto }}$	$\mathbf{4 4 2}$	$\mathbf{2 2 2}$	44	$\mathbf{7 1 8}$	$\mathbf{1 4 2 6}$

(a) Comparison with QASP.

Solver	PAR	PONR	2-QBF	TOTAL
ST-UNST	60	30	1416	1506
PYQASP $_{W F+G C}^{D E P S}$	189	0	$\mathbf{2 0 4 8}$	2237
PYQASP $_{W F}^{Q B S}$	0	63	346	409
PYQASP $_{W F}^{R Q S}$	$\mathbf{4 4 2}$	$\mathbf{9 4}$	0	536
PYQASP $^{\text {Auto }}$	$\mathbf{4 4 2}$	88	$\mathbf{2 0 4 8}$	$\underline{\mathbf{2 5 7 8}}$

(b) Comparison with ST-UNST.

R	Rule count
A	Number of atoms
(R / A)	Ratio between rules count and atoms count
$(R / A)^{2}$	Squared ratio between rules count and atoms count
$(R / A)^{3}$	Cube ratio between rules count and atoms count
(A / R)	Ratio between atoms count and rules count
$(A / R)^{2}$	Squared ratio between atoms count and rules count
$(A / R)^{3}$	Cube ratio between atoms count and rules count
$R 1$	Rule with body of length 1
$R 2$	Rule with body of length 2
$R 3$	Rule with body of length 3
$P R$	Positive rule count
F	Normal facts count
$D F$	Disjunctive facts count
$N R$	Normal rule count
$N C$	Constraint count
$V F$	Universal atoms count
$V E$	Existantial atoms count
$Q F$	Universial levels count
$Q E$	Existantial levels count
$Q L$	Quantification levels count

Table 5: ASPSTATS features
as labels for multinomial classification. Regarding training phase we used a Random Forest Classifier made of 100 trees that have been trained by using Gini impurity criterion and bootstrap sampling technique.

3 Examples encoding of qasp program into qbf formula

Consider a $\operatorname{ASP}(\mathrm{Q})$ program Π of the form: $\exists P_{1} \forall P_{2}: C$, where

$$
\begin{array}{lll}
P_{1} & P_{2} & C \\
\{a ; b\} \leftarrow & c \leftarrow \text { not } a, \text { not } b & \leftarrow e, c \\
\leftarrow a, \text { not } b & d \leftarrow a, b & \leftarrow e, d \\
& \{e\} \leftarrow &
\end{array}
$$

The first step of the encoding produces the following programs by adding interface from previous levels:

$$
\begin{array}{lll}
G_{1} & G_{2} & G_{3} \\
\{a ; b\} \leftarrow & c \leftarrow \text { not } a, \text { not } b & \leftarrow e, c \\
\leftarrow a, \text { not } b & d \leftarrow a, b & \leftarrow e, d \\
& \{e\} \leftarrow & \{a ; b ; c ; d ; e\} \leftarrow \\
& \{a ; b\} \leftarrow &
\end{array}
$$

The resulting CNF encodings are the following:

$$
\begin{array}{ll}
C N F\left(G_{1}\right): & \left(b \vee a u x_{1}\right) \wedge(-b \vee-a u x 1) \wedge(a \vee a u x 2) \wedge(-a \vee-a u x 2) \wedge(-a \vee b) \\
C N F\left(G_{2}\right): & \left(a \vee a u x_{3}\right) \wedge\left(-a \vee-a u x_{3}\right) \wedge\left(b \vee a u x_{4}\right) \wedge\left(-b \vee-a u x_{4}\right) \wedge \\
& (d \vee-b \vee-a) \wedge(-d \vee b) \wedge(-d \vee a) \wedge \\
& (c \vee a \vee b) \wedge(-c \vee-b) \wedge(-c \vee-a) \wedge \\
& \left(e \vee a u x_{5}\right) \wedge\left(-e \vee-a u x_{5}\right) \\
C N F\left(G_{3}\right): & \left(a \vee a u x_{6}\right) \wedge\left(-a \vee-a u x_{6}\right) \wedge\left(b \vee a u x_{7}\right) \wedge\left(-b \vee-a u x_{7}\right) \wedge \\
& \left(c \vee a u x_{8}\right) \wedge\left(-c \vee-a u x_{8}\right) \wedge\left(d \vee a u x_{9}\right) \wedge\left(-d \vee-a u x_{9}\right) \wedge \\
& \left(e \vee a u x_{10}\right) \wedge\left(-e \vee-a u x_{10}\right) \wedge \\
& (-e \vee-d) \wedge(-e \vee-c)
\end{array}
$$

where $a u x_{i}$ are hidden atoms are fresh propositional variables introduced by translation The final qbf formula $\Phi(\Pi)$:

$$
\begin{aligned}
& \exists a, b, a u x_{1}, a u x_{2} \\
& \forall c, d, e, a u x_{3}, a u x_{4}, a u x_{5} \\
& \exists a^{2} x_{6}, a u x_{7}, a u x_{8}, a u x_{9}, a u x_{10} \\
& \left(\left(\phi_{1} \leftrightarrow C N F\left(G_{1}\right)\right) \wedge\left(\phi_{2} \leftrightarrow C N F\left(G_{2}\right)\right) \wedge\left(\phi_{3} \leftrightarrow C N F\left(G_{3}\right)\right)\right) \wedge \\
& \left(\phi_{1} \wedge\left(\phi_{2} \vee \phi_{3}\right)\right)
\end{aligned}
$$

4 Example of Guess\&Check rewriting procedure

Consider a $\operatorname{ASP}(\mathrm{Q})$ program Π of the form: $\forall P_{1} \exists P_{2}: C$, where C is empty and

$$
\begin{array}{ll}
P_{1} & P_{2} \\
\{a(1) ; a(2)\} \leftarrow & b(1) \leftarrow \\
\leftarrow a(1), a(2) & b(2) \leftarrow \\
& c(1) \leftarrow b(1) \\
& c(2) \leftarrow b(2)
\end{array}
$$

Program P_{1} is a guess\&check program and so Π it can be rewritten as $\forall P_{1}^{\prime} \exists P_{2}^{\prime}: C^{\prime}$:

$$
\begin{array}{lll}
P_{1}^{\prime} & P_{2}^{\prime} & C^{\prime}=\emptyset \\
\{a(1) ; a(2)\} \leftarrow & b(1) \leftarrow \text { unsat } & \\
& b(2) \leftarrow \text { unsat } & \\
& c(1) \leftarrow b(1), \text { unsat } & \\
& c(2) \leftarrow b(2), \text { unsat } & \\
& \text { unsat } \leftarrow a(1), \text { a }(2) &
\end{array}
$$

The resulting program contains only one universal level, that is a trivial program and so it can be directly encoded in a QBF formula in CNF. However, well-founded optimization can be further applied but this is a corner case in which the combination of well-founded and guess check optimization results in larger programs. Once we compute the wellfounded of P2' (with the interface from previous level) we are unable to derive new knowledge, and all the rules of P2' are kept. On the other hand, if we only apply the the well-founded simplification to P2 (with the interface from previous level) we derive $\mathrm{b}(1), \mathrm{b}(2), \mathrm{c}(1), \mathrm{c}(2)$, and we are able to simplify all the rules.

[^0]: * This work was partially supported by MUR under PRIN project PINPOINT Prot. 2020FNEB27, CUP H23C22000280006, and PNRR project PE0000013-FAIR, Spoke 9 - Green-aware AI - WP9.1.

