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Appendix A Proofs

We use the following reduct-based characterization of strong equivalence (Turner 2003).

Lemma 41. Sets H1 and H2 of infinitary formulas are strongly equivalent iff HI1 and

HI2 are classically equivalent for all two-valued interpretations I.

Proof. Let I and J be two-valued interpretations, and H be an infinitary formula. Clearly,

I |= HJ iff I ∩ J |= HJ . Thus, we only need to consider interpretations such that I ⊆ J .

By Lemma 1 due to Harrison et al. (2017), we have that I |= HJ iff (I, J) is an HT-model

of H. The proposition holds because by Theorem 3 Item (iii) due to Harrison et al. (2017),

we have that H1 and H2 are strongly equivalent iff they have the same HT models.

Proof of Proposition 2. Let F = {B(r)→ H(r) | r ∈ P}∧.

First, we consider the case I |= F . By Lemma 1 due to Truszczyński (2012), this implies

that P I and F I are classically equivalent and thus have the same minimal models.10

Thus, I is a stable model of P iff I is a stable model of F .

Second, we consider the case I 6|= F and show that I is neither a stable model of F nor

P . Proposition 1 by Truszczyński (2012) states that I is a model of F iff I is a model of

F I . Thus, I is not a stable model of F . Furthermore, because I 6|= F , there is a rule r ∈ P
such that I 6|= B(r)→ H(r). Consequently, we have I |= B(r) and I 6|= H(r). Using the

above proposition again, we get I |= B(r)I . Because I |= B(r)I and I 6|= H(r), we get

I 6|= rI and in turn I 6|= P I . Thus, I is not a stable model of P either.

Lemma 42. Let F be a formula, and I and J be interpretations.

If F is positive and I ⊆ J , then I |= F implies J |= F .

Proof. This property can be shown by induction over the rank of the formula.

The following two propositions shed some light on the two types of reducts.

Lemma 43. Let F be a formula, and I and J be interpretations.

Then,

(a) if F is positive then F I is positive,

(b) I |= F iff I |= F I ,

(c) if F is strictly positive and I ⊆ J then I |= F iff I |= F J .

Proof.

Property (a). Because the reduct only replaces subformulas by ⊥, the resulting formula is

still positive.

Property (b). Corresponds to Proposition 1 by Truszczyński (2012).

Property (c). This property can be shown by induction over the rank of the formula.

Lemma 44. Let F be a formula, and I, J , and X be interpretations.

Then,

(a) FI is positive,

10 To be precise, Lemma 1 by Truszczyński (2012) is stated for a set of formulas, which can be understood
as an infinitary conjunction.
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(b) I |= F iff I |= FI ,
(c) if F is positive then F = FI , and
(d) if I ⊆ J then X |= FJ implies X |= FI .

Proof.

Property (a). Because the id-reduct replaces all negative occurrences of atoms, the resulting

formula is positive.

Property (b). This property holds because when the reduct replaces an atom a, it is

replaced by either > or ⊥ depending on whether I |= a or I 6|= a. This does not change

the satisfaction of the subformula w.r.t. I.

Property (c). Because a positive formula does not contain negative occurrences of atoms,

it is not changed by the id-reduct.

Property (d). We prove by induction over the rank of formula F that

X |= FJ implies X |= FI and (A1)

X |= FI implies X |= FJ . (A2)

Base. We consider the case that F is a formula of rank 0.

F is a formula of rank 0 implies F is an atom.

First, we show (A1). We assume X |= FJ :

F is an atom implies FI = FJ = F.

FI = FJ and X |= FJ implies X |= FI .

Second, we show (A2). We assume X |= FI :

F is an atom and X |= FI implies FI = >.
FI = > implies F ∈ I.

F ∈ I and I ⊆ J implies F ∈ J.
F is an atom and F ∈ J implies FJ = >.

FJ = > implies X |= FJ .

Hypothesis. We assume that (A1) and (A2) hold for formulas F of ranks smaller than i.

Step. We only show (A1) because (A2) can be shown in a similar way. We consider

formulas F of rank i.

First, we consider the case that F is a conjunction of form H∧.

X |= H∧J implies X |= GJ for all G ∈ H.
X |= GJ implies X |= GI by hypothesis.

X |= GI implies X |= H∧I .

The case for disjunctions can be proven in a similar way.

Last, we consider the case that F is an implication of form G→ H. Observe that

FI = GI → HI and

FJ = GJ → HJ .
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First, we consider the case X 6|= GJ :

X 6|= GJ implies X 6|= GI by hypothesis.

X 6|= GI implies X |= FI .

Second, we consider the case X |= HJ :

X |= HJ implies X |= HI by hypothesis.

X |= HI implies X |= FI .

Proof of Lemma 6. This lemma follows from Proposition 14 by Denecker et al. (2000) ob-

serving that the well-founded operator is a monotone symmetric operator. The proposition

is actually a bit more general stating that the operator maps any consistent four-valued

interpretation to a consistent four-valued interpretation.

Lemma 45. Let O and O′ be monotone operators over complete lattice (L,≤) with

O′(x) ≤ O(x) for each x ∈ L.

Then, we get x′ ≤ x where x′ and x are the least fixed points of O′ and O, respectively.

Proof. Let y be a prefixed point of O. We have O(y) ≤ y. Because O′(y) ≤ O(y), we get

O′(y) ≤ y. So each prefixed point of O is also a prefixed point of O′.

Let S′ and S be the set of all prefixed points of O′ and O, respectively. We obtain

S ⊆ S′. By Theorem 1 (a), we get that x′ is the greatest lower bound of S′. Observe that

x′ is a lower bound for S. By construction of S, we have x ∈ S. Hence, we get x′ ≤ x.

Lemma 46. Let P and P ′ be F-programs and I be an interpretation.

Then, P ′ ⊆ P implies SP ′(I) ⊆ SP (I).

Proof. This lemma is a direct consequence of Lemma 45 observing that the one-step

provability operator derives fewer consequences for P ′.

Lemma 47. Let P be an R-program, I be a two-valued interpretation, and J = SP (I).

Then, X is a stable model of P , I ⊆ X, and I ⊆ J implies X ⊆ J .

Proof. Because X is a stable model of P , it is the only minimal model of PX . Furthermore,

we have that J is a model of PI . To show that X ⊆ J , we show that J is also a model of

PX . For this, it is enough to show that for each rule r ∈ P we have J 6|= B(r)I implies

J 6|= B(r)X . We prove inductively over the rank of the formula F = B(r) that J 6|= FI
implies J 6|= FX .

Base. We consider the case that F is a formula of rank 0.

If X 6|= F , we get J 6|= FX because FX = ⊥. Thus, we only have to consider the case

X |= F :

F is a formula of rank 0 implies F is an atom.

F is an atom implies FI = F .

X |= F and F is an atom implies FX = F.

FI = F and FX = F implies FI = FX .

J 6|= FI and FI = FX implies J 6|= FX .
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Hypothesis. We assume that J 6|= FI implies J 6|= FX holds for formulas F of ranks

smaller than i.

Step. We consider the case that F is a formula of rank i.

As in the base case, we only have to consider the case X |= F . Furthermore, we have

to distinguish the cases that F is a conjunction, disjunction, or implication.

We first consider the case that F is a conjunction of form F∧:

X |= F implies FX = {GX | G ∈ F}∧.
J 6|= FI and FI = {GI | G ∈ F}∧ implies J 6|= GI for some G ∈ F .

G ∈ F and F has rank i implies G has rank less than i.

J 6|= GI and G has rank less than i implies J 6|= GX by hypothesis.

J 6|= GX and FX = {GX | G ∈ F}∧ implies J 6|= FX .

The case that F is a disjunction can be shown in a similar way to the case that F is a

conjunction.

Last, we consider the case that F is an implication of form G→ H. Observe that G is

positive because F has no occurrences of implications in its antecedent and, furthermore,

given that F is a formula of rank i, H is a formula of rank less than i.

We show I |= G:

J 6|= FI and FI = GI → HI implies J |= GI

J |= GI and G is positive implies I |= G because GI ≡ >.

We show J |= GX :

G is positive, I ⊆ X, and I |= G implies X |= G by Lemma 42.

X |= F , X |= G, and F = G→ H implies X |= H.

G is positive, I ⊆ X, and I |= G implies I |= GX by Lemma 43 (c).

G is positive implies GX is positive by Lemma 43 (a).

GX is positive, I ⊆ J , and I |= GX implies J |= GX by Lemma 42.

We show J 6|= HX :

I |= G and FI = GI → HI implies FI ≡ HI because GI ≡ >.
FI ≡ HI and J 6|= FI implies J 6|= HI .

J 6|= HI and H has rank less than i implies J 6|= HX by hypothesis.

Because X |= F , we have FX = GX → HX . Using J |= GX and J 6|= HX , we get

J 6|= FX .

Proof of Theorem 7. Let X be a stable model of P .

We prove by transfinite induction over the sequence of postfixed points leading to the
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well-founded model:

(I0, J0) = (∅,Σ),

(Iα+1, Jα+1) = WP (Iα, Jα) for ordinals α, and

(Iβ , Jβ) = (
⋃
α<β

Iα,
⋂
α<β

Jα) for limit ordinals β.

We have that α < β implies (Iα, Jα) ≤p (Iβ , Jβ) for ordinals α and β, Iα ⊆ Jα for ordinals

α, and there is a least ordinal α such that (I, J) = (Iα, Jα).

Base. We have I0 ⊆ X ⊆ J0.

Hypothesis. We assume Iβ ⊆ X ⊆ Jβ for all ordinals β < α.

Step. If α = β + 1 is a successor ordinal we have

(Iα, Jα) = WP (Iβ , Jβ)

= (SP (Jβ), SP (Iβ)).

By the induction hypothesis we have Iβ ⊆ X ⊆ Jβ .

First, we show Iα ⊆ X:

X is a (stable) model implies SP (X) ⊆ X.
X ⊆ Jβ implies SP (Jβ) ⊆ SP (X).

SP (X) ⊆ X and SP (Jβ) ⊆ SP (X) implies SP (Jβ) ⊆ X.
Iα = SP (Jβ) and SP (Jβ) ⊆ X implies Iα ⊆ X.

Second, we show X ⊆ Jα:

β < α implies (Iβ , Jβ) ≤p (Iα, Jα)

(Iβ , Jβ) ≤p (Iα, Jα) and Iα ⊆ Jα implies Iβ ⊆ Jα
X is a stable model, Iβ ⊆ X,

Jα = SP (Iβ), and Iβ ⊆ Jα implies X ⊆ Jα by Lemma 47.

We have shown Iα ⊆ X ⊆ Jα for successor ordinals.

If α is a limit ordinal we have

(Iα, Jα) = (
⋃
β<α

Iβ ,
⋂
β<α

Jβ).

Let x ∈ Iα. There must be an ordinal β < α such that x ∈ Iβ . Since Iβ ⊆ X by the

hypothesis, we have x ∈ X. Thus, Iα ⊆ X.

Let x ∈ X. For each ordinal β < α we have x ∈ Jβ because X ⊆ Jβ by the hypothesis.

Thus, we get x ∈ Jα. It follows that X ⊆ Jα.

We have shown Iα ⊆ X ⊆ Jα for limit ordinals.

Lemma 48. Let P be an F-program and (I, J) be a four-valued interpretation.

Then, we have H(P I,J) = TPI (J).

Proof. The program P I,J contains all rules r ∈ P such that J |= B(r)I . This are exactly

the rules whose heads are gathered by the T operator.
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Lemma 49. Let P be an F-program and (I, J) be the well-founded model of P .

Then, we have

(a) SP I,J (I ′) = J for all I ′ ⊆ I, and

(b) SP I,J (J ′) = SP (J ′) for all J ⊆ J ′.

Proof. Throughout the proof we use

SP (J) = I,

SP (I) = J,

P I,J ⊆ P , and

I ⊆ J because the well-founded model is consistent.

Property (a). We show J = SP I,J (I). Let Ĵ = SP I,J (I) and r ∈ P \ P I,J :

P I,J ⊆ P and

Ĵ = SP I,J (I) and

J = SP (I) implies Ĵ ⊆ J by Lemma 46.

r /∈ P I,J implies J 6|= B(r)I .

Ĵ ⊆ J and J 6|= B(r)I implies Ĵ 6|= B(r)I by Lemma 42.

Ĵ = SP I,J (I) and Ĵ 6|= B(r)I implies Ĵ |= PI .

Ĵ |= PI and J = SP (I) implies J ⊆ Ĵ .
J ⊆ Ĵ and Ĵ ⊆ J implies J = Ĵ .

Thus, we get that SP I,J (I) = J .

With this we can continue to prove SP I,J (I ′) = J . Let r ∈ P I,J :

r ∈ P I,J implies J |= B(r)I .

r ∈ P I,J and P I,J ⊆ P implies r ∈ P.
J |= B(r)I , r ∈ P, and SP (I) = J implies H(r) ∈ J.

J |= B(r)I and I ′ ⊆ I implies J |= B(r)I′ by Lemma 44 (d).

H(r) ∈ J and J |= B(r)I′ implies SP I,J (I ′) ⊆ J.
I ′ ⊆ I and J = SP I,J (I) implies J ⊆ SP I,J (I ′).

Thus, we get SP I,J (I ′) = J .

Property (b). Let I ′ = SP I,J (J ′) and r ∈ P \ P I,J :

r /∈ P I,J implies J 6|= B(r)I .

I ⊆ J , J ⊆ J ′, and J 6|= B(r)I implies J 6|= B(r)J′ . by Lemma 44 (d)..

I ′ ⊆ I, I ⊆ J , and J 6|= B(r)J′ implies I ′ 6|= B(r)J′ . by Lemma 42.

I ′ = SP I,J (J ′) and I ′ 6|= B(r)J′ implies SP (J ′) ⊆ SP I,J (J ′).

P I,J ⊆ P implies SP I,J (J ′) ⊆ SP (J ′) by Lemma 46.

Thus, we get SP I,J (J ′) = SP (J ′).
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Proof of Theorem 8. By Lemma 49, we have (I, J) = WP I,J (I, J). Furthermore, we let

(Î , Ĵ) = WM (P I,J):

(Î , Ĵ) = WM (P I,J) and (I, J) = WP I,J (I, J) implies (Î , Ĵ) ≤p (I, J).

by Theorem 1 (c).

Î ⊆ I implies SP I,J (Î) = SP I,J (I)

by Lemma 49 (a).

Ĵ = SP I,J (Î) = SP I,J (I) = J implies Ĵ = J.

Î = SP I,J (Ĵ), SP I,J (J) = I, and Ĵ = J implies Î = I.

We obtain (I, J) = (Î , Ĵ).

Proof of Theorem 9. We first show that all rule bodies removed by the simplification are

falsified by X. Let r ∈ P \ P I,J and assume X |= B(r):

X |= B(r) implies X |= B(r)X by Lemma 44 (b).

X |= B(r)X and I ⊆ X implies X |= B(r)I by Lemma 44 (d).

X |= B(r)I and X ⊆ J implies J |= B(r)I by Lemma 42.

This is a contradiction and, thus, X 6|= B(r). We use the following consequence in the

proof below:

X 6|= B(r) implies (P \ P I,J)
X ≡ ∅.

To show the theorem, we show that PX and (P I,J)
X

have the same minimal models.

Clearly, we have PX = (P I,J)
X ∪(P \ P I,J)

X
. Using this and (P \ P I,J)

X ≡ ∅, we obtain

that PX and (P I,J)
X

have the same minimal models.

Proof of Corollary 10. The result follows from Theorems 7 to 9.

Proof of Theorem 11. By Lemma 46, we have SP I,J (X) ⊆ SQ(X) ⊆ SP (X) for any

two-valued interpretation X. Thus, by Theorem 8, we get (I, J) = WQ(I, J).

Let (Î , Ĵ) be a prefixed point of WQ with (Î , Ĵ) ≤p (I, J). We have (SQ(Ĵ), SQ(Î)) ≤p
(Î , Ĵ) ≤p (I, J).

J ⊆ Ĵ implies SP I,J (Ĵ) = SQ(Ĵ) = SP (Ĵ)

by Lemma 49 (b).

SQ(Ĵ) = SP (Ĵ) and SQ(Ĵ) ⊆ Î implies SP (Ĵ) ⊆ Î .
Ĵ ⊆ SQ(Î) and SQ(Î) ⊆ SP (Î) implies Ĵ ⊆ SP (Î).

SP (Ĵ) ⊆ Î and Ĵ ⊆ SP (Î) implies WP (Î , Ĵ) ≤p (Î , Ĵ).

WP (Î , Ĵ) ≤p (Î , Ĵ) implies (I, J) ≤p (Î , Ĵ)

by Theorem 1 (a).

(I, J) ≤p (Î , Ĵ) and (Î , Ĵ) ≤p (I, J) implies (I, J) = (Î , Ĵ).

By Theorem 1 (a), we obtain that WM (Q) = (I, J).
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Proof of Corollary 12. Observe that P I,J = QI,J . With this, the corollary follows from

Corollary 10 and Theorem 11.

Alternatively, the incorporation of context atoms can also be seen as a form of partial

evaluation applied to the underlying program.

Definition 22. Let IC be a two-valued interpretation.

We define the partial evaluation of an F-formula w.r.t. IC as follows:

peIC (a) = > if a ∈ IC peIC (a) = a

peIC (a) = a if a /∈ IC

peIC (H∧) = {peIC (F ) | F ∈ H}∧ peIC (H∧) = {peIC (F ) | F ∈ H}∧

peIC (H∨) = {peIC (F ) | F ∈ H}∨ peIC (H∨) = {peIC (F ) | F ∈ H}∨

peIC (F → G) = peIC (F )→ peIC (G) peIC (F → G) = peIC (F )→ peIC (G)

where a is an atom, H a set of formulas, and F and G are formulas.

The partial evaluation of an F-program P w.r.t. a two-valued interpretation IC is

peIC (P ) = {peIC (r) | r ∈ P} where peIC (r) = H(h) ← peIC (B(r)). Accordingly, the

partial evaluation of rules boils down to replacing satisfied positive occurrences of atoms

in rule bodies by >.

We observe the following relationship between the relative one-step operators and

partial evaluations.

Observation 50. Let P be a positive F-program and IC be a two-valued interpretation.

Then, we have for any two-valued interpretation I that

T IC
P (I) = TpeIC (P )(I).

Note that peIC (P )J = peIC (PJ).

Proof of Proposition 13. Clearly, peIC (P ) is positive whenever P is positive. Using Ob-

servation 50, we obtain that T IC
P is monotone.

The second property directly follows from the monotonicity of the one-step provability

operator.

Lemma 51. Let P be an F-program and IC be a two-valued interpretation.

For any two-valued interpretation J , we get

SIC
P (J) = LM (peIC (P )J).

Proof. This lemma immediately follows from Observation 50.

Proof of Proposition 14. Both properties can be shown by inspecting the reduced pro-

grams.

Property J ′ ⊆ J implies SIC
P (J) ⊆ SIC

P (J ′). Observe that we can use Lemma 51 to

equivalently write SIC
P (J) = SpeIC (P )(J) and SIC

P (J ′) = SpeIC (P )(J
′). With this and

Proposition 4, we see that the relative stable operator is antimonotone just as the stable

operator.
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Property IC ′ ⊆ IC implies SIC ′

P (J) ⊆ SIC
P (J). Observe that SIC

P (J) is equal to the least

fixed point of T IC
PJ

and SIC ′

P (J) is equal to the least fixed point of T IC ′

PJ
. Furthermore,

observe that T IC ′

PJ
(X) ⊆ T IC

PJ
(X) for any two-valued interpretation X because IC ′ ⊆ IC

and the underlying T operator is monotone. With this and Lemma 45, we have shown

the property.

Observation 52. Let P be an F-program, and IC and J be two-valued interpretations.

We get the following properties:

(a) S∅P (J) = SP (J),

(b) SIC
P (J) ⊆ H(P ), and

(c) SIC
P (J) = S

IC∩B(P )+

P (J ∩B(P )
−

).

Proof of Proposition 15. Both properties can be shown by using the monotonicity of the

underlying relative stable operator:

Property (I ′, J ′) ≤p (I, J) implies W IC ,JC
P (I ′, J ′) ≤p W IC ,JC

P (I, J). Given that SIC
P is

antimonotone and J ′ ∪ JC ⊆ J ∪ JC , we have SIC
P (J ∪ JC ) ⊆ SIC

P (J ′ ∪ JC ). Analogously,

we can show SJC
P (I ′ ∪ IC ) ⊆ SJC

P (I ∪ IC ). We get (SIC
P (J ∪ JC ), SJC

P (I ∪ IC )) ≤p
(SIC
P (J ′ ∪ JC ), SJC

P (I ′ ∪ IC )).

Hence, W IC ,JC
P is monotone.

Property (IC ′, JC ′) ≤p (IC , JC ) implies W IC ′,JC ′

P (I, J) ≤p W IC ,JC
P (I, J). We have to

show (SIC ′

P (J ∪ JC ′), SJC ′

P (I ∪ IC ′)) ≤p (SIC
P (J ∪ JC ), SJC

P (I ∪ IC )).

Given that IC ′ ⊆ IC and J ∪ JC ⊆ J ∪ JC ′, we obtain SIC ′

P (J ∪ JC ′) ⊆ SIC
P (J ∪ JC )

using Proposition 14. The same argument can be used for the possible atoms of the

four-valued interpretations. Given that JC ⊆ JC ′ and I ∪ IC ′ ⊆ I ∪ IC , we obtain

SJC
P (I ∪ IC ) ⊆ SJC ′

P (I ∪ IC ′) using Proposition 14.

Hence, we have shown W IC ′,JC ′

P (I, J) ≤p W IC ,JC
P (I, J).

Observation 53. Let P be an F-program, and I, I ′ and IC be two-valued interpretations.

We get the following properties:

(a) I |= P and IC ⊆ I implies I |= peIC (P ),

(b) I |= peIC (P ) and I ′ ∩B(P )+ ⊆ IC implies I ∪ I ′ |= peIC (P ), and

(c) I |= peIC (P ) implies I |= P .

Lemma 54. Let PB and PT be F-programs, IC and J be two-valued interpretations,

I = SIC
PB∪PT (J), IE = I ∩ (B(PB)

+ ∩H(PT )), IB = SIC∪IE
PB (J), and IT = SIC∪IB

PT (J).

Then, we have I = IB ∪ IT .

Proof. Let Ĩ = IB ∪ IT . Furthermore, we use the following programs:

P̂B = peIC (PBJ) P̃B = peIC∪IE (PBJ) = peIE (P̂B)

P̂T = peIC (PT J) P̃T = peIC∪IB (PT J) = peIB (P̂T )

Observe that

I = SIC
PB∪PT (J) = LM (P̂B ∪ P̂T ),

IB = SIC∪IE
PB (J) = LM (P̃B), and

IT = SIC∪IB
PT (J) = LM (P̃T ).
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To show that Ĩ ⊆ I, we show that I is a model of both P̃B and P̃T . To show that I ⊆ Ĩ,

we show that Ĩ is a model of both P̂B and P̂T .

Property I |= P̃B.

I = LM (P̂B ∪ P̂T ) implies I |= P̂B .

I |= P̂B and IE ⊆ I implies I |= P̃B

by Observation 53 (a).

Property I |= P̃T .

I = LM (P̂B ∪ P̂T ) implies I |= P̂T .

I |= P̃B and IB = LM (P̃B) implies IB ⊆ I.
I |= P̂T and IB ⊆ I implies I |= P̃T .

by Observation 53 (a).

Property Ĩ |= P̂B. Let E = B(PB)
+ ∩H(PT ):

Ĩ ⊆ I and IE = I ∩ E implies IT ∩ E ⊆ IE .

IT = LM (P̃T ) implies IT ⊆ H(P̃T ).

IT ∩ E ⊆ IE and IT ⊆ H(P̃T ) implies IT ∩B(PB)
+ ⊆ IE .

IT ∩B(PB)
+ ⊆ IE implies IT ∩B(P̂B)

+ ⊆ IE .

IT ∩B(P̂B)
+ ⊆ IE and IB = LM (P̃B) implies Ĩ |= P̃B

by Observation 53 (b).

Ĩ |= P̃B implies Ĩ |= P̂B

by Observation 53 (c).

Property Ĩ |= P̂T .

IT = LM (P̃T ) implies Ĩ |= P̃T

by Observation 53 (b).

Ĩ |= P̃T implies Ĩ |= P̂T

by Observation 53 (c).

Proof of Theorem 16. Let P = PB ∪ PT and E = B(PB)
± ∩ H(PT ). We begin by

evaluating P , PB and PT w.r.t. (I, J) and obtain

(I, J) = W IC ,JC
P (I, J)

= (SIC
P (JC ∪ J), SJC

P (IC ∪ I)),

(ÎB , ĴB) = W
(IC ,JC )t(IE ,JE)
PB (I, J)

= (SIC∪IE
PB (JC ∪ JE ∪ J), SJC∪JE

PB (IC ∪ IE ∪ I)), and

(ÎT , ĴT ) = W
(IC ,JC )t(ÎB,ĴB)
PT (I, J)

= (SIC∪ÎB
PT (JC ∪ ĴB ∪ J), SJC∪ĴB

PT (IC ∪ ÎB ∪ I)).
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Using (IE , JE ) v (I, J), we get

(ÎB , ĴB) = (SIC∪IE
PB (JC ∪ J), SJC∪JE

PB (IC ∪ I)).

By Lemma 54 and Observation 52 (c), we get

(ÎB , ĴB) v (I, J),

(ÎT , ĴT ) = (SIC∪IE
PT (JC ∪ J), SJC∪JE

PT (IC ∪ I)), and

(I, J) = (ÎB , ĴB) t (ÎT , ĴT ).

We first show (IB , JB) = (ÎB , ĴB) and then (IT , JT ) = (ÎT , ĴT ).

Property (IB , JB) ≤p (ÎB , ĴB).

(ÎB , ĴB) v (I, J) and

(IE , JE ) = (I, J) u E implies (ÎB , ĴB) t (IE , JE ) v (I, J).

(I, J) = (ÎB , ĴB) t (ÎT , ĴT ) implies (ÎT , ĴT ) v (I, J).

(ÎT , ĴT ) v H(PT ) implies (ÎT , ĴT ) uB(PB)
± v (ÎT , ĴT ) u E.

(ÎT , ĴT ) uB(PB)
± v (ÎT , ĴT ) u E and

(ÎT , ĴT ) v (I, J) implies (ÎT , ĴT ) uB(PB)
± v (IE , JE ).

(ÎT , ĴT ) uB(PB)
± v (IE , JE ) and

(I, J) = (ÎB , ĴB) t (ÎT , ĴT ) implies (I, J) uB(PB)
± v (ÎB , ĴB) t (IE , JE ).

With the above, we use Observation 52 (c) to show that (ÎB , ĴB) is a fixed point of

W
(IC ,JC )t(JC ,JE)
PB :

(ÎB , ĴB) = W
(IC ,JC )t(IE ,JE)
PB (I, J)

= W
(IC ,JC )t(IE ,JE)
PB ((I, J) uB(PB)

±
)

= W
(IC ,JC )t(IE ,JE)
PB ((ÎB , ĴB) t (IE , JE ))

= W
(IC ,JC )t(IE ,JE)
PB (ÎB , ĴB)

Thus, by Theorem 1 (c), (IB , JB) ≤p (ÎB , ĴB).

Property (IB , JB) = (ÎB , ĴB). To show the property, let

(Ĩ , J̃) = (IB , JB) t (IE , JE ) t (ÎT , ĴT ),

(ĨE , J̃E ) = W IC ,JC
P (Ĩ , J̃) u E,

(ĨB , J̃B) = (SIC∪ĨE
PB (JC ∪ J̃), SJC∪J̃E

PB (IC ∪ Ĩ)),

(ĨT , J̃T ) = (SIC∪ĨB
PT (JC ∪ J̃), SJC∪J̃B

PT (IC ∪ Ĩ)), and

W IC ,JC
P (Ĩ , J̃) = (ĨB , J̃B) t (ĨT , J̃T ) by Lemma 54.

We get:

(IB , JB) ≤p (ÎB , ĴB) implies (Ĩ , J̃) ≤p (I, J).

(Ĩ , J̃) ≤p (I, J) implies W IC ,JC
P (Ĩ , J̃) ≤p (I, J).
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W IC ,JC
P (Ĩ , J̃) ≤p (I, J) implies (ĨE , J̃E ) ≤p (IE , JE ).

(ÎT , ĴT ) uB(PB)
± v (IE , JE ) implies (Ĩ , J̃) uB(PB)

± v (ÎB , ĴB) t (IE , JE ).

(Ĩ , J̃) uB(PB)
± v (ÎB , ĴB) t (IE , JE ) implies ĨB = SIC∪ĨE

PB (JC ∪ JE ∪ JB)

and J̃B = SJC∪J̃E
PB (IC ∪ IE ∪ IB).

by Observation 52 (c).

ĨB = SIC∪ĨE
PB (JC ∪ JE ∪ JB) and

J̃B = SJC∪J̃E
PB (IC ∪ IE ∪ IB) and

IB = SIC∪IE
PB (JC ∪ JE ∪ JB) and

JB = SJC∪JE
PB (IC ∪ IE ∪ IB) and

(ĨE , J̃E ) ≤p (IE , JE ) implies (ĨB , J̃B) ≤p (IB , JB)

by Proposition 15.

(ĨB , J̃B) ≤p (IB , JB) and

(IB , JB) ≤p (ÎB , ĴB) implies (ĨB , J̃B) ≤p (ÎB , ĴB).

ÎT = SIC∪ÎB
PT (JC ∪ J) and

ĴT = SJC∪ĴB
PT (IC ∪ I) and

ĨT = SIC∪ĨB
PT (JC ∪ J̃) and

J̃T = SJC∪J̃B
PT (IC ∪ Ĩ) and

(ĨB , J̃B) ≤p (ÎB , ĴB) and

(Ĩ , J̃) ≤p (I, J) implies (ĨT , J̃T ) ≤p (ÎT , ĴT )

by Proposition 14.

W IC ,JC
P (Ĩ , J̃) = (ĨB , J̃B) t (ĨT , J̃T ) and

(ĨB , J̃B) ≤p (IB , JB) and

(ĨT , J̃T ) ≤p (ÎT , ĴT ) implies W IC ,JC
P (Ĩ , J̃) ≤p (IB , JB) t (ÎT , ĴT ).

(ĨE , J̃E ) ≤p (IE , JE ) and

(ĨE , J̃E ) vW IC ,JC
P (Ĩ , J̃) and

W IC ,JC
P (Ĩ , J̃) ≤p (IB , JB) t (ÎT , ĴT ) and

(Ĩ , J̃) = (IB , JB) t (IE , JE ) t (ÎT , ĴT ) implies W IC ,JC
P (Ĩ , J̃) ≤p (Ĩ , J̃).

WM IC ,JC (P ) = (I, J) and

W IC ,JC
P (Ĩ , J̃) ≤p (Ĩ , J̃) implies (I, J) ≤p (Ĩ , J̃)

by Theorem 1 (a).

(Ĩ , J̃) ≤p (I, J) and (I, J) ≤p (Ĩ , J̃) implies (I, J) = (Ĩ , J̃).

(Ĩ , J̃) = (IB , JB) t (IE , JE ) t (ÎT , ĴT ) implies (IB , JB) t (IE , JE ) v (Ĩ , J̃).

(Ĩ , J̃) = (IB , JB) t (IE , JE ) t (ÎT , ĴT ) and
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(ÎT , ĴT ) uB(PB)
± v (IE , JE ) implies (Ĩ , J̃) uB(PB)

± v (IB , JB) t (IE , JE ).

(I, J) = (Ĩ , J̃) and

(IB , JB) t (IE , JE ) v (Ĩ , J̃) and

(Ĩ , J̃) uB(PB)
± v (IB , JB) t (IE , JE ) and

(IB , JB) = W
(IC ,JC )t(IE ,JE)
PB (IB , JB) and

(ÎB , ĴB) = W
(IC ,JC )t(IE ,JE)
PB (I, J) implies (IB , JB) = (ÎB , ĴB)

by Observation 52 (c).

Property (ÎT , ĴT ) = (IT , JT ). Observe that the lemma can be applied with PB and PT

exchanged. Let

Ẽ = B(PT )
± ∩H(PB),

(ĨE , J̃E ) = (I, J) ∩ Ẽ,

(ĨT , J̃T ) = WM (IC ,JC )t(ĨE ,J̃E)(PT ), and

(ĨB , J̃B) = W
(IC ,JC )t(ĨT ,J̃T)
PB (I, J).

Using the properties shown so far, we obtain

(I, J) = (ĨT , J̃T ) t (ĨB , J̃B).

With this we get:

(IB , JB) = (ÎB , ĴB) and

(I, J) = (ÎB , ĴB) t (ÎT , ĴT ) and

(IB , JB) v H(PB) and

(ĨE , J̃E ) = (I, J) u Ẽ implies (IB , JB) uB(PT )
± v (ĨE , J̃E ).

(I, J) = (ĨT , J̃T ) t (ĨB , J̃B) and

(ĨB , J̃B) v H(PB) and

(ĨE , J̃E ) = (I, J) u Ẽ implies (ĨB , J̃B) uB(PT )
± v (ĨE , J̃E ).

(ĨB , J̃B) uB(PT )
± v (ĨE , J̃E ) and

(I, J) = (ĨT , J̃T ) t (ĨB , J̃B) implies (I, J) uB(PB)
± v (ĨT , J̃T ) t (ĨE , J̃E ).

(IB , JB) uB(PT )
± v (ĨE , J̃E ) and

(I, J) uB(PB)
± v (ĨT , J̃T ) t (ĨE , J̃E ) and

(ĨT , J̃T ) = W
(IC ,JC )t(ĨE ,J̃E)
PT (ĨT , J̃T ) and

(ÎT , ĴT ) = W
(IC ,JC )t(IB,JB)
PT (I, J) implies (ĨT , J̃T ) = (ÎT , ĴT )

by Observation 52 (c).

(IB , JB) uB(PT )
± v (ĨE , J̃E ) and

(ĨT , J̃T ) = WM (IC ,JC )t(ĨE ,J̃E)(PT ) and

(IT , JT ) = WM (IC ,JC )t(IB,JB)(PT ) implies (ĨT , J̃T ) = (IT , JT )
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by Observation 52 (c).

Thus, we get (ÎT , ĴT ) = (IT , JT ).

Proof of Theorem 17. The theorem can be shown by transfinite induction over the se-

quence indices. We do not give the full induction proof here but focus on the key idea. Let

(I ′i, J
′
i) be the intermediate interpretations as in (5) when computing the well-founded

model of the sequence. Furthermore, let

(Ii, Ji) = WM (IC i,JC i)t(IEi,JEi)(Pi)

be the intermediate interpretations where (IC i, JC i) is the union of the intermediate

interpretations as in (4) and

(IE i, JE i) = (I, J) ∩ Ei
with Ei as in (3).

Observe that with Theorem 16, we have WM (
⋃
i∈I Pi) =

⋃
i∈I(Ii, Ji). By Proposition 15,

we have (I ′i, J
′
i) ≤p (Ii, Ji) and, thus, we obtain that WM ((Pi)i∈I) ≤p WM (

⋃
i∈I Pi).

Proof of Theorem 18. By Theorem 17, we have⊔
i∈I

(Ii, Ji) ≤p (I, J).

We get
⋃
i∈I Ii ⊆ I and, thus,⋃

i≤k

Ii = IC k ∪ Ik ⊆ I.

Using J ⊆ ⋃i∈I Ji and Ji ⊆ H(Pi), we get

J ∩B(Pk)
± ⊆ (

⋃
i≤k

Ji ∪
⋃
k<i

H(Pi)) ∩B(Pk)
±

⊆ (
⋃
i≤k

Ji ∪ Ek) ∩B(Pk)
±

⊆ (JC k ∪ Jk ∪ Ek) ∩B(Pk)
±
.

Using both results, we obtain

((IC k, JC k) t (∅, Ek) t (Ik, Jk)) uB(Pk)
± ≤p (I, J) uB(Pk)

±
.

Because the body literals determine the simplification, we get

P I,Jk ⊆ P (ICk,JCk)t(∅,Ek)t(Ik,Jk)
k .

Lemma 55. Let (Pi)i∈I be a sequence of R-programs, and (I, J) be the well-founded

model of
⋃
i∈I Pi.

Then,
⋃
i∈I Pi and

⋃
i∈IQi with P I,Ji ⊆ Qi ⊆ Pi have the same well-founded and stable

models.

Proof. This lemma is a direct consequence of Theorems 11 and 18 and Corollary 12.
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Proof of Corollary 19. This corollary is a direct consequence of Theorem 18 and Lemma 55.

Proof of Corollary 20. This can be proven in the same way as Theorem 17 but note that

because Ei is empty, we get (I ′i, J
′
i) = (Ii, Ji).

Proof of Corollary 21. This can be proven in the same way as Theorem 18 but note that

because Ei is empty, all ≤p and most ⊆ relations can be replaced with equivalences.

Whenever head atoms do not interfere with negative body literals, the relative well

founded-model of a program can be calculated with just two applications of the relative

stable operator.

Lemma 56. Let P be an F-program such that B(P )
− ∩H(P ) = ∅ and (IC , JC ) be a

four-valued interpretation.

Then, WM IC ,JC (P ) = (SIC
P (JC ), SJC

P (IC )).

Proof. Let (I, J) = WM IC ,JC (P ).

We have J = SJC
P (IC ∪ I). By Observation 52 (b), we get J ⊆ H(P ). With this

and B(P )
− ∩ H(P ) = ∅, we get B(P )

− ∩ J = ∅. Thus, SIC
P (JC ∪ J) = SIC

P (JC ) by

Observation 52 (c).

The same arguments apply to show SJC
P (IC ∪ I) = SJC

P (IC ).

Any sequence as in Corollary 20 in which each Pi additionally satisfies the precondition

of Lemma 56 has a total well-founded model. Furthermore, the well-founded model of

such a sequence can be calculated with just two (independent) applications of the relative

stable operator per program Pi in the sequence.

Proof of Proposition 23. We use Lemma 41 to show that both formulas are strongly

equivalent.

Property I |= π(a)J implies I |= τ(a)J for arbitrary interpretations I. The formulas π(a)

and τ(a) only differ in the consequents of their implications. Observe that the consequents

in π(a) are stronger than the ones in τ(a). Thus, it follows that π(a) is stronger than

τ(a). Furthermore, observe that the same holds for their reducts.

Property I 6|= π(a)J implies I 6|= τ(a)J for arbitrary interpretations I. Let G be the set

of all instance of the aggregate elements of a. Because I 6|= π(a)J , there must be a set

D ⊆ G such that D 6 . a, I |= (τ(D)∧)
J

, and I 6|= (πa(D)∨)
J

. With this, we construct the

set

D̂ = D ∪ {e ∈ G \D | I |= τ(e)J}.
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The construction of D̂ and

D 6 . a and

I 6|= (πa(D)∨)
J

implies D̂ 6 . a and I 6|= (τa(D̂)∨)
J
.

The construction of D̂ and

I |= (τ(D)∧)
J

implies I |= (τ(D̂)∧)
J
.

D̂ 6 . a and

I 6|= (τa(D̂)∨)
J

and

I |= (τ(D̂)∧)
J

implies I 6|= τ(a)J .

Proof of Proposition 24. Let G be the set of ground instances of the aggregate elements

of a. Furthermore, observe that a monotone aggregate a is either constantly true or not

justified by the empty set.

In case that π(a) ≡ >, we get π(a)I ≡ > and the lemma holds.

Next, we consider the case that the empty set does not justify the aggregate. Observe

that πa(∅) is stronger than πa(D) for any D ⊆ G. And, we have that π(a) contains

the implication > → πa(∅). Because of this, we have π(a) ≡ πa(∅). Furthermore, all

consequents in π(a) are positive formulas and, thus, not modified by the reduct. Thus,

the reduct (> → πa(∅))I is equal to > → πa(∅). And as before, it is stronger than all

other implications in π(a)I . Hence, we get π(a)I ≡ πa(∅).

Proof of Theorem 25. Remember that the translation π(a) is a conjunction of implications.

The antecedents of the implications are conjunctions of aggregate elements and the

consequents are disjunctions of conjunctions of aggregate elements.

Property (a). If the conjunction in an antecedent contains an element not in J , then the

conjunction is not satisfied by X and the implication does not affect the satisfiability of

π(a). If a conjunction in a consequent contains an element not in J , then X does not satisfy

the conjunction and the conjunction does not affect the satisfiability of the encompassing

disjunction. Observe that both cases correspond exactly to those subformulas omitted

in πJ(a).

The remaining two properties follow for similar reasons.

The next observation summarizes how dependencies transfer from non-ground aggregate

programs to the corresponding ground R-programs.

Observation 57. Let P1 and P2 be aggregate programs, and G1 = π(P1) and G2 = π(P2).

Then,

(a) P1 does not depend on P2 implies B(G1)
± ∩H(G2) = ∅,

(b) P1 does not positively depend on P2 implies B(G1)
+ ∩H(G2) = ∅,

(c) P1 does not negatively depend on P2 implies B(G1)
− ∩H(G2) = ∅.

The next two lemmas pin down important properties of instantiation sequences. First

of all, there are no external atoms in the components of instantiation sequences.
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Lemma 58. Let P be an aggregate program and (Pi)i∈I be an instantiation sequence for

P .

Then, for the sequence (Gi)i∈I with Gi = π(Pi), we have Ei = ∅ for each i ∈ I where

Ei is defined as in (3).

Proof. This lemma is a direct consequence of Observation 57 (a) and the anti-symmetry

of the dependency relation between components.

Proof of Theorem 26. This theorem is a direct consequence of Lemma 58 and Corollary 20.

Moreover, for each stratified component in an instantiation sequence, we obtain a total

well-founded model.

Lemma 59. Let P be an aggregate program and (Pi)i∈I be an instantiation sequence for

P .

Then, for the sequence (Gi)i∈I with Gi = π(Pi), we have Ii = Ji = SIC i

Gi
(IC i) for each

stratified component Pi where (IC i, JC i) and (Ii, Ji) are defined as in (4) and (5) in the

construction of the well-founded model of (Gi)i∈I in Definition 6.

Proof. In the following, we use Ei and (IC i, JC i) for the sequence (Gi)i∈I as defined in

(3) and (4). Note that, by Lemma 58, we have Ei = ∅.
We prove by induction.

Base. Let Pi be a stratified component that does not depend on any other component.

Because Pi does not depend on any other component, we have
⋃
j<iH(Gj)∩B(Gi)

±
= ∅.

Thus, by Observation 52 (b), we get IC i ∩ B(Gi)
±

= JC i ∩ B(Gi)
±

= ∅. By Observa-

tion 52 (c), we get (Ii, Ji) = WM IC i,JC i(Gi) = WM IC i,IC i(Gi). Because Pi is stratified,

we have B(Gi)
− ∩H(Gi) = ∅. We then use Lemma 56 to obtain Ii = Ji = SIC i

Gi
(IC i).

Hypothesis. We assume that the theorem holds for any component Pj with j < i.

Step. Let Pi be a stratified component. For any j < i, component Pi either depends on

Pj or not. If Pi depends on Pj , then Pj is stratified and we get Ij = Jj by the induction

hypothesis. If Pi does not depend on Pj , then Ij ∩ B(Gi)
±

= Jj ∩ B(Gi)
±

= ∅. By

Observation 52 (c), we get (Ii, Ji) = WM IC i,JC i(Gi) = WM IC i,IC i(Gi). Just as in the

base case, by Lemma 56, we get Ii = Ji = SIC i

Gi
(IC i).

Lemma 60. Let P be an aggregate program and (Pi,j)(i,j)∈J be a refined instantiation

sequence for P .

Then, for the sequence (Gi,j)(i,j)∈J with Gi,j = π(Pi,j), we have Ei,j ∩ B(Gi,j)
+

= ∅
for each (i, j) ∈ J where Ei,j is defined as in (3).

Proof. The same arguments as in the proof of Lemma 58 can be used but using Observa-

tion 57 (b) instead.

Proof of Theorem 27. Let G = π(P ), G′ = π(P ′) with P ′ as in Definition 13, (I, J) =

AM IC ,JC
E (P ), and (I ′, J ′) = WM IC ,JC∪EC (G).

We first show I ⊆ I ′, or equivalently

SIC
G′ (JC ) ⊆ SIC

G (JC ∪ EC ∪ J ′).
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Because G′ ⊆ G, we get

SIC
G′ (JC ∪ EC ∪ J ′) ⊆ SIC

G (JC ∪ EC ∪ J ′).

Because pred(B(P ′)−) ∩ E = ∅, all rules r ∈ G′ satisfy B(r)− ∩ EC 6= ∅ and we obtain

SIC
G′ (JC ∪ J ′) ⊆ SIC

G′ (JC ∪ EC ∪ J ′).

Because pred(H(P )) ∩ pred(B(P )−) ⊆ E and pred(B(P ′)−) ∩ E = ∅, all rules r ∈ G′
satisfy B(r)− ∩ J ′ = ∅ and we obtain

SIC
G′ (JC ) = SIC

G′ (JC ∪ J ′)
⊆ SIC

G (JC ∪ EC ∪ J ′).

To show J ′ ⊆ J , we use I ⊆ I ′ and Proposition 14:

SJC
G (IC ∪ I ′) ⊆ SJC

G (IC ∪ I).

Proof of Theorem 28. We begin by showing AM ((Pj)j∈J) ≤p WM (π(P )) and then show

AM ((Pi)i∈I) ≤p AM ((Pj)j∈J).

Property (AM ((Pj)j∈J) ≤p WM (π(P ))). Let Ej , (IC j , JC j), and (Ij , Jj) be defined as in

(14) to (16) for the sequence (Pj)j∈J. Similarly, let E′j , (IC ′j , JC ′j), and (I ′j , J
′
j) be defined

as in (3) to (5) for the sequence (Gj)j∈J with Gj = π(Pj). Furthermore, let EC j be the

set of all ground atoms over atoms in Ej .
We first show E′j ⊆ EC j for each j ∈ J by showing that E′j ⊆ EC j . By Lemma 60, only

negative body literals have to be taken into account:

E′j = B(Gj)
± ∩

⋃
j<k

H(Gk)

= B(Gj)
− ∩

⋃
j<k

H(Gk).

Observe that pred(B(Gj)
− ⊆ pred(B(Pj)

−
)) and pred(H(Gj)) ⊆ pred(H(Pj)). Thus, we

get

pred(E′j) = pred(B(Gj)
− ∩

⋃
j<k

H(Gk))

⊆ pred(B(Pj)
−

) ∩ pred(
⋃
j<k

H(Pk))

⊆ pred(B(Pj)
−

) ∩ pred(
⋃
j≤k

H(Pk))

= Ej .

It follows that E′j ⊆ EC j .

By Theorem 17, we have
⊔
j∈J(I

′
j , J
′
j) ≤p WM (π(G)). To show the theorem, we show

(Ij , Jj) ≤p (I ′j , J
′
j). We omit the full induction proof and focus on the key idea: Using
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Theorem 27, whose precondition holds by construction of Ej , and Proposition 15, we get

AM
IC j ,JC j

Ej (Pj) ≤p WM (IC j ,JC j)t(∅,EC j)(Gj)

≤p WM (IC ′j ,JC
′
j)t(∅,E′j)(Gj).

Property (AM ((Pi)i∈I) ≤p AM ((Pi,j)(i,j)∈J)). We omit a full induction proof for this

property because it would be very technical. Instead, we focus on the key idea why the

approximate model of a refined instantiation sequence is at least as precise as the one of

an instantiation sequence.

Let Ei and Ei,j be defined as in (14) for the instantiation and refined instantiation

sequence, respectively. Clearly, we have Ei,j ⊆ Ei for each (i, j) ∈ J. Observe, that (due

to rule dependencies and Observation 52 (c)) calculating the approximate model of the

refined sequence, using Ei instead of Ei,j in (16), would result in the same approximate

model as for the instantiation sequence. With this, the property simply follows from the

monotonicity of the stable operator.

Proof of Theorem 29. Let Ei, (IC i, JC i), and (Ii, Ji) be defined as in (14) to (16) for the

sequence (Pi)i∈I. Similarly, let E′i, (IC ′i, JC ′i), and (I ′i, J
′
i) be defined as in (3) to (5) for the

sequence (Gi)i∈I with Gi = π(Pi). Furthermore, we assume w.l.o.g. that I = {1, . . . , n}.
We have already seen in the proof of Theorem 28 that the atoms E′i are a subset

of the ground atoms over predicates Ei and that (Ii, Ji) ≤p (I ′i, J
′
i). Observing that

ground atoms over predicates Ei can only appear negatively in rule bodies, we obtain that

G
(IC ′i,JC

′
i)∪(I′i,J

′
i)∪(∅,E′i)

i = G
(IC ′i,JC

′
i)∪(I′i,J

′
i)

i . By Theorem 18 and Lemma 55, we obtain

that
⋃
i∈IG

(IC i,JC i)t(Ii,Ji)
i and π(P ) have the same well-founded and stable models. To

shorten the notation, we let

Fi = π(Pi)
(IC i,JC i)t(Ii,Ji), Hi = πJC i∪Ji(Pi)

(IC i,JC i)t(Ii,Ji),

F =
⋃
i∈I
Fi, and H =

⋃
i∈I
Hi.

With this, it remains to show that programs F and H have the same well-founded and

stable models.

We let J =
⋃
i∈I Ji. Furthermore, we let π(a) be a subformula in Fi and πJC i∪Ji(a) be

a subformula in Hi where both subformulas originate from the translation of the closed

aggregate a. (We see below that existence of one implies the existence of the other because

both formulas are identical in their context.)

Because an aggregate always depends positively on the predicates occurring in its

elements, the intersection between
⋃
i<kH(Fk) =

⋃
i<k Jk and the atoms occurring in

π(a) is empty. Thus the two formulas πJC i∪Ji(a) and πJ(a) are identical. Observe that

each stable model of either F and H is a subset of J . By Theorem 25, satisfiability of

the aggregates formulas as well as their reducts is the same for subsets of J . Thus, both

formulas have the same stable models. Similarly, the well-founded model of both formulas

must be more-precise than (∅, J). By Theorem 25, satisfiability of the aggregate formulas

as well as their id-reducts is the same. Thus, both formulas have the same well-founded

model.

Proof of Theorem 30. Clearly, we have Ei = ∅ if all components are stratified. With this,

the theorem follows from Lemma 59.
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We can characterize the result of Algorithm 1 as follows.

Lemma 61. Let r be a safe normal rule, (I, J) be a finite four-valued interpretation,

f ∈ {t, f}, and J ′ be a finite two-valued interpretation.

Then, a call to GroundRule
I,J
r,f,J′(ι, B(r)) returns the finite set of instances g of r

satisfying

J |= τ(B(g))∧I and (f = t or B(g)
+ * J ′). (A3)

Proof. Observe that the algorithm does not modify f , r, (I, J), and J ′. To shorten the

notation below, let Gσ,L = GroundRule
I,J
r,f,J′(σ, L).

CallingGι,B(r), the algorithm maintains the following invariants in subsequent callsGσ,L:

(B(r) \ L)σ+ ⊆ J, (I1)

(B(r) \ L)σ− ∩ I = ∅, and (I2)

each comparison in (B(r) \ L)σ holds. (I3)

We only prove the first invariant because the latter two can be shown in a similar way.

We prove by induction.

Base. For the call Gι,B(r), the invariant holds because the set difference B(r) \L is empty

for L = B(r).

Hypothesis. We assume the invariant holds for call Gσ,L and show that it is maintained

in subsequent calls.

Step. Observe that there are only further calls if L is non-empty. In Line 3, a body literal l

is selected from L. Observe that it is always possible to select such a literal. In case that

there are positive literals in L, we can select any one of them. In case that there are no

positive literals in L, σ replaces all variables in the positive body of r. Because r is safe,

all literals in Lσ are ground and we can select any one of them.

In case that l is a positive literal, all substitutions σ′, obtained by calling Matches
I,J
l (σ)

in the following line, ensure

lσ′ ∈ J.

Furthermore, σ is more general than σ′. Thus, we have

(B(r) \ L)σ′
+

= (B(r) \ L)σ
+

⊆ J.

In Line 5, the algorithm calls Gσ′,L′ with L′ = L \ {l}. We obtain

(B(r) \ L′)σ′+ = (B(r) \ L)σ′
+ ∪ {lσ′}

⊆ J.

In case that l is a comparison or negative literal, we get (B(r) \ L)
+

= (B(r) \ L \ {l})+
.

Furthermore, the substitution σ is either not changed or is discarded altogether. Thus,

the invariant is maintained in subsequent calls to GroundRule.

We prove by induction over subsets L of B(r) with corresponding substitution σ

satisfying invariants (I1)–(I3) that GL,σ is finite and that g ∈ GL,σ iff g is a ground

instance of rσ that satisfies (A3).
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Base. We show the base case for L = ∅. Using invariant (I1), we only have to consider

substitutions σ with B(r)
+
σ ⊆ J . Because r is safe and σ replaces all variables in its

positive body, σ also replaces all variables in its head and negative body. Thus, rσ is ground

and the remainder of the algorithm just filters the set {rσ} while the invariants (I1)–(I3)

ensure that J |= τ(B(rσ))∧I . The condition in Line 2 cannot apply because L = ∅. The

condition in Line 9 discards rules rσ not satisfying f = t or B(rσ)
+ * J ′.

Hypothesis. We show that the property holds for L 6= ∅ assuming that it holds for subsets

L′ ⊂ L with corresponding substitutions σ′.

Step. Because L 6= ∅ we only have to consider the case in Line 2.

First, the algorithm selects an element l ∈ L. We have already seen that it is always

possible to select such an element. Let L′ = L \ {l}. The algorithm then loops over the set

Σ = Matches
I,J
l (σ)

and, in Lines 4 to 5, computes the union

Gσ,L =
⋃
σ′∈Σ

Gσ′,L′ .

First, we show that the set Gσ,L is finite. In case l is not a positive literal, the set Σ

has at most one element. In case l is a positive literal, observe that there is a one-to-one

correspondence between Σ and the set {lσ′ | σ′ ∈ Σ}. We obtain that Σ is finite because

{lσ′ | σ′ ∈ Σ} ⊆ J and J is finite. Furthermore, using the induction hypothesis, each set

Gσ′,L′ in the union Gσ,L is finite. Hence, the set Gσ,L returned by the algorithm is finite.

Second, we show g ∈ Gσ,L implies that g is a ground instance of rσ satisfying (A3).

We have that g is a member of some Gσ′,L′ . By the induction hypothesis, g is a ground

instance of rσ′ satisfying (A3). Observe that g is also a ground instance of rσ because σ

is more general than σ′.

Third, we show that each ground instance g of rσ satisfying (A3) is also contained in

Gσ,L. Because g is a ground instance of rσ, there is a substitution θ more specific than

σ such that g = rθ. In case that the selected literal l ∈ L is a positive literal, we have

lθ ∈ J . Then, there is also a substitution θ′ such that θ′ ∈ match(lσ, lθ). Let σ′ = σ ◦ θ′.
By Definition 15, we have σ′ ∈ Σ. It follows that g ∈ Gσ,L because g ∈ Gσ′,L′ by the

induction hypothesis and Gσ′,L′ ⊆ Gσ,L. In the case that l is not a positive literal, we

have σ ∈ Σ and can apply a similar argument.

Hence, we have shown that the proposition holds for Gι,B(r).

In terms of the program simplification in Definition 1, the first condition in Lemma 61

amounts to checking whether H(g)← τ(B(g))∧ is in τ(P )I,J , which is the simplification

of the (ground) R-program τ(P ) preserving all stable models between I and J . The two

last conditions are meant to avoid duplicates from a previous invocation. Since r is a

normal rule, translation τ is sufficient.

Proof of Proposition 31. The first property directly follows from Lemma 61 and the

definition of InstI,J({r}).
It remains to show the second property. Let G be the set of all ground instances of r
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and

GX,Yf = {g ∈ G | Y |= τ(B(g))∧I , (f = t or B(g)
+ * X)}.

By Lemma 61 and the first property, we can reformulate the second property of the

proposition as G∅,Jt = G∅,J
′

t ∪GJ
′,J

f . We have

G∅,Jt = {g ∈ G | J |= τ(B(g))∧I }
G∅,J

′

t = {g ∈ G | J ′ |= τ(B(g))∧I }, and

GJ
′,J

f = {g ∈ G | J |= τ(B(g))∧I , B(g)
+ * J ′}.

Observe that, given J ′ ⊆ J , we can equivalently write G∅,J
′

t as

G∅,J
′

t = {g ∈ G | J |= τ(B(g))∧I , B(g)
+ ⊆ J ′}.

Because B(g)
+ ⊆ J ′ and B(g)

+ * J ′ cancel each other, we get

G∅,J = G∅,J′ ∪GJ′,J .

Proof of Proposition 32. We first show Property (a) and then (b).

Property (a). For a rule r ∈ P , we use rα to refer to the corresponding rule with replaced

aggregate occurrences in Pα. Similarly, for a ground instance g of r, we use gα to to refer

to the corresponding instance of rα. Observe that πJ(P )I,J = πJ(InstI,J(P )). We show

that g ∈ InstI,J (P ) iff gα ∈ InstI,J∪JA(Pα). In the following, because the rule bodies of g

and gα only differ regarding aggregates and their replacement atoms, we only consider

rules with aggregates in their bodies.

Case g ∈ InstI,J(P ). Let r be a rule in P containing aggregate a, α be the replacement

atom of form (20) for a, and σ be a ground substitution such that rσ = g. We show that

for each aggregate aσ ∈ B(g), we have εr,a(G
ε, σ) ∪G 6= ∅ and J |= πG(aσ)I with G =

ηr,a(Gη, σ) and in turn JA |= ασ. Because J |= π(B(g))∧I , we get J |= πJ (aσ)I . It remains

to show that εr,a(G
ε, σ) ∪G 6= ∅ and πJ(aσ) = πG(aσ). Observe that πJ(aσ) = πG(aσ)

because the set G obtained from rules in Gη contains all instances of elements of aσ whose

conditions are satisfied by J while the remaining literals of these rules are contained in

the body of g. Furthermore, observe that if no aggregate element is satisfied by J , we get

εr,a(Gε, σ) 6= ∅ because the corresponding ground instance of (21) is satisfied.

Case gα ∈ InstI,J∪JA(Pα). Let rα be a rule in Pα containing replacement atom α

of form (20) for aggregate a and σ be a ground substitution such that rασ = gα.

Because J ∪ JA |= τ(B(gα))∧I , we have ασ ∈ JA. Thus, we get that J |= πG(aσ)I with

G = ηr,a(Gη, σ). We have already seen in the previous case that πJ (aσ) = πG(aσ). Thus,

J |= πJ(aσ)I . Observing that g = rσ and aσ ∈ B(g), we get g ∈ InstI,J(P ).

Property (b). This property follows from Property (a), Theorem 25, and Lemma 48.

Proof of Proposition 33. We prove Properties (a) and (b) by showing that the function

calculates the stable model by iteratively calling the T operator until a fixed-point is

reached.
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Property (a) and (b). At each iteration i of the loop starting with 1, let JAi be the value

of PropagateI,JP (Gε, Gη) in Line 6, Gεi , G
η
i , and Gαi be the values on the right-hand-side

of the assignments in Lines 4, 5 and 7, and Ji = H(Gαi ). Furthermore, let J0 = ∅.
By Proposition 31, we get

Gεi = InstIC ,JC∪Ji−1(P ε),

Gηi = InstIC ,JC∪Ji−1(P η),

JAi = Propagate
I,J
P (Gεi , G

η
i ), and

Gαi = InstIC ,JC∪JAi∪Ji−1(Pα).

Using Proposition 32 (b) and observing the one-to-one correspondence between Gαi and

π(P )IC ,JC∪JC i , we get

Ji = H(Gαi )

= Tπ(P )IC (JC ∪ Ji−1).

Observe that, if the loop exits, then the algorithm computes the fixed point of

T JC
π(P )IC

, i.e., J = SIC
π(P )(JC ). Furthermore, observe that this fixed point calculation termi-

nates whenever SIC
π(P )(JC ) is finite. Finally, we obtain GroundComponent(P, IC , JC ) =

πJC∪J(P )IC ,JC∪J using Proposition 32 (a).

Property (c). We have seen above that the interpretation J is a fixed point of T JC
π(P )IC

. By

Proposition 32 (b) and observing that function Assemble only modifies rule bodies, we

get H(GroundComponent(P, IC , JC )) = J .

Proof of Theorem 34. Since the program is finite, its instantiation sequences are finite,

too. We assume w.l.o.g. that I = {1, . . . , n} for some n ≥ 0. We let FC i and GC i be the

values of variables F and G at iteration i at the beginning of the loop in Lines 4 to 7, and

Fi and Gi be the results of the calls to GroundComponent in Lines 6 and 7 at iteration i.

By Proposition 33, we get that Lines 5 to 7 correspond to an application of the

approximate model operator as given in Definition 13. For each iteration i, we get

(FC i,GC i) =
⊔
j<i

(Fi, Gi),

(IC i, JC i) = (H(FC i), H(GC i)),

(Ii, Ji) = (H(Fi), H(Gi)), and

Gi = πJC i∪Ji(Pi)
(IC i,JC i)t(Ii,Ji)

whenever (Ii, Ji) is finite. In case that each (Ii, Ji) is finite, the algorithm returns in

Line 8 the program

GCn ∪Gn =
⋃
i∈I
Gi

=
⋃
i∈I
πJC i∪Ji(Pi)

(IC i,JC i)t(Ii,Ji).

Thus, the algorithm terminates iff each call to GroundComponent is finite, which is exactly

the case when AM ((Pi)i∈I) is finite.
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Proof of Corollary 35. This is a direct consequence of Theorems 29 and 34.

Proof of Proposition 36. Let G be the set of ground instances of the aggregate elements

of a and D ⊆ G be a set such that D 6 . a.

Due to the antimonotonicity of the aggregate, we get πa(D) = ⊥. Thus, the reduct

is constant because all consequents in π(a) as well as π(a)I are equal to ⊥ and the

antecedents in π(a) are completely evaluated by the reduct. Hence, the lemma follows by

Lemma 44 (b).

Proof of Proposition 37. We only show Property (a) because the proof of Property (b) is

symmetric.

Let a = #sum{E} � b and a+ = #sum+{E} � b′. Given an arbitrary two-valued

interpretation J , we consider the following two cases:

Case J 6|= π(a)I . There is a set D ⊆ G such that D 6 . a, I |= τ(D)∧, and J 6|= πa(D)∨.

Let D̂ = D ∪ {e ∈ G | I |= τ(e), w(H(e)) < 0}.
Clearly, D̂ 6 . a and I |= τ(D̂)∧. Furthermore, J 6|= πa(D̂)∨ because we constructed D̂

so that πa(D̂)∨ is stronger than πa(D)∨ because more elements with negative weights

have to be taken into considerations.

Next, observe that D̂ 6 . a+ holds because we have #sum+(H(D̂)) = #sum+(H(D))

and #sum−(H(D̂)) = #sum−(T ), which corresponds to the value subtracted from the

bound of a+. To show that J 6|= πa+(D̂)∨, we show πa+(D̂)∨ is stronger than πa(D̂)∨.

Let C ⊆ G \ D̂ be a set of elements such that D̂ ∪ C . a+. Because the justification of

a+ is independent of elements with negative weights, each clause in πa+(D̂)∨ involving

an element with a negative weight is subsumed by another clause without that element.

Thus, we only consider sets C containing elements with positive weights. Observe that

D̂ ∪ C . a holds because we have #sum(H(D̂ ∪ C)) = #sum+(H(D̂ ∪ C)) + #sum−(T ).

Hence, we get J 6|= πa+(D̂)∨.

Case J 6|= π(a+)I . There is a set D ⊆ G such that D 6 . a+, I |= τ(D)∧, and J 6|= πa+(D)∨.

Let D̂ = D ∪ {e ∈ G | I |= τ(e), w(H(e)) < 0}.
Observe that D̂ 6 . a+, I |= τ(D̂)∧, and J 6|= πa+(D̂)∨. As in the previous case, we can

show that πa(D̂)∨ is stronger than πa+(D̂)∨ because clauses in πa(D̂)∨ involving elements

with negative weights are subsumed. Hence, we get J 6|= πa(D̂)∨.

Proof of Proposition 38. Let G be the set of ground instances of E, a≺ = f{E} ≺ b for

aggregate relation ≺, and J be a two-valued interpretation.

Property (a). We show that J |= π(a<)I ∨ π(a>)I implies J |= π(a6=)I .

Case J |= π(a<)I . Observe that π(a6=) is conjunction of implications of form τ(D)
∧ →

πa6=(D)∨ with D ⊆ G and D 6 . a 6=. Furthermore, note that D 6 . a 6= implies D 6 . a<.

Thus, π(a<) contains the implication τ(D)
∧ → πa<(D)∨. Because J |= π(a<)I , we get

I 6|= τ(D)
∧

or J |= πa<(D)∨. Hence, the property holds in this case because J |= πa<(D)∨

implies J |= πa6=(D)∨.

Case J |= π(a>)I . The property can be shown analogously for this case.

Property (a). This property can be shown in a similar way as the previous one. We show

by contraposition that J |= π(a=)I implies J |= π(a≤)I ∧ π(a≥)I .
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Case J 6|= π(a≤)I . Observe that π(a≤) is conjunction of implications of form τ(D)
∧ →

πa≤(D)∨ with D ⊆ G and D 6 . a≤. Furthermore, note that D 6 . a≤ implies D 6 . a=.

Thus, π(a=) contains the implication τ(D)
∧ → πa=(D)∨. Because J 6|= π(a≤)I , we get

I |= τ(D)
∧

and J 6|= πa<(D)∨ for some D ⊆ G with D 6 . a≤. Hence, the property holds

in this case because J 6|= πa≤(D)∨ implies J 6|= πa=(D)∨.

Case J 6|= π(a≥)I . The property can be shown analogously for this case.

Proof of Proposition 39. We only consider the case that f is the #sum function because

the other ones are special cases of this function. Furthermore, we only consider the only

if directions because we have already established the other directions in Proposition 38.

Let G be the set of ground instances of E, TI = H({g ∈ G | I |= B(g)}), and

TJ = H({g ∈ G | J |= B(g)}).

Property (a). Because I ⊆ J , we get #sum+(TI) ≤ #sum+(TJ) and #sum−(TJ) ≤
#sum−(TI). We prove by contraposition.

Case J 6|= π(a<)I and J 6|= π(a>)I . We use Propositions 24 and 37 to get the following

two inequalities:

#sum−(TJ) ≥ b−#sum+(TI) because J 6|= π(a<)I and

#sum+(TJ) ≤ b−#sum−(TI) because J 6|= π(a>)I .

Using #sum−(TJ) ≤ #sum−(TI), we can rearrange as

b−#sum+(TI) ≤ #sum−(TJ)

≤ #sum−(TI)

≤ b−#sum+(TJ).

Using #sum+(TI) ≤ #sum+(TJ), we obtain

#sum+(TI) = #sum+(TJ).

Using #sum+(TI) = #sum+(TJ), we get

b−#sum+(TI) ≤ #sum−(TJ)

≤ #sum−(TI)

≤ b−#sum+(TI)

and, thus, obtain

#sum−(TI) = #sum−(TJ) and

b = #sum(TI)

= #sum(TJ).

Observe that this gives rise to an implication in π(a 6=)I that is not satisfied by J . Hence,

we get J 6|= π(a6=)I .

Property (b). Because J ⊆ I, we get #sum+(TJ) ≤ #sum+(TI) and #sum−(TI) ≤
#sum−(TJ).
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Case J |= π(a≤)I and J |= π(a≥)I . Using Propositions 24 and 37, we get

#sum+(TJ) ≥ b−#sum−(TI) because J |= π(a≥)I and

#sum−(TJ) ≤ b−#sum+(TI) because J |= π(a≤)I .

Observe that we can proceed as in the proof of the previous property because the relation

symbols are just flipped. We obtain

#sum−(TI) = #sum−(TJ) and

b = #sum(TI)

= #sum(TJ).

We get J |= π(a=)I because for any subset of tuples in TI that do not satisfy the aggregate,

we have additional tuples in TJ that satisfy the aggregate.

Proof of Proposition 40. Let a≺ = f{E} ≺ b for ≺ ∈ {=, 6=}.

Property (a). We prove by contraposition that J |= π(a6=)I implies that there is no set

X ⊆ TI such that f(X ∪ TJ) = b.

Case there is a set X ⊆ TI such that f(X ∪ TJ ) = b. Let D = {e ∈ G | I |= B(e), H(e) ∈
X ∪ TJ}. Because TJ ⊆ TI D 6 . a6=. Furthermore, we have I |= τ(D)∧. Observe that D

contains all elements with conditions satisfied by J . Hence, we get J 6|= πa6=(D)∨ and, in

turn, J 6|= π(a6=)I .

We prove the remaining direction, again, by contraposition.

Case J 6|= π(a6=)I . There is a set D ⊆ G such that I |= τ(D)∧ and J 6|= πa 6=(D)∨. Let

X = H(D). Because J 6|= πa6=(D)∨, we get f(X ∪ TJ) = b.

Property (b). This property can be shown in a similar way as the previous one.


