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A Proofs of Theorem 2 and Theorem 3

This appendix contains the proofs of Theorems 2 and 3 from Section 3.

Theorem 2

Two LPODs P1, P2 are strongly equivalent under all the answer sets if and only if they

are logically equivalent in four-valued logic.

Proof

(⇐) Assume that P1 and P2 are logically equivalent in four-valued logic. Then, every

four-valued model that satisfies one of them, also satisfies the other. This means that

for all programs P , P1 ∪ P has the same models as P2 ∪ P . But then, P1 ∪ P has the

same answer sets as P2 ∪ P (because the answers sets of a program are the ⪯-minimal

models among all the models of the program). Therefore, P1 ∪ P and P2 ∪ P are strongly

equivalent under all the answer sets.

(⇒) Assume that P1 and P2 are strongly equivalent under all the answer sets. Assume,

for the sake of contradiction, that P1 has a model M which is not a model of P2. We will

show that we can construct an interpretation M ′ and a program P such that M ′ is a

⪯-minimal model of one of P1 ∪ P and P2 ∪ P but not of the other, contradicting our

assumption of strong equivalence under all the answer sets. The construction of M ′ and

the proof that M ′ is a model of P1, are identical to the corresponding ones in the proof

of Theorem 1. We distinguish two cases.

Case 1 : M ′ is not a model of P2. We define exactly the same program P as in Case 1 of

Theorem 1 and we demonstrate, following the same steps, that M ′ is a ⪯-minimal model

of P1 ∪ P . This contradicts our assumption of strong equivalence because M ′ is not even

a model of P2 ∪ P (since we have assumed that it is not a model of P2).

Case 2 : M ′ is a model of P2. We define exactly the same program P as in Case 2 of

Theorem 1 and we demonstrate, following the same steps, that M ′ is a ⪯-minimal model

of P2∪P . We then show, following the same steps as in the proof of Theorem 1, that M ′ is

not a ⪯-minimal model of P1 ∪ P . This contradicts our assumption of strong equivalence

under all answer sets.

In conclusion, P1 and P2 are logically equivalent.

For the proof of Theorem 3 we will make use of the following lemma from the paper by

Charalambidis et al. (2021):
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Lemma A.1

Let P be a normal logic program. Then, the answer sets of P (see Definition 7) coincide

with the standard answer sets of P .

Theorem 3

Let P1, P2 be normal logic programs. Then, P1 and P2 are strongly equivalent under the

standard answer set semantics if and only if they have the same three-valued models.

Proof

(⇐) Assume that P1 and P2 have the same three-valued models. This means that for all

programs P , P1 ∪P has the same three-valued models as P2 ∪P . Since P1 ∪P and P2 ∪P
are normal programs, by Lemma A.1 the answer sets coincide with the standard answer

sets which are two-valued by definition and therefore the answer sets are the ⪯-minimal

models among the three-valued models of the program. But then, P1 ∪ P has the same

answer sets (and the same standard answer sets) as P2 ∪ P . Therefore, P1 and P2 are

strongly equivalent under the standard answer set semantics.

(⇒) Assume that P1 and P2 are strongly equivalent under the standard answer set

semantics. Suppose that P1 has a three-valued model M which is not a model of P2.

Without loss of generality, we may assume that M(A) = F , for every atom A ∈ Σ

that does not occur in P1 ∪ P2. We will show that we can construct an three-valued

interpretation M ′ and a normal logic program P such that M ′ is a standard answer set

of one of P1 ∪ P and P2 ∪ P but not of the other contradicting our assumption of strong

equivalence.

Let M ′ be the two-valued interpretation defined as:

M ′(A) =

{
T M(A) ≥ T ∗

F otherwise

We claim that M ′ is a model of P1. Since P1 is a normal logic program all rules are of the

form C ← A1, . . . , Am,not B1, . . . ,not Bk. If M
′(A1, . . . , Am,not B1, . . . ,not Bk) = F

then the rule is trivially satisfied. If M ′(A1, . . . , Am,not B1, . . . ,not Bk) = T then it

follows that M(Ai) ≥ T ∗ and M(Bj) = F for every Ai and Bj in the body of the rule

and M(A1, . . . , Am,not B1, . . . ,not Bk) ≥ T ∗. Since M is a model of P1 it satisfies the

rule and thus M(C) ≥ T ∗. By the construction of M ′ it follows that M ′(C) = T and

consequently the rule is satisfied. Lastly, notice that no other values are possible for the

body of the rule and therefore we conclude that M ′ is a model of P1.

We proceed by distinguishing two cases that depend on whether M ′ is a model of P2

or not.

Case 1 : M ′ is not a model of P2. We take P to be {A← |M ′(A) = T}. It is easy to see

that M ′ is a model of P and thus model of P1 ∪P . We show that M ′ is also a ⪯-minimal

model of P1 ∪P and since P1 ∪P is a normal logic program M ′ is also a standard answer

set of P1 ∪ P . Let N be a model of P1 ∪ P and N ≺ M ′. It must exist atom A such

that N(A) ≺M ′(A). Since M ′ assigns only values T and F , it must be N(A) = F and

M(A) = T . But then, N is not a model of P because there is a rule A ← in P which

leads to contradiction. Therefore, M ′ is ⪯-minimal and a standard answer set of P1 ∪ P .

By our initial assumption, M ′ is not a model of P2 and thus not a model of P2 ∪P which

leads to the contradiction that P1 and P2 are strongly equivalent.
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Case 2 : M ′ is a model of P2. Let D be an atom in Σ that does not occur in P1 ∪ P2.

Such atom always exists, since Σ is countably infinite set and P1, P2 are finite; moreover,

M(D) = F by our assumption about M . We take P to be

P ={A← |M(A) = T}∪
{B ← A | A ̸= B and M(A) = T ∗ and M(B) = T ∗ }∪
{D ← not A |M(A) = T ∗}

It is easy to see that M ′ satisfies every rule in P and therefore is a model of both P1 ∪ P

and P2 ∪ P . We show that M ′ is a standard answer set of P2 ∪ P but not of P1 ∪ P .

We proceed by showing that M ′ is a ⪯-minimal model of P2 ∪ P and therefore an

answer set of P2∪P which by Lemma A.1 is also a standard answer set of P2∪P . Assume

there exists a model N of P2 ∪ P such that N ≺M ′.

We first show that there exists an atom A such that M(A) = T ∗ and N(A) = T .

Consider an arbitrary atom C. If M(C) = T then it is also N(C) = T , because P contains

C ← and N is a model of P . If M(C) = F then, by the construction of M ′ it is M ′(C) = F

and since N ≺ M ′ we get N(C) = F . Therefore if M(C) ̸= T ∗ then M(C) = N(C).

There should be, however, an atom A that occurs in P2 such that N(A) ̸= M(A) because

N is a model of P2 and M is not. Obviously, for that atom it must be M(A) = T ∗ and

N(A) ̸= T ∗. Notice that there exists a rule D ← not A in P where M(D) = F and must

be satisfied by N since it is also a model of P . Since M(D) = F implies N(D) = F , the

only possibility is N(A) = T .

We next show that there exists an atom B such that M(B) = N(B) = T ∗. Since

N ≺M ′, there exists B such that N(B) ≺M ′(B). The last relation immediately implies

that M ′(B) ̸= F and by the construction of M ′, it is M ′(B) ̸= T ∗. Therefore, the only

remaining value is M ′(B) = T . For that atom, it cannot be M(B) = T because then

it is also N(B) = T . It follows, by the construction of M ′ that M(B) = T ∗. We claim

that N(B) = T ∗, that is, it cannot be N(B) = F . Since M(B) = T ∗ there exists a rule

D ← not B where M(D) = F . Since M(D) = F , it is also N(D) = F . If we assume

that N(B) = F then N does not satisfy this rule which is a contradiction. Therefore,

N(B) = T ∗.

Since M(A) = M(B) = T ∗ there exists a rule B ← A in P that is not satisfied by

N because we showed that N(B) = T ∗ and N(A) = T . Therefore, N is not a model of

P2 ∪ P and M ′ is ⪯-minimal model of P2 ∪ P .

In order to conclude the proof, it suffices to show that M ′ is not a standard answer

set of P1 ∪ P . By the definition of M ′, it is M ⪯M ′. But since M ′ is a model of P2 and

M is not, it must be M ′ ≠ M and thus M ≺ M ′. M also satisfies the rules of P and

therefore it is a model of P1 ∪P . We conclude that M ′ is not ⪯-minimal model of P1 ∪P
and thus not a standard answer set of P1 ∪ P .
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