Strong Equivalence of Logic Programs with Ordered Disjunction: a Logical Perspective

published in Theory and Practice of Logic Programming

A Proofs of Theorem 2 and Theorem 3

This appendix contains the proofs of Theorems 2 and 3 from Section 3.

Theorem 2

Two LPODs P_{1}, P_{2} are strongly equivalent under all the answer sets if and only if they are logically equivalent in four-valued logic.

Proof

(\Leftarrow) Assume that P_{1} and P_{2} are logically equivalent in four-valued logic. Then, every four-valued model that satisfies one of them, also satisfies the other. This means that for all programs $P, P_{1} \cup P$ has the same models as $P_{2} \cup P$. But then, $P_{1} \cup P$ has the same answer sets as $P_{2} \cup P$ (because the answers sets of a program are the \preceq-minimal models among all the models of the program). Therefore, $P_{1} \cup P$ and $P_{2} \cup P$ are strongly equivalent under all the answer sets.
(\Rightarrow) Assume that P_{1} and P_{2} are strongly equivalent under all the answer sets. Assume, for the sake of contradiction, that P_{1} has a model M which is not a model of P_{2}. We will show that we can construct an interpretation M^{\prime} and a program P such that M^{\prime} is a \preceq-minimal model of one of $P_{1} \cup P$ and $P_{2} \cup P$ but not of the other, contradicting our assumption of strong equivalence under all the answer sets. The construction of M^{\prime} and the proof that M^{\prime} is a model of P_{1}, are identical to the corresponding ones in the proof of Theorem 1. We distinguish two cases.
Case 1: M^{\prime} is not a model of P_{2}. We define exactly the same program P as in Case 1 of Theorem 1 and we demonstrate, following the same steps, that M^{\prime} is a \preceq-minimal model of $P_{1} \cup P$. This contradicts our assumption of strong equivalence because M^{\prime} is not even a model of $P_{2} \cup P$ (since we have assumed that it is not a model of P_{2}).
Case 2: M^{\prime} is a model of P_{2}. We define exactly the same program P as in Case 2 of Theorem 1 and we demonstrate, following the same steps, that M^{\prime} is a \preceq-minimal model of $P_{2} \cup P$. We then show, following the same steps as in the proof of Theorem 1, that M^{\prime} is not a \preceq-minimal model of $P_{1} \cup P$. This contradicts our assumption of strong equivalence under all answer sets.

In conclusion, P_{1} and P_{2} are logically equivalent.
For the proof of Theorem 3 we will make use of the following lemma from the paper by Charalambidis et al. (2021):

Lemma A. 1

Let P be a normal logic program. Then, the answer sets of P (see Definition 7) coincide with the standard answer sets of P.

Theorem 3

Let P_{1}, P_{2} be normal logic programs. Then, P_{1} and P_{2} are strongly equivalent under the standard answer set semantics if and only if they have the same three-valued models.

Proof

(\Leftarrow) Assume that P_{1} and P_{2} have the same three-valued models. This means that for all programs $P, P_{1} \cup P$ has the same three-valued models as $P_{2} \cup P$. Since $P_{1} \cup P$ and $P_{2} \cup P$ are normal programs, by Lemma A. 1 the answer sets coincide with the standard answer sets which are two-valued by definition and therefore the answer sets are the \preceq-minimal models among the three-valued models of the program. But then, $P_{1} \cup P$ has the same answer sets (and the same standard answer sets) as $P_{2} \cup P$. Therefore, P_{1} and P_{2} are strongly equivalent under the standard answer set semantics.
(\Rightarrow) Assume that P_{1} and P_{2} are strongly equivalent under the standard answer set semantics. Suppose that P_{1} has a three-valued model M which is not a model of P_{2}. Without loss of generality, we may assume that $M(A)=F$, for every atom $A \in \Sigma$ that does not occur in $P_{1} \cup P_{2}$. We will show that we can construct an three-valued interpretation M^{\prime} and a normal logic program P such that M^{\prime} is a standard answer set of one of $P_{1} \cup P$ and $P_{2} \cup P$ but not of the other contradicting our assumption of strong equivalence.

Let M^{\prime} be the two-valued interpretation defined as:

$$
M^{\prime}(A)= \begin{cases}T & M(A) \geq T^{*} \\ F & \text { otherwise }\end{cases}
$$

We claim that M^{\prime} is a model of P_{1}. Since P_{1} is a normal logic program all rules are of the form $C \leftarrow A_{1}, \ldots, A_{m}$, not B_{1}, \ldots, not B_{k}. If $M^{\prime}\left(A_{1}, \ldots, A_{m}\right.$, not B_{1}, \ldots, not $\left.B_{k}\right)=F$ then the rule is trivially satisfied. If $M^{\prime}\left(A_{1}, \ldots, A_{m}\right.$, not B_{1}, \ldots not $\left.B_{k}\right)=T$ then it follows that $M\left(A_{i}\right) \geq T^{*}$ and $M\left(B_{j}\right)=F$ for every A_{i} and B_{j} in the body of the rule and $M\left(A_{1}, \ldots, A_{m}\right.$, not B_{1}, \ldots, not $\left.B_{k}\right) \geq T^{*}$. Since M is a model of P_{1} it satisfies the rule and thus $M(C) \geq T^{*}$. By the construction of M^{\prime} it follows that $M^{\prime}(C)=T$ and consequently the rule is satisfied. Lastly, notice that no other values are possible for the body of the rule and therefore we conclude that M^{\prime} is a model of P_{1}.

We proceed by distinguishing two cases that depend on whether M^{\prime} is a model of P_{2} or not.
Case 1: M^{\prime} is not a model of P_{2}. We take P to be $\left\{A \leftarrow \mid M^{\prime}(A)=T\right\}$. It is easy to see that M^{\prime} is a model of P and thus model of $P_{1} \cup P$. We show that M^{\prime} is also a \preceq-minimal model of $P_{1} \cup P$ and since $P_{1} \cup P$ is a normal logic program M^{\prime} is also a standard answer set of $P_{1} \cup P$. Let N be a model of $P_{1} \cup P$ and $N \prec M^{\prime}$. It must exist atom A such that $N(A) \prec M^{\prime}(A)$. Since M^{\prime} assigns only values T and F, it must be $N(A)=F$ and $M(A)=T$. But then, N is not a model of P because there is a rule $A \leftarrow$ in P which leads to contradiction. Therefore, M^{\prime} is \preceq-minimal and a standard answer set of $P_{1} \cup P$. By our initial assumption, M^{\prime} is not a model of P_{2} and thus not a model of $P_{2} \cup P$ which leads to the contradiction that P_{1} and P_{2} are strongly equivalent.

Case 2: M^{\prime} is a model of P_{2}. Let D be an atom in Σ that does not occur in $P_{1} \cup P_{2}$. Such atom always exists, since Σ is countably infinite set and P_{1}, P_{2} are finite; moreover, $M(D)=F$ by our assumption about M. We take P to be

$$
\begin{aligned}
P= & \{A \leftarrow \mid M(A)=T\} \cup \\
& \left\{B \leftarrow A \mid A \neq B \text { and } M(A)=T^{*} \text { and } M(B)=T^{*}\right\} \cup \\
& \left\{D \leftarrow \operatorname{not} A \mid M(A)=T^{*}\right\}
\end{aligned}
$$

It is easy to see that M^{\prime} satisfies every rule in P and therefore is a model of both $P_{1} \cup P$ and $P_{2} \cup P$. We show that M^{\prime} is a standard answer set of $P_{2} \cup P$ but not of $P_{1} \cup P$.

We proceed by showing that M^{\prime} is a \preceq-minimal model of $P_{2} \cup P$ and therefore an answer set of $P_{2} \cup P$ which by Lemma A. 1 is also a standard answer set of $P_{2} \cup P$. Assume there exists a model N of $P_{2} \cup P$ such that $N \prec M^{\prime}$.
We first show that there exists an atom A such that $M(A)=T^{*}$ and $N(A)=T$. Consider an arbitrary atom C. If $M(C)=T$ then it is also $N(C)=T$, because P contains $C \leftarrow$ and N is a model of P. If $M(C)=F$ then, by the construction of M^{\prime} it is $M^{\prime}(C)=F$ and since $N \prec M^{\prime}$ we get $N(C)=F$. Therefore if $M(C) \neq T^{*}$ then $M(C)=N(C)$. There should be, however, an atom A that occurs in P_{2} such that $N(A) \neq M(A)$ because N is a model of P_{2} and M is not. Obviously, for that atom it must be $M(A)=T^{*}$ and $N(A) \neq T^{*}$. Notice that there exists a rule $D \leftarrow \operatorname{not} A$ in P where $M(D)=F$ and must be satisfied by N since it is also a model of P. Since $M(D)=F$ implies $N(D)=F$, the only possibility is $N(A)=T$.

We next show that there exists an atom B such that $M(B)=N(B)=T^{*}$. Since $N \prec M^{\prime}$, there exists B such that $N(B) \prec M^{\prime}(B)$. The last relation immediately implies that $M^{\prime}(B) \neq F$ and by the construction of M^{\prime}, it is $M^{\prime}(B) \neq T^{*}$. Therefore, the only remaining value is $M^{\prime}(B)=T$. For that atom, it cannot be $M(B)=T$ because then it is also $N(B)=T$. It follows, by the construction of M^{\prime} that $M(B)=T^{*}$. We claim that $N(B)=T^{*}$, that is, it cannot be $N(B)=F$. Since $M(B)=T^{*}$ there exists a rule $D \leftarrow \operatorname{not} B$ where $M(D)=F$. Since $M(D)=F$, it is also $N(D)=F$. If we assume that $N(B)=F$ then N does not satisfy this rule which is a contradiction. Therefore, $N(B)=T^{*}$.

Since $M(A)=M(B)=T^{*}$ there exists a rule $B \leftarrow A$ in P that is not satisfied by N because we showed that $N(B)=T^{*}$ and $N(A)=T$. Therefore, N is not a model of $P_{2} \cup P$ and M^{\prime} is \preceq-minimal model of $P_{2} \cup P$.

In order to conclude the proof, it suffices to show that M^{\prime} is not a standard answer set of $P_{1} \cup P$. By the definition of M^{\prime}, it is $M \preceq M^{\prime}$. But since M^{\prime} is a model of P_{2} and M is not, it must be $M^{\prime} \neq M$ and thus $M \prec M^{\prime}$. M also satisfies the rules of P and therefore it is a model of $P_{1} \cup P$. We conclude that M^{\prime} is not \preceq-minimal model of $P_{1} \cup P$ and thus not a standard answer set of $P_{1} \cup P$.

