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Appendix A Proof Details

Proof of Lemma 3. Let G be a ground atom with ⌫(G) > 0. Since ⌫ is minimal there
must be a ground rule with G in the head such that for every body atom Gi 2 body(�)
also ⌫(Gi) > 0. Consider the tree with � as the root and a child for every body atom of
�. At each child take again a rule where the respective body atom is in the head and the
body is true to some degree greater than 0.
Repeating the process, we must arrive at a finite tree where all leaves must correspond

to ground rules where all body atoms are defined in ⌧ with truth greater than 0. Other-
wise, we could simply set ⌫(G0) = 0 for all ground atoms G0 whose branches do not lead
to such leaves and ⌫ would still be a K-fuzzy model, contradicting its minimality.
Viewing the same tree in the context of ⇧crisp

, D⌧ we then see, going from the leaves
upward that the bodies of all these rules must be true in all models. Thus, also ultimately
⇧crisp

, D⌧ |= G.

Proof of Lemma 5. Let x be a feasible solution of OptK⇧,⌧ . Observe that Eval(�) = ⌫x(�)
for every ground rule �: Since, Eval(�) � K for all � 2 �, we also see that ⌫x K-satisfies
every rule in OGround(⇧crisp

, D⌧ ). By definition of an oblivious chase sequence and since
⌫x(G) = 0 for any ground atom that is not mentioned in OLim(⇧crisp

, D⌧ ), any other
ground rule � 62 � is trivially K-satisfied since both head and body have truth 0.
Let ⌫ be aK-fuzzy model of (⇧, ⌧). Let x be a solution of OptK⇧,⌧ with xi = ⌫(Gi) for all

G 2 G. Since ⌫ K-satisfies all ground rules, we in particular have that ⌫(�) = Eval(�) � K

for all � 2 � and therefore x is feasible. The third statement follows immediately from
combination of the first two.

Proof of Lemma 6. By Lemma 3, and the fact that the oblivious chase sequence con-
structs minimal models for Datalog, we also have that G0 ✓ OLim(⇧crisp

, D⌧ ). It fol-
lows by construction that every derived G 2 G in the head of some ground rule in
OGround(⇧crisp

, D⌧ ). What is left to show is that at least one such rule is also ⌫-tight.
Suppose the statement is false and let � > 0 be the minimal ⌫-gap of rules in � whose

body atoms are all not in G0. Let �0 contain only the ⌫-tight rules in OGround(⇧crisp
, D⌧ )

that contain an atom from G0 in the head. Since we assume the statement false, all of
the rules in �0 have a body atom that is also in G0. Now consider the truth assignment
⌫
0 defined as

⌫
0(G) =

(
max{0, ⌫(G)� �} if G 2 G0

⌫x(G) otherwise

By assumption we have that all ⌫-tight rules where G0 occurs in the head also have some
atom from G0 in the body. Meaning that under ⌫0 the truth of both head and body are
decreased by at least � (or until both are 0). Hence, all rules in �0 are still K-satisfied.
We can also see that all other rules that contain an atom in G0 remain K-satisfied under
⌫
0. When an atom of G0 occurs in the body of a rule, the implication can only become

more true. Where an atom G from G0 occurs only in the head of a rule � 62 �0, we have
that the ⌫x-gap of the rule is at least �. That is,

⌫x(G) � ⌫x(body(�))� 1 +K + �
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and therefore also

⌫
0(G) � ⌫x(G)� � � ⌫x(body(�))� 1 +K � ⌫

0(body(�))� 1 +K

We therefore see that ⌫0 is a K-fuzzy model with ⌫
0
< ⌫ and we arrive at a contradiction.

Proof of Theorem 8. The implication from right to is a a special case of Lemma 3. For
the other direction, we argue by induction over the oblivious chase sequence D0, D1, . . .

for ⇧crisp
, D

1, that if some ground atom G is in Di, then µ(G) = 1 in every 1-fuzzy
model µ of (⇧, ⌧). The base case D0 = D

1 follows by definition of D1. For the induction,
suppose the claim holds up to step i. In the step from Di to Di+1 either the ground
atoms in both are the same (the oblivious application produced a ground head that was
already in Di) or there is a single new ground atom G in Di+1 but not in Di. Let � be
the ground rule induced by the oblivious application in the step from i to i + 1. Since
the rule was applicable, for all G0 2 body(�) we have G

0 2 Di and by the induction
hypothesis also µ(G0) = 1. Hence, µ(body(�)) = 1 and since � must be 1-satisfied, we
have that in every 1-fuzzy model also µ(G) = 1.

Recall, that OLim(⇧crisp
, D

1) is always a minimal model of ⇧crisp
, D

1 and thus
⇧crisp

, D
1 |= G if and only if G 2 OLim(⇧crisp

, D
1). And by the above induction argu-

ment G 2 OLim(⇧crisp
, D

1) implies that µ(G) = 1.

Proof of Theorem 9. First, observe that since OLim(⇧crisp
, D⌧ ) is unique up to isomor-

phism, we can assume without loss of generality that there is no preferred model where
some ground atom G is true but not in the set G of ground atoms considered in the
construction of 9-OptK⇧,⌧ .

Let ⌫ be a preferred K-fuzzy model of ⇧, ⌧ . Since ⌫ has an oblivious base, we have
that ⌫(G) > 0 only if G 2 G. Let x be the solution of 9-OptK⇧,⌧ where xi = ⌫(Gi) for all
Gi 2 G. Then, by definition of Eval we immediately see Eval(�) = ⌫(�) for every ground
rule �. Hence, if all ground rules are K-satisfied by ⌫, then all constraints Eval(�) � K

are satisfied and ⌫ is feasible.
For the second statement, assume that x is an optimal solution of 9-OptK⇧,⌧ but ⌫x is

not preferred. The only way ⌫x can not be preferred is if it is not active minimal, i.e.,
there is some K-fuzzy model µ where for all G 2 GAtoms[Adom], µ(G)  ⌫x(G) and for
at least one G0 2 GAtoms [Adom], µ(G0) < ⌫x(G0). Since both µ and ⌫x have an oblivious
base (which is unique up to isomorphism) we see that every G 2 GAtoms where µ(G) > 0
is also in G. Hence, it is straightforward to construct a feasible solution x

0 from µ for
which the objective function is strictly lower than for x, a contradiction.

Appendix B Finiteness in the Oblivious Chase

Since we are interested particularly in instances where the chase is finite, it is of interest
to identify fragments where this is always the case. The most prominent condition for
which the finiteness of the chase in Datalog± is studied, is the restriction to weakly acyclic
programs as first introduced by Fagin et al. (2005). Let ⇧ be a set of rules with over the
relational language �. We first define the dependency graph for ⇧ as the graph with
vertices {(R, i) | R 2 �, i 2 {1, . . . ,#(R)}} We say a variable x is in position (R, i) if x is
at the i-th place of a relation with name R. There is a (normal) edge from vertex (R, i) to
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(S, j) exactly if there is a rule in ⇧ where the same variable x occurs at position (R, i) in
the body and at position (S, j) in the head of the rule. There is a special edge from (R, i)
to (S, j) exactly if there is an existential rule in ⇧, such that there is a variable x that x
occurs in both the body and head, x is in position (R, i) of the body, and an existentially
quantified y is in position (S, j) in the head. We say that a program is weakly acyclic if
its dependency graph has no cycle that passes a special edge.
However, the standard definition of weakly acyclic is particular to the restricted chase,

which does not fit our setting. This becomes apparent when considering the simple
(weakly acyclic) program

P (x) ! 9y P (y).

The oblivious chase is infinite in this case, since every new instantiation of y generates
a new homomorphism that satisfies the body. Since x does not occur in the head at all,
the dependency graph used in the standard definition of weakly-acyclic does not have
any edges and is thus weakly acyclic.
Let the variable expansion ve(⇧) of ⇧ be the program obtained by the following rewrit-

ing. Without loss of generality every existential rule is of the form '(x) ! 9y R(y,x0),
where ' is the body formula, R is a relation symbol and x

0 are those (free) variables that
occur in both the body and the head. Let x⇤ be the free variables that only occur in '

but not in the head. Then, for every such rule we replace it by the two rules

'(x) ! 9y R
⇤(y,x0

,x
⇤)

R
⇤(y,x0

,x
⇤) ! R(y,x0)

to obtain ve(⇧). Intuitively, the variable expansion reveals those particular cycles that
are harmless in the restricted chase but lead to infinite sequences in the oblivious chase
in the standard definition of weak acyclicity. For example, the variable expansion of our
simple example above would thus be the (no longer weakly acyclic) program

P (x) ! 9y P
⇤(y, x)

P
⇤(y, x) ! P (y)

The following theorem then follows by similar argument as originally given for the
restricted chase (Fagin et al. 2005, Theorem 3.9) by additionally observing that nulls can
never propagate to a position in the dependency graph with lower rank, where the rank
of a position is the maximal number of special edges on an incoming path. One can then
inductively bound the number of possible groundings of the body to consequently bound
the number of nulls generated in the head for each position.

Theorem 10. Let ⇧, ⌧ be a MV±-instance program. If ve(⇧) is weakly acyclic, then
OLim(⇧crisp

, D⌧ ) is finite and of polynomial size in data complexity.


