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Online Appendix for the paper:

An ASP approach for reasoning on neural networks

under a finitely many-valued semantics
for weighted conditional knowledge bases

Appendix A Existence of canonical ϕ-coherent/ϕn-coherent models

For canonical ϕ-coherent and ϕn-coherent models, we can prove the following result.

Proposition 4

A weighted GnLCT ( LnLCT) knowledge base K has a canonical ϕ-coherent (ϕn-

coherent) model, if it has a ϕ-coherent (ϕn-coherent) model.

Proof(sketch)

We prove the result for ϕ-coherent models of a weighted GnLCT ( LnLCT) knowledge

base K. The proof for ϕn-coherent models is the same.

Given a weighted GnLCT ( LnLCT) knowledge base K = 〈T , TC1
, . . . , TCk

,A〉, let

I0 = 〈∆0, ·
I0〉 be a ϕ-coherent model of K. A canonical ϕ-coherent model for K can be

constructed starting from the model I0 as follows.

First, let S be the set of all concept names B ∈ NC occurring in K. The set S is finite.

Considering the finitely many concept names B in S and the finitely many truth degrees

in Cn = {0, 1

n
, . . . , n−1

n
, 1}, there are finitely many valuations e assigning a membership

degree in Cn to each concept name B in S, i.e., such that e(B) ∈ Cn, for each B ∈ S.

Let us call e1, . . . , ek all such possible valuations over S. Starting from the ϕ-coherent

model I0 of K, we extend the domain ∆0 by possibly introducing new domain elements

xi, one for each valuation ei, provided valuation ei is present in some ϕ-coherent model

of K, but not in I0.

We say that valuation ei is present in an interpretation I = 〈∆, ·I〉 of K if there is a

domain element x ∈ ∆ such that BI(x) = ei(B), for all concept names B ∈ S.

We say that a valuation ei is missing in I0 for K if it is present in some ϕ-coherent

model I of K, but it is not present in I0.

Let us define a new interpretation I∗ = 〈∆∗, ·I
∗

〉 with domain

∆∗ = ∆0 ∪ {xi | valuation ei is missing in I0 }

∆∗ contains a new element xi for each valuation ei which is missing in I0.

The interpretation of individual names in I∗ remains the same as in I0. The interpre-

tation of concepts in I∗ is defined as follows:

- BI∗

(x) = BI0(x) for all x ∈ ∆0, for all B ∈ NI ;

- BI∗

(xi) = ei(B), for all B ∈ S;

- BI∗

(xi) = BI0(z), for all B ∈ NC s.t. B 6∈ S,

where z is an arbitrarily chosen domain element in ∆0. Informally, the interpretation of

concepts in I∗ is defined as in I0 on the elements of ∆0, while it is given by valuation

ei for the added domain element xi, for the concept names B in S. For the concept

names B not occurring in K the interpretation of B in xi is taken to be the same as the

interpretation in I0 of B in some domain element z ∈ ∆0.
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We have to prove that I∗ satisfies all GnLCT ( LnLCT) inclusions and assertions in K

and that it is a ϕ-coherent model of K. I∗ also satisfies condition (ii) in Definition 6 by

construction, as all the finitely many possible valuations ei over S, which are present in

some ϕ-coherent model of K, are considered.

To prove that I∗ satisfies all assertions in A, let C(a) θα be in K. Then all the concept

names in C are in S. By construction aI
∗

= aI0 . Furthermore, it can be proven that

(E(a))I
∗

= EI∗

(aI0) = EI0(aI0) = (E(a))I0 holds for all concepts E occurring in K (the

proof is by induction on the structure of concept E). Hence, (C(a))I
∗

= (C(a))I0 . As

C(a) θα is satisfied in I0, then (C(a))I0 θα holds, and (C(a))I
∗

θα also holds.

To prove that I∗ satisfies all concept inclusions in T , let C ⊑ D θα be in K. Then

all the concept names in C and in D are in S. We have to prove that, for all x ∈ ∆∗,

CI∗

(x) ✄DI∗

(x) θα. We prove it by cases.

For the case x ∈ ∆0. It can be proven that, for all x ∈ ∆0 EI∗

(x) = EI0(x) holds for

all concepts E occurring in K (the proof is by induction on the structure of concept E).

Therefore, CI∗

(x) = CI0 (x) and DI∗

(x) = DI0(x) hold. As axiom C ⊑ D θα is satisfied

in I0, CI0(x) ✄DI0(x) θα holds. Therefore, CI∗

(x) ✄DI∗

(x) θα also holds.

For x 6∈ ∆0, x = xi for some i. By construction, as ei is missing in I0, ei must be present

in some interpretation I ′ = 〈∆′, ·I
′

〉 of K, i.e., there is a domain element y ∈ ∆′ such that

BI′

(y) = ei(B), for all concept names B ∈ S. It can be proven that, EI∗

(xi) = EI′

(y)

holds for all concepts E occurring in K. (the proof is by induction on the structure of

concept C). Therefore, CI∗

(xi) = CI′

(y) and DI∗

(xi) = DI′

(y) hold. As axiom C ⊑ D θα

is satisfied in I ′, CI′

(y) ✄DI′

(y) θα holds. Therefore, CI∗

(xi) ✄DI∗

(xi) θα also holds.

The proof that I∗ is a ϕ-coherent model of K is similar.

Appendix B Proof of Proposition 2

Lemma 1

Given a weighted GnLCT ( LnLCT) knowledge base K = 〈T , TC1
, . . . , TCk

,A〉 over the

set of distinguished concepts C = {C1, . . . , Ck}, and a subsumption C ⊑ Dθα, we can

prove the following:

(1) if there is an answer set S of the ASP program Π(K,n,C,D, θ, α), such that

eval(E′, auxC , v) ∈ S, for some concept E occurring in K, then there is a ϕn-

coherent model I = 〈∆, ·I〉 for K and an element x ∈ ∆ such that EI(x) = v
n

.

(2) if there is a ϕn-coherent model I = 〈∆, ·I〉 for K and an element x ∈ ∆ such that

EI(x) = v
n

, for some concept E occurring in K and some v ∈ {0, . . . , n}, then

there is an answer set S of the ASP program Π(K,n,C,D, θ, α), such that eval(E′,

auxC , v) ∈ S.

Proof(sketch)

We prove the lemma for GnLCT (the proof for  LnLCT is similar).

For part (1), given an answer set S of the program Π(K,n,C,D, θ, α) such that eval(E′,

auxC , v) ∈ S, for some concept E occurring in K, we construct a ϕn-coherent model

I = 〈∆, ·I〉 of K such that EI(x) = v
n

. Let NI and NC be the set of named individuals

and named concepts in the language. We take as the domain ∆ of I the set of constants
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including all the named individuals d ∈ NI occurring in K plus an auxiliary element zC ,

i.e., ∆ = {e | e ∈ NI and e occurs in K} ∪ {zC}.

For each element e ∈ ∆, we define a projection ι(e) to a corresponding ASP constant

as follows:

- ι(zC) = auxC ;

- ι(e) = e, if e ∈ NI and e occurs in K.

Note that, for all e ∈ ∆, nom(ι(e)) ∈ S by construction of the program

Π(K,n,C,D, θ, α).

The interpretation of individual names in e ∈ NI over ∆ is defined as follows:

- eI = e, if e occurs in K;

- eI = a, otherwise,

where a is an arbitrarily chosen element in ∆.

The interpretation of named concepts A ∈ NC is as follows:

- AI(e) = v

n
iff inst(ι(e),A, v) ∈ S , for all e ∈ ∆, if A occurs in K;

- AI = BI , if A does not occur in K,

where B is an arbitrarily chosen concept name occurring in K.

This defines a GnLCT interpretation. Let us prove that I = 〈∆, ·I〉 is a ϕn-coherent

model of K.

Assume that the wi
h are approximated to k decimal places. From the definition of the

eval predicate, one can easily prove that the following statements hold, for all concepts

C and distinguished concepts Ci occurring in K, and for all e ∈ ∆:

• C I (e) = v

n
if and only if eval(C ′, ι(e), v) ∈ S ;

• weight(ι(e),C ′

i ,w) ∈ S if and only if w = Wi(e)× 10k × n;

• valphi(n,w , v) ∈ S if and only if v
n

= ϕn(w/(10k × n));

• ϕn(
∑

h w
i
h DI

i,h(e)) = v
n

if and only if weight(ι(e),C ′

i ,w) ∈ S and

valphi(n,w , v) ∈ S ;

where C′ is the ASP encoding of concept C, and C′

i is the ASP encoding of concept Ci.

First we have to prove that I satisfies the GnLCT inclusions in TBox T and

assertions in ABox A. Suitable constraints in Π(K,n,C,D, θ, α) guarantee that

all assertions are satisfied. For instance, for assertion C(a) ≥ α, the constraint

⊥ ← eval(C ′, a,V ),V < αn, is included in the ASP program and we know that it is

not the case that eval(C ′, a, v) ∈ S and v < αn holds. By the equivalences above, it is

not the case that C I (aI ) = v

n
and v

n
< α holds. Hence, C I (aI ) < α does not hold.

For a GnLCT concept inclusion of the form E ⊑ D ≥ α, the following constraint

⊥ ← eval(E ′,X ,V1 ), eval(D ′,X ,V2 ),V1 > V2 ,V2 < αn.

holds for X instantiated with any constant a such that nom(a) ∈ S . Hence, it is not

the case that, for any such an a, eval(E ′, a, v1 ), eval(D ′, a, v2 ) belong to S and that

v1 > v2 and v2 < αn hold. Therefore, it is not the case that for some d ∈ ∆ E I (d) = v1

n
,

D I (d) = v2

n
and that v1

n
> v2

n
, v2

n
< α hold. That is, E ⊑ D ≥ α is satisfied in I.

Similarly, for other concept inclusions in T .

The interpretation I represents a ϕn-coherent model of K if

CI
i (e) = ϕn(

∑

h

wi
h DI

i,h(x))
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holds for all e ∈ ∆ and for all distinguished concepts Ci. We prove that this condition

holds for I. In fact, all ground instances of the following constraint

⊥ ← nom(x ), dcls(Ci), eval(Ci , x ,V ),weight(x ,Ci ,W ), valphi(n,W ,V1 ),V ! = V1 .

must be statisfied in S. Hence, there cannot be a distinguished concept Ci and a con-

stant a with nom(a) ∈ S, such that eval(C ′

i , a, v),weight(a,C ′

i ,w) and valphi(n,w , v1 )

belong to S, and v1 6= v. Thus, it is not the case that, for some e ∈ ∆, C I
i (e) = v

n
,

ϕn(
∑

h w
i
h DI

i,h(e)) = v1
n

, and v 6= v1.

By construction of the ϕn-coherent model I = 〈∆, ·I〉 of K, if eval(E′, auxC , v) ∈ S,

for some concept E occurring in K, as auxC = ι(zC), it follows that EI(zC) = v
n

holds

in I.

For part (2), assume that there is a ϕn-coherent model I = 〈∆, ·I〉 for K and an element

x ∈ ∆ such that EI(x) = v
n

, for some concept E occurring in K. We can construct an

answer set S of the ASP program Π(K,n,C,D, θ, α), such that eval(E′, auxC , v) ∈ S.

Let us define a set of atoms S0 by letting:

inst(a,A, v) ∈ S0 if AI(aI) = v

n
in the model I , and

inst(auxC ,A, v) ∈ S0 if AI(x) = v

n
in the model I ,

for all concept names A occurring in K, and for all a ∈ NI such that nom(a) is in

Π(K,n,C,D, θ, α). Nothing else is in S0.

Let Π1 be the set of ground instances of all definite clauses and facts in

Π(K,n,C,D, θ, α), i.e., the grounding of all rules in Π(K,n,C,D, θ, α) with the exception

of rule (r1), of the constraints and of the rule for notok .

Let S be the set of all ground facts which are derivable from program Π1 ∪ S0 plus,

in addition, notok in case ok is not derivable. It can be proven that, for all constants

a ∈ NI such that nom(a) is in Π(K,n,C,D, θ, α) and for all concepts E occurring in K

(including subconcepts):

eval(E ′, a, v) ∈ S if and only if EI(aI) = v

n

eval(E ′, auxC , v) ∈ S if and only if EI(x) = v

n

where E′ is the ASP encoding of concept E. Furthermore, for all distinguished concepts

Ci.:

ϕn(
∑

h
wi

h DI
i,h(a

I)) = v

n
if and only if weight(a,C ′

i ,w) and valphi(n,w , v) are in S;

where C′

i is the ASP encoding of concept Ci.

S is a consistent set of ground atoms, i.e., ⊥ 6∈ S. Notice that our ASP encoding

does not make use of explicit negation and S cannot contain complementary literals. It

can be proven that all constraints in Π(K,n,C,D, θ, α) are satisfied by S. Consider, for

instance the constraint ⊥ ← eval(C ′, a,V ),V < αn, associated to an assertion C(a)θα

in K. As the assertion C(a)θα is in K, it must be satisfied in the model I and, for some

v, CI(aI) = v
n

and v
n
θα. Hence, atom eval(C ′, a, v) is in S and vθαn holds, so that the

constraint associated to assertion C(a)θα in Π(K,n,C,D, θ, α) is satisfied in S.

Similarly, we can prove that all other constraints, those associated to the inclusion

axioms and those that encode the ϕn-coherence condition are as well satisfied in S, as

the interpretation I from which we have built the set S is a ϕn-coherent model of K,

and satisfies all inclusion axioms in T .

We can further prove that all ground instances of the rules in Π(K,C,D, n, θ, α) are

satisfied in S. This is obviously true for all the definite clauses which have been used
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deductively to determine S starting from S0 by forward chaining. This is also true for

the choice rule (r1),

1{inst(x ,A,V ) : val(V )}1 ← cls(A), nom(x ).

as the choice of atoms inst(a,A, v) we have included in S0 is one of the possible choices

allowed by rule (r1). We have already seen that all constraints in Π(K,n,C,D, θ, α) are

satisfied in S. Finally, also rule notok ← not ok . is satisfied in S, as we have added notok

in S in case ok 6∈ S .

We have proven that S is a consistent set of ground atoms and all ground instances

of the rules in Π(K,n,C,D, θ, α) are satisfied in S. To see that S is an answer set of

Π(K,n,C,D, θ, α), it has to be proven that all literals in S are supported in S. Informally,

observe that, all literals (facts) in S can be obtained as follows: first by applying the choice

rule (r1), which supports the choice of the atoms inst(a,A, v) in S0 (and in S); then

by exhaustively applying all ground definite clauses in Π(K,n,C,D, θ, α) (by forward

chaining) and, finally, by applying rule notok ← not ok ., to conclude nottok if ok 6∈ S .

From the hypothesis, for element x ∈ ∆ it holds that EI(x) = v1
n

. Then, we can

conclude that eval(E′, auxC , v) ∈ S, which concludes the proof.

Proposition 2

Given a weighted GnLCT ( LnLCT) knowledge base K, a query T(C) ⊑ Dθα is falsified

in some canonical ϕn-coherent model of K if and only if there is a preferred answer set

S of the program Π(K,C,D, n, θ, α) such that eval(D′, auxC , v) is in S and vθαn does

not hold.

Proof(sketch)

Let K = 〈T , TC1
, . . . , TCk

,A〉 be a GnLCT knowledge base over the set of distinguished

concepts C = {C1, . . . , Ck}. We prove the two directions:

(1) if there is a canonical ϕn-coherent model I = (∆, ·I) of K that falsifies T(C) ⊑ Dθα,

then there is a preferred answer set S of Π(K,n,C,D, θ, α) such that, for some v,

eval(D′, auxC , v) ∈ S and vθαn does not hold.

(2) if there is a preferred answer set S of Π(K,n,C,D, θ, α) such that, for some v,

eval(D′, auxC , v) is in S and vθαn does not hold, then there is a canonical ϕn-

coherent model I = (∆, ·I) of K that falsifies T(C) ⊑ Dθα.

We prove (1) and (2) for GnLCT (the proof for  LnLCT is similar).

For part (1), assume that there is a canonical ϕn-coherent model I = (∆, ·I) of K

that falsifies T(C) ⊑ Dθα. Then, there is some x ∈ ∆, such that x ∈ min<C
(CI

>0
),

DI(x) = v
n

and it does not hold that v
n
θα.

By Lemma 1, part (2), we know that there is an answer set S of the ASP program

Π(K,n,C,D, θ, α) such that eval(D′, auxC , v) ∈ S. Clearly, vθαn does not hold. We have

to prove that S is a preferred answer set of Π(K,n,C,D, θ, α).

By construction of S, for all constants a ∈ NI such that nom(a) is in

Π(K,n,C,D, θ, α), we have:

inst(a,A, v) ∈ S if AI(aI) = v
n

in model I,

inst(auxC ,A, v) ∈ S if AI(x) = v
n

in model I,

for all concept names A occurring in K.
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Suppose by absurd that S is not preferred among the answer sets of Π(K,n,C,D, θ, α).

Then there is another answer set S′ which is preferred to S. This means that if eval(C ′,

auxC , v1 ) ∈ S and eval(C ′, auxC , v2 ) ∈ S ′, then v2 > v1.

By construction of S (see Lemma 1, part (2)), from eval(C ′, auxC , v1 ) ∈ S it follows

that CI(x) = v1
n

in the ϕn-coherent model I of K.

As S′ is also an answer set of Π(K,n,C,D, θ, α), by Lemma 1, part (1), from S′ we

can build a ϕn-coherent model I ′ = 〈∆′, ·I
′

〉 of K such that CI′

(zC) = v2
n

, for zC ∈ ∆′.

As I is a canonical model, there must be an element y ∈ ∆ such that BI(y) = BI′

(zC),

for all concepts B. Therefore, CI(y) = CI′

(zC) = v2
n

. As v2
n

> v1
n

, this contradicts the

hypothesis that x ∈ min<C
(CI

>0
). Then, S must be preferred among the answer sets of

Π(K,n,C,D, θ, α).

For part (2), let us assume that there is a preferred answer set S of Π(K,n,C,D, θ, α)

such that, eval(C′, auxC , v1) eval(D′, auxC , v2) are in S and v2θαn does not hold. By

Lemma 1, part (1), from the answer set S we can construct a ϕn-coherent model I∗ =

(∆∗, ·I
∗

) of K in which CI∗

(zC) = v1
n

and DI∗

(zC) = v2
n

, for domain element zC .

From the existence of a ϕn-coherent model I∗ of K it follows, by Proposition 4, that

a canonical ϕn-coherent model I = (∆, ·I) of K exists. As I is canonical, there must be

an element y ∈ ∆ such that BI(y) = BI∗

(zC), for all concept names B occurring in K.

Therefore, BI(y) = v′

n
iff eval(B ′, auxC , v ′) ∈ S , for all concept names B occurring in

K. In particular, CI(y) = v1
n

and DI(y) = v2
n

. Hence, there is a canonical ϕn-coherent

model of K such that DI(y) = v2
n

and v2
n
θα does not hold.

To conclude that I falsifies T(C) ⊑ Dθα, we have still to prove that y is <C -minimal

in I with respect to all domain elements in ∆, i.e., y ∈ min<C
(CI

>0
). If y were not

in min<C
(CI

>0
), there would be a z ∈ ∆ such that z <C y, that is, CI(z) > CI(y).

This leads to a contradiction. Assume CI(z) = v3
n

> v1
n

, by Lemma 1, part (2), there

is an answer set S′ of Π(K,n,C,D, θ, α) such that eval(C′, auxC , v3). However, this

would contradict the hypothesis that S is a preferred answer set of Π(K,n,C,D, θ, α),

as v3 > v1.

Proposition 3

ϕn-coherent entailment from a weighted GnLCT ( LnLCT) knowledge base is in Πp
2
.

Proof

Let K be a weighted GnLCT knowledge base K (the proof for  LnLCT is similar). We

consider the complementary problem, that is, the problem of deciding whether T(C) ⊑

Dθα is not entailed by K in the ϕn-coherent semantics. It requires to determine whether

there is a canonical ϕn-coherent model of K falsifying T(C) ⊑ Dθα or, equivalently (by

Proposition 2), whether there is a preferred answer set S of Π(K,n,C,D, θ, α) such that

eval(D′, auxC , v) belongs to S and vθαn does not hold.

This problem can be solved by an algorithm that non-deterministically guesses a

ground interpretation S over the language of Π(K,n,C,D, θ, α), of polynomial size

(in the size of Π(K,n,C,D, θ, α)) and, then, verifies that S satisfies all rules in

Π(K,n,C,D, θ, α) and is supported in S (i.e., it is an answer set of Π(K,n,C,D, θ, α)),

that eval(D′, auxC , v) is in S, that vθαn does not hold, and that S is preferred among

the answer sets of Π(K,n,C,D, θ, α). The last point can be verified using an NP-oracle
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which answers ”yes” when S is a preferred answer set of Π(K,n,C,D, θ, α), and ”no”

otherwise.

The oracle checks if there is an answer set S′ of Π(K,n,C,D, θ, α) which is preferred

to S, by non-deterministically guessing a ground polynomial interpretation S′ over the

language of Π(K,n,C,D, θ, α), and verifying that S satisfies all rules and is supported

in S′ (i.e., S′ is an answer set of Π(K,C,D, θα)), and that S′ is preferred to S. These

checks can be done in polynomial time.

Hence, deciding whether T(C) ⊑ Dθα is not entailed by K in the ϕn-coherent seman-

tics is in Σp
2
, and the complementary problem of deciding ϕn-coherent entailment is in

Πp
2
.


