
TPLP: Page 1–X. © The Author(s), 2022. Published by Cambridge University Press 2022

doi:10.1017/xxxxx
1

Appendix: Efficient Knowledge Compilation Beyond
Weighted Model Counting

RAFAEL KIESEL*, PIETRO TOTIS†, ANGELIKA KIMMIG†

*TU Vienna; †KU Leuven

submitted xx xx xxxx; revised xx xx xxxx; accepted xx xx xxxx

Appendix A Full Proofs and Omitted Lemmas

A.1 Full Proofs

Here, we restate the Theorems and Lemmas from the main paper and give their full proofs.

Theorem 4 (Tractable 2AMC with XO-first sd-DNNFs)
Let A = (T ,XI ,XO, αI , αO,SI ,SO, t) be a 2AMC instance, where T is an XO-first sd-
DNNF. Then, we can compute 2AMC(A) in linear time in the size of T .

Proof
The basic idea is as follows: We can see T as an algebraic circuit, by replacing or-nodes, and-
nodes, false and true by sum, product, zero and one, respectively and by replacing all literals
by their weight. Then we only need to make sure to use the sum, product, zero and one from
the correct semiring: For pure nodes n such that Vars(n) ⊆ XI this is the inner one for all
other nodes it is the outer one. Additionally, for mixed nodes n = n1⊗On2, where w.l.o.g.
Vars(n1) ⊆ XI we need to use t(n1)⊗On2 to have values that are over the same semiring.

Consider a subgraph n of T with exactly one outgoing edge for each or-node and all outgoing
edges for each and-node. As T satisfies XO-first and is smooth, there is a node n′ in n such that
Vars(n′) = XI , i.e., exactly the outer variables occur above n′ (see also the lowest and-nodes of
the left NNF in Figure ??). Thus, n′ is equivalent to T |xO

for some assignment xO to the outer
variables, for which n′ computes the value of the inner AMC instance. As evaluation sums over
all these subgraphs, it obtains the correct result.

Lemma 9 (Exponential Separation)
Let T =

∧n
i=1Xi ↔ Yi, X = {X1, . . . , Xn} and D = {Y1, . . . , Yn}, then the size of the

smallest X-first sd-DNNF for T is exponential in n and the size of the smallest X/D-first sd-
DNNF for T is linear in n.

Proof
Let C be a X-first sd-DNNF for T . Recall that this implies that for every assignment x to X

there exists a node nx in C such that nx is equivalent to T |x. Since T |x and T |x′ are different,
whenever x and x′ are different there are 2n different residual theories T |x, one for each x ∈
int(X). This implies that C has at least 2n different nodes, which proves the first part of the
lemma.

2 R. Kiesel and P. Totis and A. Kimmig

We still need to prove that there exists a X/D-first sd-DNNF S for T the size of which is
linear in n. For this we first consider, what X/D-firstness means for T . The variables that are
defined by X in terms of T are D = {Y1, . . . , Yn}. Thus, any node over variables X ∪D is a
pure node and every NNF over these variables is an X/D-first NNF. This means that we can use
any sd-DNNF S for T . It is easy to see, that when one decides variables according to the variable
order X1, Y1, . . . , Xn, Yn the resulting NNF is of size linear in n.

Theorem 12 (Tractable AMC with X/D-first sd-DNNFs)
The value of a 2AMC instance A = (T ,XI ,XO, αI , αO,SI ,SO, t) can be computed in poly-
nomial time under the following conditions:

• T is an X/D-first sd-DNNF
• t is a monoid homomorphism from the monoidM = 〈O(A)〉(RI ,⊗I ,e⊗I) generated by the

observable values to (RO,⊗O, e⊗O).

Proof (Sketch).
Let n be the root of T . We know that the variables in D(n,XO) are defined by XO in terms
of T . For d ∈ D(n,XO) and xO ∈ int(XO), we denote by d |xO

the literal of d that must be
included in xI in order for xI ∪ xO to be a satisfying assignment (if xO can be extended to a
satisfying assignment, otherwise choose an arbitrary but fixed value).

Recall that the value of A is defined as⊕O
xO∈int(XO)

⊗O
x∈xO

αO(x)⊗Ot
(⊕I

xI∈int(XI),xI∪xO|=T

⊗I
y∈xI

αI(y)
)
.

Since the inner sum only takes interpretations that satisfy T , we do not need to take the sum over
both values of a defined variable d but can restrict ourselves to the value d |xO

determined by
xO. ⊕I

xI∈int(XI),xI∪xO|=T

⊗I
y∈xI

αI(y)

=
⊕I

xI∈int(XI\{d}),xI∪xO|=T⊗
IαI(d |xO

)⊗I⊗I
y∈xI

αI(y)

=αI(d |xO
)⊗I⊕I

xI∈int(XI\{d}),xI∪xO|=T

⊗I
y∈xI

αI(y)

Next, we can plug these equalities into the expression for the value of A and use that t is a
homomorphism.⊕O

xO∈int(XO)

⊗O
x∈xO

αO(x)⊗Ot
(⊕I

xI∈int(XI),xI∪xO|=T

⊗I
y∈xI

αI(y)
)

=
⊕O

xO∈int(XO)

⊗O
x∈xO

αO(x)⊗Ot
(
αI(d |xO

)⊗I⊕I
xI∈int(XI\{d}),xI∪xO|=T

⊗I
y∈xI

αI(y)
)

=
⊕O

xO∈int(XO)

⊗O
x∈xO

αO(x)⊗Ot(αI(d |xO
))⊗Ot

(⊕I
xI∈int(XI\{d}),xI∪xO|=T

⊗I
y∈xI

αI(y)
)

Due to fact that t satisfies t(e⊗I) = e⊗O , t(e⊕I) = e⊕O , whenever the assignment xO cannot be
extended to a satisfying of T , the weight for the given assignment will be e⊕O .

Thus, we can again use the fact that the variable d is defined and sum over both of its values
in the outer sum, resulting in⊕O

(xO,d)∈int(XO∪{d}
⊗O

x∈xO
αO(x)⊗Ot

(⊗I
d∈dαI(d)

)
⊗Ot

(⊕I
xI∈int(XI\{d}),xI∪xO|=T

⊗I
y∈xI

αI(y)
)

=
⊕O

(xO,d)∈int(XO∪{d})
⊗O

x∈xO
αO(x)⊗O⊗O

d∈dt(αI(d))⊗Ot
(⊕I

xI∈int(XI\{d}),xI∪xO|=T

⊗I
y∈xI

αI(y)
)

Theory and Practice of Logic Programming 3

S1

S2

. . .

Sk

vO vI

Fig. A 1: Schematic variable order constructed in the proof of Lemma ??.

We observe that this expression is equal to the value of another 2AMC instance B = (T,XI \
{d},XO ∪ {d}, βI , βO,RI ,RO), where

βI(x) = αI(x) for x ∈ lit(XI \ {d})

βO(x) =

{
αO(x) if x ∈ lit(XO),

t(αI(x)) if x ∈ lit({d}). .

Now, if d occurs before some variable x ∈ X in some node n of T , then n is not an X-first NNF.
However, it is an XO ∪ {d}-first sd-DNNF. On this NNF we can solve the 2AMC-instance B in
polynomial time according to Theorem ??. By induction on the number of variables that occur
before x the claim follows.

Lemma 14
Let T be a CNF over variables Y and (T, χ) a TD of PRIM(T) of width k. Furthermore, let
X ⊆ Y and D = D(T ,X). If there exists t∗ ∈ V (T) such that (1) χ(t∗) ⊆ X∪D and (2) χ(t∗)
is a separator of X and Y\(X∪D), i.e., every path from X to Y\(X∪D) in PRIM(T) uses a
vertex from χ(t∗), then we can compile T into an X/D-first sd-DNNF in timeO(2k ·poly(|T |)).

Proof
The performance guarantee is due to Korhonen and Järvisalo (2021) and holds when we de-
cide the variables in the order they occur in the TD starting from the root. X/D-firstness
can be guaranteed by taking t∗ as the root of the TD and, thus, first deciding all variables in
χ(t∗) = {S1, . . . , Sn}. From condition (2) it follows that afterwards the CNF has decomposed
into separate components, which either only use variables from X ∪D or use no variables from
X. Thus, their compilation only leads to pure NNFs.

The variable order can be inspected schematically in Figure A 1. Here, vI is the remaining
variable order for the inner variables and vO is the remaining variable order for the outer (and
possibly defined) variables. The split signifies that the CNF composes into different components
and we can consider respective variable orders for them independently.

A.2 Omitted Lemmas Showing Homomorphism Property

Here, we give proofs for the fact that the transformation functions of the different 2AMC prob-
lems are homomorphisms.

4 R. Kiesel and P. Totis and A. Kimmig

Lemma i
The function

h : N2 → [0, 1], (n1, n2) 7→
{

0 if n2 = 0,
n1/n2 otherwise.

is a monoid homomorphism from ({(n1, n2) | n1 ≤ n2, n1, n2 ∈ N}, ·, (1, 1)), where multipli-
cation is coordinatewise, to ([0, 1], ·, 1).

Note that if n2 is zero then also n1 is zero, so no other division by zero is avoided by h.

Proof
It is clear that h((1, 1)) = 1, therefore the neutral element is preserved. Furthermore, let
(n1, n2), (n3, n4) ∈ N2. First assume, that one of n1 and n3 is zero. In this case,

h((n1, n2) · (n3, n4)) = h((0, n2n4)) = 0 = h((n1, n2))h((n3, n4)),

since one of h((n1, n2) and h((n3, n4)) is zero. Otherwise, both n1 and n3 and therefore also n2
and n4 are unequal to zero. Then

h((n1, n2) · (n3, n4)) = h((n1n3, n2n4)) =
n1n3
n2n4

=
n1
n2

n3
n4

= h((n1, n2))h((n3, n4)).

Lemma ii
Let A be a 2AMC instance corresponding to the evaluation problem of an DTProbLog program.
Then

h : {(p, pu) | p ∈ [0, 1], u ∈ R} → R ∪ {−∞}, (p, pu) 7→
{
−∞ if p = 0

pu otherwise.
.

is a monoid homomorphism from the monoid generated by the observable values to (R ∪
{−∞},+, 0).

While h is not a homomorphism on the whole set of values, it is one on the set of observable
values, since they are all of the form (p, pu) for p ∈ {0, 1}.

Proof
For ProbLog programs it is known, that probabilistic facts are not defined, instead, every as-
signment of the probabilistic facts can be uniquely extended to a satisfying assignment of the
program.

This implies two things that are useful for us. Firstly, the probability of a ProbLog program
being satisfied is always 1. Since an DTProbLog program is a ProbLog program conditioned on
any complete assignment to the decision variables, this also implies that the expected utility of
the conditioned program is of the form (1, u). This means that all the values of the inner sum are
of the form (1, u) or (0, 0).

Secondly, since probabilistic facts cannot be defined, any defined variable must have weights
of the form (1, u) as well, which also implies that even if we take out the defined variables from
the inner sum, the value of the inner sum is still of the form (1, u) or (0, 0).

Overall, it follows that the monoid generated by the observable values is as submonoid of

M = ({(1, u) | u ∈ R} ∪ (0, 0),⊗, (1, 1)).

Theory and Practice of Logic Programming 5

Now, the only thing left to prove is that h is a monoid homomorphism from M to (R ∪
{−∞},+, 0). This can again be easily as follows.

Let (p, pu), (p′, p′u′) ∈M. If p or p′ are zero, we have

h((p, pu)⊗ (p′, p′u′)) = h((0, 0)) = −∞ = h((p, pu))h((p′, p′u′)).

Otherwise, we know that both are one. Then

h((1, u)⊗ (1, u′)) = h((1, u+ u′)) = u+ u′ = h((1, u)) + h((1, u′)).

References

KORHONEN, T. AND JÄRVISALO, M. Integrating tree decompositions into decision heuristics of proposi-
tional model counters (short paper). In CP 2021, volume 210 of LIPIcs, pp. 8:1–8:11.

Acknowledgements This work has been supported by the Austrian Science Fund (FWF) Grant
W1255-N23 and by the Fonds Wetenschappelijk Onderzoek (FWO) project N. G066818N.

	Appendix A Full Proofs and Omitted Lemmas
	A.1 Full Proofs
	A.2 Omitted Lemmas Showing Homomorphism Property

	References

