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Analyzing Semantics of Aggregate Answer Set
Programming Using Approximation Fixpoint

Theory: Technical proofs

Proposition 1

H3 is regular iff |=3 is a lower- and |=↑
3 an upper-regular TSR.

Proof

Let H2 denote the two-valued truth assignment.

1. Assume H3 is regular; we show that |=3 is a lower-regular ternary satisfaction

relation:

• H2
I(ψ) = v with v ∈ {f , t}, iff H3

(I,I)(ψ) = v. This entails that H3
(I,I)(ψ) =

t iff H2
I(ψ) = t. So, (I, I) |=3 ψ iff I |=2 ψ and |=3 extends |=2.

• If (I, J) ≤p (I ′, J ′) then for every ψ : H3
(I,J)(ψ) ≤p H3

(I′,J′)(ψ). So, if

H3
(I,J)(ψ) = t = (t, t), the truth-value according to H3

(I′,J′)(ψ) should also

be equal to t. Consequently (I, J) |=3 ψ implies (I ′, J ′) |=3 ψ (monotone).

2. Assume H3 is regular; we show that |=↑
3 is an upper-regular ternary satisfaction

relation:

• H2
I(ψ) = v with v ∈ {f , t}, iff H3

(I,I)(ψ) = v. This entails that H3
(I,I)(ψ) =

f iff H2
I(ψ) = f . In other words, H3

(I,I)(ψ) ̸= f iff H2
I(ψ) ̸= f . Based on the

derivation of the upper satisfaction relation from the truth assignment, it is clear

that H3
(I,I)(ψ) ̸= f iff (I, I) |=↑

3 ψ. On the other hand, for the two-valued truth-

assignment, it holds that H2
I(ψ) ̸= f iff H2

I(ψ) = t iff I |=2 ψ. So, (I, I) |=↑
3 ψ

iff I |=2 ψ and |=↑
3 extends |=2.

• If (I, J) ≤p (I ′, J ′) then for every ψ : H3
(I,J)(ψ) ≤p H3

(I′,J′)(ψ). So, if

H3
(I,J)(ψ) = f = (f , f), the truth-value according to H(I′,J′)3(ψ) should also

be equal to f . Consequently (I, J) ̸|=↑
3 ψ implies (I ′, J ′) ̸|=↑

3 ψ. Therefore,

(I ′, J ′) |=↑
3 ψ implies (I, J) |=↑

3 ψ (anti-monotone).

3. Assume |=3 is a lower- and |=↑
3 an upper-regular ternary satisfaction relation; we

show that H3 is regular.

• (I, I) |=3 ψ iff I |=2 ψ iff (I, I) |=↑
3 ψ. Therefore H3

(I,I)(ψ) = t iff H2
I(ψ) = t

iff H3
(I,I)(ψ) ∈ {t,u}. Consequently, H

3
(I,I)(ψ) = f iff H2

I(ψ) = f . Hence H3

coincides with H2 for two-valued interpretations.

• If (I, J) ≤p (I ′, J ′), then (I, J) |=3 ψ implies (I ′, J ′) |=3 ψ. Therefore

H3
(I,J)(ψ) = t implies H3

(I′,J′)(ψ) = t. At the same time, (I ′, J ′) |=↑
3 ψ im-

plies that (I, J) |=↑
3 ψ. Or equivalently, (I, J) ̸|=↑

3 ψ implies (I ′, J ′) ̸|=↑
3 ψ.

Consequently H3
(I,J)(ψ) = f implies H3

(I′,J′)(ψ) = f . If H3
(I,J)(ψ) = u no re-
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strictions are imposed on H3
(I′,J′)(ψ) = u. In all three scenarios it holds that if

(I, J) ≤p (I ′, J ′), then H3
(I,J)(ψ) ≤p H3

(I′,J′)(ψ).

Proposition 2

If |=3 and |=↑
3 are lower- and upper-regular TSRs, then AP is an Lc approximator.

Moreover it is isomorphic to the three-valued ΦP induced by the three-valued truth

assignment H3 combining |=3 and |=↑
3.

Proof

We have to proof that AP = (A
|=3

P (I, J), A
|=↑

3

P (I, J) is an approximating operator for TP
if |=3 and |=↑

3 are lower- and upper-regular respectively.

1. ≤p-monotonicity, i.e., ∀I, J, I ′, J ′ : (I, J) ≤p (I ′, J ′) ⇔ AP (I, J) ≤p AP (I
′, J ′).

AP (I, J) ≤p AP (I
′, J ′) is equivalent to A

|=3

P (I, J) ≤ A
|=3

P (I ′, J ′) ∧ A|=↑
3

P (I, J) ≥
A

|=3

P (I ′, J ′) according to how the precision order is defined. Now, AP (I, J) ≤p

AP (I
′, J ′) means that, for every atom p, it holds that p ∈ A

|=3

P (I, J) =⇒ p ∈
A

|=3

P (I ′, J ′) and p ∈ A
|=↑

3

P (I ′, J ′) =⇒ p ∈ A
|=3

P (I, J). If |=↑
3 is upper-regular,

then for every formula ψ : (I ′, J ′) |=↑
3 ψ implies (I, J) |=↑

3 ψ. So for every rule

p← ψ ∈ P : (I ′, J ′) |=↑
3 ψ implies (I, J) |=↑

3 ψ. Now, for every atom p ∈ A|=↑
3

P (I ′, J ′)

there exists a rule p ← ψ ∈ P , such that (I ′, J ′) |=↑
3 ψ and therefore (I, J) |=↑

3

ψ. Consequently, according to the definition for A
|=↑

3

P (I, J), it follows that p ∈
A

|=↑
3

P (I, J). Analogously, we see that for every atom p ∈ A
|=3

P (I, J) there exists

a rule p ← ψ ∈ P , such that (I, J) |=3 ψ. If |=3 is lower-regular, this entails

that (I ′, J ′) |=3 ψ and therefore p ∈ A
|=3

P (I ′, J ′) by definition of A
|=3

P (I ′, J ′) so

≤p-monotonicity holds.

2. AP extends TP , i.e., ∀I : AP (I, I) = (TP (I), TP (I)). In other words, A
|=3

P (I, I) =

TP (I)) and A
|=↑

3

P (I, I) = TP (I)). TP (I)) is by definition equal to {p|p ← ψ ∈
P, I |=2 ψ}. Since |=3 and |=↑

3 are lower- and upper-regular respectively, we know

that (I, I) |=3 ψ iff I |=2 ψ iff (I, I) |=↑
3 ψ. Therefore, A

|=3

P (I, I) = {p|p ← ψ ∈
P, (I, I) |=3 ψ} = {p|p ← ψ ∈ P, I |=2 ψ} = TP (I)) = A

|=↑
3

P (I, I) = {p|p ← ψ ∈
P, (I, I) |=↑

3 ψ}.
3. In conclusion, AP (I, J) is an approximating operator if |=3 and |=↑

3 are lower- and

upper-regular.

Finally, we have to prove that AP is isomorphic to the three-valued ΦP . Let I = (I, J)

be a three-valued interpretation.

• Then AP (I, J)1 = A
|=3

P (I, J) = {p|(p ← ψ) ∈ P, (I, J) |=3 ψ} = {p|(p ← ψ) ∈
P,H3(I, J)(ψ) = t}. On the other hand, we know that ΦP (I, J)1 denotes the set

of atoms p such that lub{H3(I, J)(ψ)|(p← ψ) ∈ P} = t or thus, such that at least

one rule with p in the head has a body that evaluates to t. This corresponds to the

set {p|(p← ψ) ∈ P,H3(I, J)(ψ) = t}. So AP (I, J)1 = ΦP (I, J)1.
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• Then AP (I, J)2 = A
|=↑

3

P (I, J) = {p|(p ← ψ) ∈ P, (I, J) |=↑
3 ψ} = {p|(p ←

ψ) ∈ P,H3(I, J)(ψ) ∈ {t,u}}. ΦP (I, J)2 denotes the set of atoms p such that

lub{H3(I, J)(ψ)|(p ← ψ) ∈ P} ∈ {t,u}. In words, at least one rule with p in the

head should have a body that at least evaluates to u. This corresponds again to

the set {p|(p← ψ) ∈ P,H3(I, J)(ψ) ∈ {t,u}}. So AP (I, J)2 = ΦP (I, J)2.

Proposition 3 (semi-constructive answer sets)

If |=3 is lower-monotone, then for L-programs P , I is an answer set of P iff I is the limit

of the increasing sequence ⟨Iα⟩α≥0 where (1) I0 = ∅, (2) Iα+1 = A
|=3

P (Iα, I) if Iα ⊆ I, (3)
Iλ =

⋃
α<λ Iα for limit ordinal λ.

Proof

If |=3 is lower-monotone, then for L-programs P we find that λI : A
|=3

P (I, J) = {p|∃(p←
ψ) ∈ P : (I, J) |=3 ψ} is a monotone operator. By the Knaster–Tarski theorem for

monotone operators, we know that the described increasing sequence converges to the

least fixpoint of the operator. Therefore, all we need to proof is that the least fixpoint of

λJ : A
|=3

P (J, I) is I iff I is an answer set of P . I is the least fixpoint of λJ : A
|=3

P (J, I) iff

(i) A
|=3

P (I, I) = I and (ii) there is no J ⊂ I such that A
|=3

P (J, I) = J .

1. (i) and (ii) =⇒ I is an answer set.

If A
|=3

P (J, I) = J , then for every rule p← ψ ∈ P , it holds that if (J, I) |=3 ψ, then

p ∈ J and thus (J, I) |=3 p. Thus if (i), then for every (p← ψ) ∈ P , if (I, I) |=3 ψ

and hence I |=2 ψ, then (I, I) |=3 p and hence I |=2 p. This is condition (1) of the

answer set definition (Definition 4).

Since λJ : A
|=3

P (J, I) is monotone and I is the least fixpoint, we find that from (ii), it

follows that for every J ⊂ I, there exists a rule (p← ψ) ∈ P , such that (J, I) |=3 ψ

and (J, I) ̸|=3 p, i.e., there is no J ⊂ I such that for every rule (p ← ψ) ∈ P , if
(J, I) |=3 ψ then (J, I) |=3 p. This is condition (2) of Definition 4, so I is an answer

set.

2. I is an answer set =⇒ (i).

If I is an answer set, then for every (p ← ψ) ∈ P , if I |=2 ψ, then I |=2 p. By

definition of A
|=3

P , this entails that A
|=3

P (I, I) = I ′ ⊆ I. Assume I ′ ⊂ I, then for

every rule p← ψ ∈ P , if (I ′, I) |=3 ψ, then by lower-monotonicity of |=3, (I, I) |=3

ψ, hence by definition of A
|=3

P , p ∈ A
|=3

P (I, I) = I ′, which entails (I ′, I) |=3 p.

Therefore I ′ violates condition (2) of the answer set definition.

3. I is an answer set =⇒ (ii).

Assume that there exists a J ⊂ I, such that A
|=3

P (J, I) = J , then it holds that for

every rule (p← ψ) ∈ P , if (J, I) |=3 ψ, then (J, I) |=3 p, so J violates condition (2)

of the answer set definition.

Proposition 4

Answer sets and AFT-stable models coincide for L programs with a lower regular TSR.
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Proof

If |=3 is lower-regular, then the AFT-stable models are defined. Recall from Section 2

that, according to the constructive test, x is a stable model iff x is the limit of the lfp

construction of λz : A(z, x)1 with A(z, x) an approximator on Lc. From Proposition 2,

we know that AP (I, J) = (A
|=3

P (I, J), A
|=↑

3

P (I, J)) is an approximator for TP if |=3 and |=↑
3

are lower- and upper-regular. This holds as long as we choose an upper-regular |=↑
3. Then

the first component AP (I, J)1 corresponds to A
|=3

P (I, J). Thus J is a stable model iff J

is the limit of the lfp construction of λI : A
|=3

P (I, J) iff J is an answer set (by Proposition

3).

Proposition 5

For I ∈ [⊥, J ], I |=2 P
J iff for every rule p← ψ ∈ P , if (I, J) |=GL ψ then (I, J) |=GL p.

J is a GL-answer set of P iff J is an AFT-stable model of P under strong Kleene truth

assignment.

Proof

1. For every rule rJ in P J there exists a counterpart r in P , however, the opposite is

not true. Since the head of a rule is never changed in the reduct, proving equivalence

of the relations corresponds to showing for every rule p ← ψ that (I, J) |=GL ψ

if and only if (p ← ψ)J exists and I |=2 ψ
J . Any rule p ← ψ in P is of the form

p← l1∧...∧ln∧¬t1∧...∧¬tm with l1, ..., ln, t1, ..., tm atoms. If there exists an atom ti
such that ti ∈ J , then the rule is deleted during the first step of the construction of

the reduct. Consequently, for every I we expect (I, J) ̸|=GL ψ. Indeed, from ti ∈ J
the satisfaction relation deduces that (I, J) ̸|=GL ¬ti and therefore (I, J) ̸|=GL ψ.

If for every j ∈ [1,m] it holds that tj /∈ J , then p← ψ is transformed to (p← ψ)I

during the second step of the reduct-construction. This new rule is now given by

p ← l1 ∧ ... ∧ ln. From the definition of the satisfaction relation |=2 we know that

I |=2 ψ
J if and only if l1, ..., ln ∈ I and because (I, J) |=GL ¬ti for all i, we have

(I, J) |=GL ψ. Hence I |=2 ψ
J iff (I, J) |=GL ψ.

2. We now know that for I ∈ [⊥, J ], I |=2 P
J iff (I, J) |=GL P with P J the GL-reduct

of P for J . Since |=GL is lower-regular and P is non-disjunctive, we know that J is

an AFT stable model iff J is an answer set of P by Proposition 4. J is an answer

set of P iff J |=2 P and there is no I ⊂ J such that (I, J) |=GL P . Hence, J is

an answer set of P iff J |=2 P and there is no I ⊂ J such that I |=2 P
J iff J is a

GL-answer set.

Proposition 6

Let |=a, |=b be TSR’s that coincide with |=GL on aggregate free bodies. If |=a≤p|=b and

J is an answer set associated with |=a (an a-answer set), then J is a b-answer set.

Proof

Assume that J is an a-answer set. This means that (i) for every (p← ψ) ∈ P , if J |=2 ψ,

then J |=2 p and (ii) for every I ⊂ J it holds that there exists a rule (p ← ψ) ∈ P such

that (I, J) |=a ψ and (I, J) ̸|=a p. For J to be a b-answer set, observe that (i) holds as it

is a a-answer set; it remains to show that (ii) holds. Consider the same rule as above. By
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|=a≤p|=b, we find that (I, J) |=b ψ. Moreover, in the considered programs, p can only be

a propositional atom. If (I, J) ̸|=a p, then p ̸∈ I and thus (I, J) ̸|=b p. Consequently, J is

a b-answer set of P .

Proposition 7

The TSRs |=triv, |=ult and |=bnd are lower-regular. Since |=triv≤p|=bnd≤p|=ult, an answer

set of |=triv is one of |=bnd, and one of |=bnd is one of |=ult.

Proof

From definition 7.1 in the paper by Pelov et al. (2007), it follows that Htriv,Hult and

Hbnd are regular. Then the first part of this proposition follows from Proposition 1, the

second part from Proposition 6.

Proposition 8

For aggregate programs containing only positive conditions in aggregate atoms, the TSR

|=GZ is identical to the TSR |=triv and lower-regular for consistent pairs, i.e., with (I, J)

a consistent pair, (I, J) |=GZ a
Aggr iff (I, J) |=triv a

Aggr.

Proof

We only need to proof this for aggregate atoms as |=GZ is truth functional.

1. (I, J) |=GZ aAggr entails (I, J) |=triv aAggr. By definition of |=GZ, (I, J) |=GZ

aAggr iff J |=2 a
Aggr and (I, J) |=GZ

∧
{condj ∈ Cond(aAggr)1|J |=2 condj}. The

conditions are positive, so they are evaluated in I, hence, given that (I, J) |=GZ

aAggr, (I, J) |=GZ

∧
{condj ∈ Cond(aAggr)|J |=2 condj} and I |=2

∧
{condj ∈

Cond(aAggr)|J |=2 condj} and, for conditions in this set, condIi = condJi . For the

other conditions (such that J ̸|=2 condi), they are false in J hence also false in

I ⊆ J . So, for all conditions, condIi = condJi and (I, J) |=triv a
Aggr.

2. (I, J) |=triv a
Aggr entails (I, J) |=GZ a

Aggr.

By definition of |=triv, if (I, J) |=triv a
Aggr, then J |=2 a

Aggr and condi
J = condi

I

for every condition condi ∈ Cond(aAggr). Therefore, for every condition condi ∈
{condj ∈ Cond(aAggr)|J |=2 condj} it holds that I |=2 condi. By definition of |=GZ

for conjunction of literals, then (I, J) |=GZ

∧
{condj ∈ Cond(aAggr)|J |=2 condj}.

Hence, (I, J) |=GZ a
Aggr.

3. Since the satisfaction relation |=GZ is equivalent to |=triv for negation-free aggregate

atoms and |=triv is lower-regular, |=GZ is also lower-regular.

Proposition 9

(i) |=MR extends |=2, i.e., (I, I) |=MR ψ iff I |=2 ψ. (ii) |=MR is lower-monotone, i.e., if

I ⊆ I ′ and (I, J) |=MR ψ, then (I ′, J) |=MR ψ.

Proof

1 For aAggr = Agg({a1 : cond1, ·, an : condn}) ∗ w, Cond(aAggr) = {condi|i ∈ [1, n]}
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1. The satisfaction relation is truth-functional hence we only need to prove this for

aggregate atoms. We know that (I, I) |=MR aAggr iff I |=2 a
Aggr and there exists

an interpretation Z ⊆ I such that Z |=2 a
Aggr. Take Z = I and it is clear that

I |=2 aAggr implies that there exists a Z that satisfies the requirements. This

observation leads to (I, I) |=MR aAggr iff I |=2 a
Aggr.

2. The part of the definition for |=MR that was taken from |=GL satisfies this property

since (I, J) ≤p (I ′, J) and |=GL is lower-regular. For the rule regarding aggregates,

it is clear that if (I, J) |=MR aAggr, then J |=2 a
Aggr and there exists a Z ⊆ I ⊆ I ′

such that Z |=2 aAggr. Clearly, this means that (I ′, J) |=MR aAggr, so |=MR is

lower-monotone.

Proposition 10

For convex aggregate atoms, |=MR behaves lower-regular and equivalent with |=ult.

Proof

1. We have already shown that it extends the satisfaction relation |=2 for arbitrary

aggregate atoms, including convex ones. All that is left to prove is its ≤p-monotone

behaviour. If (I, J) ≤p (I ′, J ′) and (I, J) |=MR aAggr with aAggr a convex aggregate

atom, then J |=2 a
Aggr and there exists an interpretation Z ⊆ I such that Z |=2

aAggr. According to the definition of convex aggregate atoms, this implies that for

every interpretation Z ′ such that Z ⊆ Z ′ ⊆ J , Z ′ |=2 aAggr. This includes the

interpretations I, I ′ and J ′. From this, it is trivial to see that (I ′, J ′) |=MR aAggr.

2. If (I, J) |=MR aAggr, then J |=2 a
Aggr and there exists an interpretation Z ⊆ I

such that Z |=2 a
Aggr. Since aAggr is convex, this means that for every X such that

Z ⊆ (I ⊆)X ⊆ J , X |=2 a
Aggr. Thus, (I, J) |=ult a

Aggr.

3. If (I, J) |=ult a
Aggr, then X |=2 a

Aggr for every I ⊆ X ⊆ J , thus J |=2 a
Aggr and

I |=2 a
Aggr with I ⊆ I. Therefore, (I, J) |=MR aAggr.

Proposition 11

|=FPL extends |=2, i.e., (I, I) |=FPL ψ iff I |=2 ψ. For conjunctions of aggregate free

literals, |=FPL coincides with |=GL.

Proof

1. |=FPL extends |=2:

By definition (I, I) |=FPL ψ iff I |=2 ψ and I |=2 ψ. Hence (I, I) |=FPL ψ iff I |=2 ψ.

2. |=FPL coincides with |=GL for conjunctions of aggregate free literals:

For literals li it is easy to see that: (I, J) |=FPL li iff (I, J) |=GL li since if I |=2 p,

then J |=2 p and if J |=2 ¬p, then I |=2 ¬p. For conjunctions of literals
∧n

i=1 li,

we have (I, J) |=FPL

∧n
i=1 li iff I |=2

∧n
i=1 li and J |=2

∧n
i=1 li. By the definition

of |=2 for conjunctions, this is equivalent to I |=2 li and J |=2 li for every li
in the conjunction. This in turn is equivalent to (I, J) |=FPL li. By means of

the aforementioned result for literals, this is equivalent with (I, J) |=GL li. By

definition of |=GL for conjunctions of literals, we then find (I, J) |=FPL

∧n
i=1 li iff

(I, J) |=GL

∧n
i=1 li.
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Proposition 12

For convex aggregate atoms, the ternary satisfaction relation |=FPL behaves lower-regular

and equivalent to |=ult.

Proof

1. Firstly, we proof: If (I, J) |=ult a
Aggr, then (I, J) |=FPL a

Aggr.

If (I, J) |=ult a
Aggr, then X |=2 a

Aggr for every I ⊆ X ⊆ J . Consequently, I |=2

aAggr and J |=2 a
Aggr, hence (I, J) |=FPL a

Aggr.

2. Secondly, we proof: If (I, J) |=FPL a
Aggr, then (I, J) |=MR aAggr.

If (I, J) |=FPL aAggr, then I |=2 aAggr and J |=2 aAggr. Thus J |=2 aAggr and

I |=2 a
Aggr with I ⊆ I. Therefore, (I, J) |=MR aAggr.

3. This means that |=FPL is placed between |=ult and |=MR in the precision order. How-

ever, for programs with only convex aggregates, |=ult and |=MR coincide. Therefore,

|=FPL will also coincide with these semantics.

4. Consequently, |=FPL is a lower-regular relation when we only consider convex ag-

gregates.

Proposition 13

|=F extends |=2, i.e., (I, I) |=F ψ if I |=2 ψ.

Proof

The truth-assignment is truth-functional, therefore, we only need to prove the property

for aggregate atoms. We know that (I, I) |=F aAggr iff I |=2 a
Aggr and I |=2 Agg({ai :

condi ∈ {a1 : cond1, . . . , an : condn}|I |=2 condi}) ∗w. It follows that if I |=2 a
Aggr, then

I |=2 Agg({ai : condi ∈ {a1 : cond1, . . . , an : condn}|I |=2 condi}) ∗ w. This observation

leads to (I, I) |=F a
Aggr iff I |=2 a

Aggr.

Proposition 14

For convex aggregate atoms, |=F behaves lower-monotone, i.e., if I ⊆ I ′ and (I, J) |=F ψ,

then (I ′, J) |=F ψ.

Proof

|=F extends |=GL and the latter is lower-monotone. So we only need to consider a ψ

that is a convex aggregate atom. If aAggr is a convex aggregate atom, then aAggr
J =

Agg({ai : condi ∈ {a1 : cond1, . . . , an : condn}|I |=2 condi}) ∗ w is also convex since the

transformation only deletes conditions from the original convex aggregate. This means

that if X ⊆ Y ⊆ Z, X |=2 a
Aggr
J , and Z |=2 a

Aggr
J , then Y |=2 a

Aggr. It is easy to see that

if J |=2 a
Aggr, then J |=2 a

Aggr
J . Therefore, if (I, J) |=F a

Aggr and (I, J) ≤p (I ′, J), then

I ′ |=2 a
Aggr
J and thus (I ′, J) |=F a

Aggr.

Proposition 15

For anti-monotone aggregate atoms, |=F behaves lower-regular and equivalent with |=ult.
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Proof

Let aAggr
J = Agg({ai : condi ∈ {a1 : cond1, . . . , an : condn}|J |=2 condi}) ∗ w.

1. If (I, J) |=ult a
Aggr, then X |=2 aAggr for every I ⊆ X ⊆ J . Thus, J |= aAggr

and therefore J |= aAggr
J . Since aAggr is anti-monotone and the only transformation

between aAggr and aAggr
J deletes conditions, aAggr

J must be anti-monotone. Hence

I |= aAggr
J and (I, J) |=F a

Aggr.

2. If (I, J) |=F a
Aggr, then J |=2 a

Aggr. From the anti-monotonicity of aAggr it follows

that for all X ⊆ J , X |=2 a
Aggr. Hence, (I, J) |=ult a

Aggr.

3. An anti-monotone aggregate atom is convex and |=F and |=ult coincide for convex

aggregate atoms. Therefore, for anti-monotone aggregate atoms, |=F behaves lower-

regular.
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