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Appendix

In this section, we prove the results stated in the paper. For Theorem 5, we divide it into sev-
eral insightful results, grouped by the classes of operators, which we present after the theorem.
These intermediate results are also stated as theorems (Theorems 11-23). For the sake of simplic-
ity and in order to highlight the important results, we prove some more technical lemmas only
subsequently.

Theorem 1
The following relations hold for all F:

1. (W) is equivalent to (NP);
2. (SP) implies (SE);
3. (CP) and (SI) together are equivalent to (SP);
4. (sC) and (wC) together are equivalent to (CP);
5. (CP) implies (wE);
6. (SE) and (SI) together imply (PP);
7. (wSP) and (sSP) together are equivalent to (SP);
8. (sC) and (SI) together imply (sSP);
9. (wC) and (SI) together imply (wSP);

10. (W) and (PP) together imply (SC);
11. (SC) implies (SE);
12. (W) implies (NC);
13. (wC) is incompatible with (W) for F over C such that Cn ⊆ C;
14. (wC) and (UI) together are incompatible with (RC) for F over C such that Cn ⊆ C.
15. (SI) implies (UI);
16. (CP) and (UI) together are equivalent to (UP);
17. (SI) implies (SIu);
18. (UP) is incompatible with (SIu).

Proof
The first two results were already proven in the literature, so we focus on the remainder.

To show 3., first, let F be a class of operators satisfying (SP). Let f ∈ F, V ⊆ A, and P a
program. The fact that F satisfies (CP) follows immediately from (SP), by taking R = /0. The
proof that (SP) implies (SI) involves reasoning with subsignatures. For a program P′ over A\V ,
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we denote byHT ‖V (P) the set of HT-models of P over signature A\V . Let R ∈ C with A(R)⊆
A\V . To show (SI) we aim to prove that f(P,V )∪R ≡HT f(P∪R,V ), i.e., HT (f(P,V )∪R) =
HT (f(P∪ R,V )). We first prove that f(P,V )∪ R ≡HT f(P∪ R,V ) for the restricted signature
A\V , i.e., HT ‖V (f(P,V )∪R) = HT ‖V (f(P∪R,V )). Let R′ be a program such that A(R′) ⊆
A\V . Then, by (SP), we have AS(f(P,V )∪ R∪ R′) = AS(P∪ R∪ R′)‖V . Also by (SP), we
have AS(f(P∪R,V )∪R′) = AS(P∪R∪R′)‖V . Therefore, AS(f(P,V )∪R∪R′) = AS(f(P∪
R,V )∪R′). This means that f(P,V )∪R ≡HT f(P∪R,V ) for the restricted signature A\V , i.e.,
HT ‖V (f(P,V )∪R) =HT ‖V (f(P∪R,V )). Now let M be an HT-interpretation overA. Then, since
f(P,V )∪R is a program over A\V , we have that M |=HT f(P,V )∪R iff M‖V |=HT f(P,V )∪R.
SinceHT ‖V (f(P,V )∪R) =HT ‖V (f(P∪R,V )), we have that M‖V |=HT f(P,V )∪R iff M‖V |=HT

f(P∪R,V ). Since f(P∪R,V ) is a program over A\V , we know that M‖V |=HT f(P∪R,V ) iff
M |=HT f(P∪R,V ). Therefore,HT (f(P,V )∪R) =HT (f(P∪R,V )).

Now let F be a class of operators satisfying (CP) and (SI). Let f ∈ F, V ⊆A, P a program, and
R a program withA(R)⊆A\V . Using (SI) we haveAS(f(P,V )∪R) =AS(f(P∪R,V )). Using
(CP) we have AS(f(P∪R,V )) = AS(P∪R)‖V . Putting these together we have AS(f(P,V )∪
R) =AS(P∪R)‖V . Therefore, (SP) holds.

Result 4. follows immediately from the fact that (sC) and (wC) correspond to the two inclu-
sions on the equality condition in (CP).

To show 5., let F be a class of operators satisfying (CP). Let f ∈ F, V ⊆ A, and P1,P2 be
two programs such that AS(P1) = AS(P2). By (CP), we have the equalities: AS(f(P1,V )) =

AS(P1)\V =AS(P2)\V =AS(f(P2,V )). Thus, AS(f(P1,V )) =AS(f(P2,V )).
To show 6., let F be a class of operators satisfying (SE) and (SI). Let f ∈ F, V ⊆ A, and P

a program. Consider R = {r : P |=HT r and r does not contain variables from V}. Then clearly
f(P,V )∪R |=HT R. By (SI), we have that f(P,V )∪R ≡HT f(P∪R,V ). We can then conclude
that f(P∪ R,V ) |=HT R. Now, by (SE) and the fact that P∪ R ≡HT P, we can conclude that
f(P∪R,V ) ≡HT f(P,V ). Therefore, f(P,V ) |=HT R, i.e., f(P,V ) |=HT r for every rule r such that
P |=HT r and r does not contain V . Thus (PP) is satisfied.

Result 7. can be shown straightforwardly due to the fact that the conditions of (sSP) and (wSP)
provide the two directions of the condition of (SP).

To show 8., let f ∈ F, P ∈ C(f) and V ⊆ A such that F satisfies (sC) and (SI). Consider M ∈
AS(f(P,V )∪R). By (SI), we have that M ∈ AS(f(P∪R,V )). By (sC), we obtain M ∈ AS(P∪
R)‖V which finishes the proof.

To show 9., let f ∈ F, P ∈ C(f) and V ⊆ A such that F satisfies (wC) and (SI). Consider
M ∈ AS(P∪ R)‖V . By (wC), we obtain M ∈ AS(f(P∪ R,V )). Then, by (SI), we have M ∈
AS(f(P,V )∪R) which finishes the proof.

Results 10.–12. have been shown by Gonçalves et al. (2017).
To show 13. and 14., we rely on the following example which fits the class of programs re-

quired. Consider P = {a← p; p← not not p} from which we want to forget about p. Note that
though the program uses double negation, we can easily replace p ← not not p by two rules
p← not q and q← not p and forget both p and q. To ease the presentation, we rely on P. The
idea is now to show that in both cases, it is not possible to satisfy both (sets of) properties simul-
taneously. Note that P has two answer sets, /0 and {a, p}.

Consider first 13., and suppose both (wC) and (W) are satisfied. By (wC), we have that
AS(f(P,{p})) ⊇ { /0,{a}}. But there is only one rule over a that has (at least) these two answer
sets: a← not not a. Now, P has an HT-model 〈 /0,a〉, while a forgetting result f(P,{p}) cannot
have this HT-model. We obtain a contradiction to (W) being satisfied.
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Now consider 14., and suppose that (wC), (UI), and (RC) are satisfied. Again, by (wC), we
have that AS(f(P,{p})) ⊇ { /0,{a}}, and there is only one rule over a that has (at least) these
two answer sets: a← not not a. Let this rule be r in (RC). Clearly, f(P,{p}) |=HT r. Consider r′

such that P |=HT r′. Note that thus r′ cannot be r itself. By (UI), we have f({r′},{p})∪{a←
} ≡HT f({r′}∪{a←},{p}). We consider two cases. First, f({r′},{p}) has no HT-model 〈 /0,a〉.
Then, it cannot have an HT-model 〈a,a〉. We derive a contradiction to the condition imposed by
(UI). Second, f({r′},{p}) has an HT-model 〈 /0,a〉 (as well as 〈a,a〉). But this is a contradiction
to f(P,{p}) |=HT r, which finishes the argument.

Then, 15. is a consequence of the definition of the respective properties where the uniform
property, (UI), is just a special case of (SI), and the proof of 16. is a precise adaptation of that of
3. replacing all used programs R by sets of facts. Finally, 17 is straightforward by the definitions
of (SI) and (SIu), and 18. has been shown by Gonçalves et al. (2021).

Theorem 2
For all Horn programs P, every V ⊆A(P), and all forgetting operators f1, f2 in the classes Fstrong,
Fweak, FS, FHT, FSM, FSas, FSE, FSP, FR, FM, and FUP, it holds that f1(P,V )≡HT f2(P,V ).

Proof
We will base our proof on Theorem 10 by Wang et al. (2014), a representation result for HT-
Forgetting. This theorem implies that, whenever FHT is closed for a class of programs, then it
coincides with any class of forgetting operators that is closed for the same class and satisfies
(W) and (PP) for that class. Our aim now is to prove that every class of forgetting operators
mentioned in the statement of this theorem coincides with FHT. Just for the sake of simplify
we will use the results in Theorem 5. We should stress, nevertheless, that there is no circular
dependence between these two results.

In order to prove that a class F coincides with FHT on the class of Horn programs, we need to
prove that FHT is closed for the class of Horn programs, and: (i) F is closed for the class of Horn
programs, (ii) F satisfies (W) and (PP) on the class of Horn programs.

The fact that FHT is closed for the class of Horn programs is precisely Theorem 8 (Wang et al.
2014). So we now prove that each other class of operators satisfies (i) and (ii).

First, it is straightforward from the definitions of Fstrong and Fweak that they coincide on the
class of Horn programs. It is also clear that they are closed for this class. Since Fstrong satisfies
(W) (Theorem 5), Fweak satisfies (PP) (Theorem 5), and they coincide on the class of Horn
programs, they both satisfy (PP) and (W) on that class.

Thm. 4 states that FSE and FS coincide with FHT on the class of disjunctive programs, whenever
the result of FHT is a disjunctive program. Since FHT is closed for the class of Horn programs, it
follows immediately that FSE and FS coincide with FHT when restricted to Horn programs.

It follows easily from the algorithm presented by Knorr and Alferes (2014) that for fSas ∈ FSas,
V ⊆A, and P a Horn program fSas(P,V )≡HT fstrong(P,V ). As a consequence, FSas, just as Fstrong,
coincides with FHT on the class of Horn programs.

Since FHT coincides with FSas for Horn programs, we have that FHT satisfies (CP) for Horn
programs. Therefore, by definition, FSM coincides with FHT for Horn programs.

In the case of FSP, FR, and FM, the result is a consequence of Proposition 6 (Gonçalves et al.
2020), which shows that FSP coincides with FHT when restricted to Horn programs, and Propo-
sition 21 (Gonçalves et al. 2020), which shows that the three classes FSP, FR, and FM coincide
when restricted to Horn programs.
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Finally, in the case of FUP, Proposition 1 (Gonçalves et al. 2019) shows that FUP coincides
with FHT when restricted to Horn programs.

Theorem 3
Consider the class of disjunctive programs. Then, FS and FSE coincide.

Proof
First recall that, on the one hand, given a disjunctive program P and V ⊆ A, PS(P,V ) is de-
fined by removing from Cn(P,a) = {r | r disjunctive,P |=HT r, A(r)⊆A(P)} all rules in which
atoms from V occur. On the other hand, given a disjunctive program P and V ⊆ A, for any
fSE ∈ FSE, we have that fSE(P,V ) is equivalent to CnA(P)∩LA(P)\V , where CnA(P) = {r ∈ LA |
r disjunctive,P `s r}. Since, as Wong (2009) showed, the consequence `s is sound and complete
with respect to |=HT, we have that Cn(P,a) =CnA(P)∩LA(P). Therefore, Cn(P,a)∩LA(P)\V =

CnA(P)∩LA(P)\V . This means that f ∈ FS iff f(P,V ) ≡HT Cn(P,a)∩LA(P)\V iff f(P,V ) ≡HT

CnA(P)LA(P)\V iff f ∈ FSE. Therefore, FS = FSE.

Theorem 4
Let P be a disjunctive program, V ⊆A(P), fS ∈ FS, fHT ∈ FHT, and fSE ∈ FSE. Then, fS(P,V )≡HT

fHT(P,V )≡HT fSE(P,V ) whenever fHT(P,V ) is strongly equivalent to a disjunctive program.

Proof
Let P be a disjunctive program, V ⊆ A(P), such that fHT(P,V ) is strongly equivalent to a dis-
junctive program. We only prove that fHT(P,V )≡HT fSE(P,V ) since Theorem 3 already states that
fS(P,V )≡HT fSE(P,V ). Since both FHT and FSE satisfy (W), we have that (i) P |=HT fHT(P,V ) and
(ii) P |=HT fSE(P,V ). Since FSE satisfies (PP) (restricted to disjunctives programs) and fHT(P,V )

is equivalent to a disjunctive program, we can use (i) to conclude that fSE(P,V ) |=HT fHT(P,V ).
Since FHT satisfies (PP) we can use (ii) to conclude that fHT(P,V ) |=HT fSE(P,V ). Therefore,
fSE(P,V )≡HT fHT(P,V ).

Theorem 5
All results in Table 3 hold.

Proof
The result is an immediate consequence of Thms. 11 to 23.

Theorem 6
For Horn programs, the following holds:

• Fstrong, Fweak, FS, FHT, FSM, FSas, FSE, FSP, FR, FM, and FUP satisfy (W), (RC), (SP), and
(PI);

• Fsem satisfies (CP) and (PI);
• FW satisfies the same properties as in the general case.
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Proof
The fact that Fstrong, Fweak, FS, FHT, FSM, FSas, FSE, FSP, FR, FM, and FUP, when restricted to
Horn programs, satisfy (W), (RC), (SP), and (PI) follows easily from Thm. 2, and the fact that
FSas satisfies all these properties.

The fact that Fsem, when restricted to Horn programs, additionally satisfies (CP) follows easily
from the fact that any Horn program has at most one answer set, i.e., AS(P) = {A} or AS(P) =
{}. Then, for every fsem ∈ Fsem, by definition we haveAS(fsem(P,V )) =MIN (AS(P)‖V ). Since
AS(P) has at most one element we haveAS(fsem(P,V ))= {A‖V}=AS(P)‖V orAS(fsem(P,V ))=

{}=AS(P)‖V . Therefore, Fsem satisfies (CP) when restricted to Horn programs.

Theorem 7
If a class F of operators over a class C of logic programs satisfies property (CP), then every
operator of that class can be used to obtain uniform interpolants w.r.t. p∼.

Proof
For that, assume that f satifies (CP), i.e, given P and V ⊆ A, we have that AS(f(P,V )) =

AS(P)‖V . Condition (i) of uniform interpolation follows easily from the fact that every M ∈
AS(P) is such that M‖V ∈ AS(f(P,V )), and therefore M |= f(P,V ). For condition (ii), we let
R be a program such that P ` R and A(R) ⊆ A\V , and we aim to conclude that f(P,V ) p∼ R.
Let M ∈ AS(f(P,V )). Then, since we are assuming that AS(f(P,V )) =AS(P)‖V , we know that
there is M∗ ∈AS(P) such that M = M∗\V . Given that P ` R, we can conclude that M∗ |= R, and
since R is a program over A\V , we can conclude that M |= R.

Theorem 8
Every forgetting operator of the classes FSM, FM, FUP, and FR can be used to obtain uniform
interpolants with respect to p∼.

Proof
The case of FSM, FM, and FUP follows from Thm.7 and the fact that these classes satisfy (CP).

In the case of FR let P be a program and V ⊆ A. We start by considering M ∈ AS(P).
Taking into account the definition of FR, it is easy to see that, for every f ∈ FR, we have that
〈M\V,M\V 〉 ∈ HT (f(P,V )). This implies that M\V |= f(P,V ), and since f(P,V ) is over A\V ,
we also have that M |= f(P,V ), meaning that condition (i) of uniform interpolation is satisfied.
Condition (ii) is a consequence of FR satisfying (sC), i.e., AS(f(P,V ))⊆AS(P)‖V .

Theorem 9
A class F of forgetting operators can be used to obtain uniform interpolants w.r.t. |=HT iff F

satisfies both (W) and (PP).

Proof
The result follows immediately, since the conditions (i) and (ii) of uniform interpolation pre-
cisely coincide with (W) and (PP), respectively.

Theorem 10
Every forgetting operator of the classes FHT and FS can be used to obtain uniform interpolants
with respect to |=HT.



6 R. Gonçalves and M. Knorr and J. Leite

Proof
The proof follows immediately from Thm. 9 and the fact that FHT and FS satisfy (W) and (PP).

We now present several intermediate results, each presenting the set of properties satisfied and
not satisfied by each class of operators considered in the paper, that we will combine to prove
Theorem 5.

Theorem 11
Fstrong satisfies (W), (SI), (RC), (NC), (PI), (UI), (SIu), (ECH ), (ECn ), but not (sC), (wE), (SE),
(PP), (SC), (CP), (SP), (wC), (wSP), (sSP) and (UP).

Proof
To prove (W), let P be a normal logic program over a signature A, and v ⊆ A. In the first step
of the definition of fstrong(P,V ) we obtain an intermediate program P′ by adding to P, for each
v ∈V , the rules a← B1,B2,not C1,not C2 such that a← B1,v,not C1 and v← B2,not C2 are in P.
By Lemma 7 every HT model of both a← B1,v,not C1 and v← B2,not C2 is also a model of a←
B1,B2,not C1,not C2. Thus, HT (P) ⊆ HT (P′). Therefore, HT (P∪P′) =HT (P)∩HT (P′) =
HT (P), i.e., P∪P′ is strongly equivalent to P. In the second and last step of the definition of
fstrong(P,V ), all rules from P∪P′ containing some v∈V are eliminated, thus obtaining fstrong(P,V ).
Since fstrong(P,V ) ⊆ P∪P′, we have that HT (P) =HT (P∪P′) ⊆HT (fstrong(P,V )). Note that
we proved the result for forgetting one variable. The general result then follows from (F6) (Wong
2009), which was shown to hold for both Strong and Weak Forgetting.

For (SI), let P be a normal logic program over a signature A and let V ⊆ A. Let P‖V be
the set of rules of P that do not mention any v ∈ V . It follows from the definition of Strong
Forgetting that P‖V ⊆ fstrong(P,V ). Let R be a normal logic program over A\V . We now prove
that fstrong(P∪R,V ) = fstrong(P,V )∪R. Let us prove the two inclusions.

For the left to right inclusion, let r ∈ fstrong(P∪R,V ). Then, we have two cases:

a) r ∈ P‖V ∪R. Then using the above observation we have that r ∈ fstrong(P,V )∪R.
b) r = A← B,B′,not C,not C′ such that there exist r1,r2 ∈ P∪R and v ∈ V such that r1 = A←

B,v,not C and r2 = v← B′,not C′. In this case, r1,r2 ∈ P since R does not contain rules
with atoms from V . Therefore, we can immediately conclude that r ∈ fstrong(P,V ), and
then r ∈ fstrong(P,V )∪R.

For the converse inclusion, let r ∈ fstrong(P,V )∪R. Then, we have two cases:

c) r ∈ R. Then using the above observation we have that r ∈ fstrong(P∪R,V ).
d) r ∈ fstrong(P,V ). If r ∈ P‖V , then using the above observation we have r ∈ fstrong(P∪R,V ).

Otherwise, if r = A← B,B′,not C,not C′ such that there exist r1,r2 ∈ P and v∈V such that
r1 = A← B,v,not C and r2 = v← B′,not C′. In this case, also r1,r2 ∈ P∪R, and we can
immediately conclude that r ∈ fstrong(P∪R,V ).

The fact that Fstrong satisfies (RC), (NC) and (PI) was proved by Gonçalves et al. (2017).
The fact that Fstrong satisfies (UI) follows from the already proved fact that Fstrong satisfies

(SI), and item 15 of Thm. 1.
The fact that Fstrong satisfies (SIu) follows from the already proved fact that Fstrong satisfies

(SI), and item 17 of Thm. 1.
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The fact that (ECH ) is satisfied follows from the simple observation that, when restricted to
Horn programs, fstrong and fweak coincide and the result is by definition always Horn.

Finally, the definition of the concrete operator fstrong by Zhang and Foo (2006) implicitly
implies that Fstrong satisfy (En).

For the negative results, Eiter and Wang (2008) provided counterexamples showing that Fstrong

does not satisfy (sC) and (wE); Wong (2009) provided counterexamples showing that Fstrong

does not satisfy (SE); Wang et al. (2014) provided counterexamples showing that Fstrong does
not satisfy (PP), and Gonçalves et al. (2017) provided a counterexample to show that Fstrong

does not satisfy (SC); Wang et al. (2013) presented a counterexample showing that Fstrong does
not satisfy (CP); and Knorr and Alferes (2014) provided a counterexample showing that Fstrong

does not satisfy (SP).
For (wC), consider forgetting about b from P = {a ← not b, b ← not a}. Since AS(P) =

{{a},{b}}, to satisfy (wC), the result must have the two answer sets {a} and /0, which is not
possible for disjunctive programs. Therefore, Fstrong does not satisfy (wC).

Gonçalves et al. (2020) showed that Fstrong does not satisfy (wSP) and (sSP), and that it does
not satisfy (UP) (2019).

Theorem 12
Fweak satisfies (PP), (SI), (RC), (NC), (PI), (UI), (SIu), (ECH ), (ECn ), but not (sC), (wE), (SE),
(W), (SC), (CP), (SP), (wC), (wSP), (sSP) and (UP).

Proof
For (PP) consider the inferential system given by Wong (2008), which is sound and complete
with respect to HT-consequence for disjunctive programs. Suppose that P |=HT r, where A(r)⊆
A\V . Now recall that every rule of P that does not contain the atoms to be forgotten is in the result
of forgetting. The rule (WGPPE) is the only inference rule in Wong’s system that allows to derive
a rule without the atoms to be forgotten from rules that have those atoms. Since, by definition
of Weak Forgetting, the result of applying (WGPPE) belongs to the result of forgetting, we have
that r must also be a consequence of the result of forgetting.

For (SI), let P be a normal logic program over a signature A and let V ⊆ A. Let P‖V be
the set of rules of P that do not mention any v ∈ V . It follows from the definition of Weak
Forgetting that P‖V ⊆ fweak(P,V ). Let R be a normal logic program over A\V . We now prove
that fweak(P∪R,V ) = fweak(P,V )∪R. Let us prove the two inclusions.

For the left to right inclusion, let r ∈ fweak(P∪R,V ). Then, we have three cases:

a) r ∈ P‖V ∪R. Then using the above observation we have that r ∈ fweak(P,V )∪R.
b) r = A← B,B′,not C,not C′ such that there exist v ∈ V , r1,r2 ∈ P∪R such that r1 = A←

B,v,not C and r2 = v←B′,not C′. In this case, r1,r2 ∈P since R does not contain any v∈V .
Therefore, we can immediately conclude that r ∈ fweak(P,V ), and then r ∈ fweak(P,V )∪R.

c) r = A← B,not C such that there exists v∈V and r1 = A← B,not v,not C ∈ P∪R. Then, r1 ∈ P
since R does not contain any v ∈ V . Therefore, we can conclude that r ∈ fweak(P,V ), and
then r ∈ fweak(P,V )∪R.

For the converse inclusion, let r ∈ fweak(P,V )∪R. Then, we have two cases:

e) r ∈ R. Then using the above observation we have that r ∈ fweak(P∪R,V ).
f) r ∈ fweak(P,V ).
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i) If r ∈ P‖V , then using the above observation we have r ∈ fweak(P∪R,V ).
ii) If r = A← B,B′,not C,not C′ such that there exist v ∈V , and r1,r2 ∈ P such that r1 =

A← B,v,not C and r2 = v← B′,not C′. In this case, also r1,r2 ∈ P∪R, and we can
immediately conclude that r ∈ fweak(P∪R,V ).

iii) If r = A← B,not C such that there exist v ∈V , and r1 = A← B,not v,not C ∈ P. Then,
r1 ∈ P∪R, and we can conclude that r ∈ fweak(P,V ). Therefore, r ∈ fweak(P,V )∪R.

The fact that Fweak satisfies (RC), (NC) and (PI) was shown by Gonçalves et al. (2017).
In the case of (UI) the result follows from the already proved fact that Fweak satisfies (SI), and

item 15 of Thm. 1.
The fact that Fweak satisfies (SIu) follows from the already proved fact that Fweak satisfies (SI),

and item 17 of Thm. 1.
The fact that (ECH ) is satisfied follows from the simple observation that, when restricted to

Horn programs, fstrong and fweak coincide and the result is by definition always Horn.
Finally, the definition of the concrete operator fweak (Zhang and Foo 2006) implicitly implies

that Fweak satisfy (En).
For the negative results, Eiter and Wang (2008) provided counterexamples showing that Fweak

does not satisfy (sC) and (wE); Wong (2009) provides counterexamples showing that Fweak does
not satisfy (SE); (Wang et al. 2014) provided a counterexample showing that Fweak does not
satisfy (W); the fact that Fweak does not satisfy (SC) was proved by Gonçalves et al. (2017);
Wang et al. (2013) presented a counterexample showing that Fweak does not satisfy (CP); and
Knorr and Alferes (2014) provided a counterexample showing that Fweak does not satisfy (SP).

For (wC), consider forgetting about b from P = {a ← not b, b ← not a}. Since AS(P) =
{{a},{b}}, to satisfy (wC), the result must have the two answer sets {a} and /0, which is not
possible for disjunctive programs. Therefore, Fweak does not satisfy (wC).

Gonçalves et al. (2020) showed that Fweak does not satisfy (wSP) and (sSP), and that it does
not satisfy (UP)(Gonçalves et al. 2019).

Theorem 13
Fsem satisfies (sC), (wE), (PI), (ECH ), (ECn ), (ECd ), but not (SE), (W), (PP), (SI), (SC), (RC),
(NC), (CP), (SP), (wC), (wSP), (sSP), (UP), (UI) and (SIu).

Proof
Eiter and Wang (2008) proved that Fsem satisfies (sC) (Proposition 6) and (wE) (Proposition 4),
and, by the definitions of concrete operators, it is implicit that Fsem satisfies (ECn ) and (ECd ).
The fact that Fsem satisfies (PI) was proved by Gonçalves et al. (2017). Finally, in the case of
(ECH ) the result follows from the observation that a variant of forget1 (Eiter and Wang 2008) can
be simplified which constructs a single program consisting of facts given that there does exist
only at most one answer set in this case.

Regarding negative results, counterexamples have been presented in the literature for (SE) (Eiter
and Wang 2008), for (W) (Wang et al. 2013), for (PP) (Wang et al. 2014), and for (SI) (Wong
2009). Also, the fact that Fsem does not satisfy (SC), (RC), and (NC) was proved by Gonçalves
et al. (2017). Wang et al. (2013) showed that Fsem does not satisfy (CP), and Knorr and Alferes
(2014) that it does not satisfy (SP). The counterexample for (wC) is similar to other cases, just
by considering forgetting about b from P = {a← not b, b← not a}. Since AS(P) = {{a},{b}},
to satisfy (wC), the result must have the two answer sets {a} and /0, which is not possible for
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disjunctive programs. Therefore, Fsem does not satisfy (wC). Gonçalves et al. (2020) showed
that Fsem does not satisfy (wSP) and (sSP), and that it does not satisfy (UP) (Gonçalves et al.
2019). For the case of (UI), consider forgetting about b from P = {a← b}. In this case, an op-
erator f of Fsem is such that f(P,b) = {}, but adding b← before and after forgetting gives rise
to results with different sets of answer sets. Finally, for the case of (SIu), consider P = {a← b}
over the signature A= {a,b,c}, and the program R = {b←} over A\{c}. Since AS(P) = {{}}
andAS(P∪R) = {{a,b}}, then, according to the definition of forget1 ∈ Fsem in (Eiter and Wang
2008), we have that forget1(P,{c}) = {} and forget1(P∪R,{c}) = {a←,b←}. We can now eas-
ily see that AS(forget1(P,{c})∪R) = {{b}} 6= {{a,b}}=AS(forget1(P∪R,{c})), and there-
fore forget1(P,{c})∪R 6≡u forget1(P∪R,{c}).

Theorem 14
FS satisfies (SE), (W), (PP), (SC), (RC), (NC), (PI), (ECH ), (ECd ), but not (sC), (wE), (SI),
(CP), (SP), (wC), (wSP), (sSP), (UP), (UI), (SIu) and (ECn ).

Proof
In the case of (SE), Wong (2009) proved that FS satisfies (SE) (Lemma 4.27), and it is implicit
that it satisfies (ECd ). Delgrande and Wang (2015) proved that FSE satisfies (SE), (W) and
(PP) (Proposition 1). Therefore, by Thm. 3, the results also hold for FS. The fact that FS satisfies
(SC), (RC), (NC) and (PI) was proved by Gonçalves et al. (2017). Finally, the fact that (ECH )
holds follows from Theorem 8 (Wang et al. 2014), which states that FHT is closed for the class of
Horn programs, and Thm. 4, which implies that the operators from FS are equivalent with those
of FHT for Horn programs.

For the negative results, in the case of (sC), consider forgetting about a from P = {a← not a}.
The result should be strongly equivalent to /0, i.e., the forgetting operation introduces a new
answer set. Turning to (wE), this property requires that the results of forgetting about p from
P = {q← not p,q← not q} and from Q = {q←} have the same answer-sets, while FS requires
that the results be strongly equivalent to f(P, p) = {q← not q} and f(Q, p) = {q←}, which are
obviously not equivalent.

Wong (2009) provided a counterexample showing that FS does not satisfy (SI). The fact that
FS does not satisfy (CP) and (SP) follows immediately from the fact that it does not satisfy (sC),
and items 3. and 4. of Thm. 1. The counterexample for (wC) is similar to other cases, just by
considering forgetting about b from P = {a← not b, b← not a}. Since AS(P) = {{a},{b}},
to satisfy (wC), the result must have the two answer sets {a} and /0, which is not possible for
disjunctive programs. Therefore, FS does not satisfy (wC). Gonçalves et al. (2020) showed that
FS does not satisfy (wSP) and (sSP), and that it does not satisfy (UP) (Gonçalves et al. 2019).

To prove that FS does not satisfy (UI), consider forgetting about p from the program P = {a←
not p,b, p← not a, ← p,b}. We have that P∪{b←} |=HT a←, and since FS satisfies (PP), we
have that f(P∪ {b←}, p) |=HT a←. Since P 6|=HT a← b, we have that f(P, p) 6|=HT a← b.
Therefore f(P, p)∪{b←} 6|=HT a←.

For the case of (SIu), consider the same program as for (UI), i.e., P = {a← not p,b, p←
not a, ← p,b}. Again, we have that P ∪ {b ←} |=HT a ←, and since FS satisfies (PP), we
have that f(P∪{b←}, p) |=HT a←. This means that HT (f(P∪{b←}, p}) ⊆ HT ({a←}) =
{〈a,a〉,〈ab,ab〉,〈a,ab〉}. Since, by using the same argument as before, it is also the case that
f(P∪{b←}, p) |=HT b←, we can conclude thatHT (f(P∪{b←}, p))⊆HT ({a←})∩HT ({b←
}) = {〈ab,ab〉}. Since 〈ab,ab〉 ∈ HT (P∪{b←}) and FS satisfies (W), we have that 〈ab,ab〉 ∈
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HT (f(P∪{b←}, p)), and therefore HT (f(P∪{b←}, p)) = {〈ab,ab〉}. We can then conclude
that AS(f(P∪ {b ←}, p)) = {{a,b}}. On the other hand, we know that HT (f(P, p)∪ {b ←
}) ⊆ HT ({b←}). Since f(P, p)∪ {b←} 6|=HT {a←}, we have that HT (f(P, p)∪ {b←}) 6⊆
HT ({a←}). We therefore have two alternative possibilities: a) 〈b,b〉 ∈HT (f(P, p)∪{b←}) or
b) 〈b,ab〉 ∈ HT (f(P, p)∪{b←}). If a) is the case, then {b} ∈ AS(f(P, p)∪{b←}). If b) is the
case we have that {a,b} /∈AS(f(P, p)∪{b←}). In both cases we can conclude thatAS(f(P, p)∪
{b←}) 6= AS(f(P∪ {b←}, p)) = {{a,b}}. Therefore, f(P, p)∪ {b←} 6≡u f(P∪ {b←}, p),
showing that Fsem does not satisfy (SIu).

Finally, for the negative result of (ECn ), we prove for FSE. The corresponding result for FS fol-
lows immediately from Theorem 3. Let P= {h1← not a1, h2← not a2, h3← a1,a2} be a normal
program. Using Theorem 3 (Delgrande and Wang 2015), the result of forgetting about a1 from P
is equivalent to P′ = {h1∨h2← not h3, h2← not a2}. Using the characterization result for a set
of HT-models of normal programs (Eiter et al. 2004) it not difficult to see that P′ is not strongly
equivalent to any normal program: just note that both 〈{h1},{h1,h2,a2}〉 and 〈{h2},{h1,h2,a2}〉
are HT-models of P′, but the so-called Here-intersection 〈{h1}∩{h2},{h1,h2,a2}〉= 〈 /0,{h1,h2,a2}〉
is not.

Theorem 15
FW satisfies (sC), (wE), (SE), (PP), (SI), (SC), (RC), (NC), (PI), (sSP), (UI), (SIu), (ECH ),
(ECn ), (ECd ), but not (W), (CP), (SP), (wC), (wSP) and (UP).

Proof
In the case of (sC), the result follows immediately from Lemma 3. For (wE), let f ∈ FW , P1,P2

disjunctive programs over A, and V ⊆ A. Suppose AS(P1) = AS(P2). We aim to prove that
AS(f(P1,V )) =AS(f(P2,V )). The result follows from Lemma 3 and the assumption AS(P1) =

AS(P2), since AS(f(P1,V )) = {X ∈ AS(P1) : V ∩ X = /0} = {X ∈ AS(P2) : V ∩ X = /0} =
AS(f(P2,V )).

Wong (2009) proved that FW satisfies (SE) (Lemma 4.27), and it is implicit that it satisfies
(ECd ).

The fact that (PP) holds follows easily from the definition of FW . Note that, by definition,
r ∈ fW (P,v) for every disjunctive rule r not containing v such that P |=HT r. Therefore, for every
disjunctive rule r not containing v and such that P |=HT r we have that fW (P,v) |=HT r.

For (SI), let f ∈ FW , P be a program over a signature A, V ⊆A, and R a program over A\V .
We aim to prove that f(P∪R,V )≡HT f(P,V )∪R. Consider the following sequence of equalities:

HT ‖V (f(P∪R,V )) =HT ((P∪R)∪{← v : v ∈V})
=HT ((P∪{← v : v ∈V})∪R)

=HT ((P∪{← v : v ∈V}))∩HT (R)
=HT ‖V (f(P,V ))∩HT (R)
=HT ‖V (f(P,V )∪R)

The first and fourth equalities follow from Lemma 2. The second and the third are well-known
properties of HT-models. The fifth equality follows from the fact that R does not contain any
v ∈ V and Lemma 6. We then have that HT ‖V (f(P∪R,V )) = HT ‖V (f(P,V )∪R). Since both
f(P∪R,V ) and f(P,V )∪R do not contain any v ∈V , the above equality immediately entails that
HT (f(P∪R,V )) =HT (f(P,V )∪R).
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The fact that FW satisfies (SC), (RC), (NC) and (PI) was proved by Gonçalves et al. (2017).
Property (sSP) follows from Thm. 1 and the fact that FW satisfies (sC) and (SI).
In the case of (UI) the result follows from the already proved fact that FW satisfies (SI), and

item 15 of Thm. 1.
The fact that FW satisfies (SIu) follows from the already proved fact that FW satisfies (SI), and

item 17 of Thm. 1.
For (ECH ), let f ∈ FW and P a Horn program. Using Lemma 2 we have thatHT ‖V (f(P,V )) =

HT (P∪{← v : v∈V}). Since P∪{← v : v∈V} is a normal program, it can be easily shown that
HT (f(P,V )) = (HT ‖V (f(P,V )))†V satisfies all conditions characterizing a class of HT-models
of a Horn program (Wang et al. 2014), taking into account that HT (P∪{← v : v ∈V}) satisfies
these conditions.

For (ECn ), let f ∈ FW and P a normal program. Using Lemma 1 we have thatHT ‖V (f(P,v)) =
HT (P∪{← v}). Since P∪{← v} is a normal program, it can be easily shown thatHT (f(P,v))=
(HT ‖V (f(P,v)))†v satisfies all conditions characterizing a class of HT-models of a normal pro-
gram (Eiter et al. 2004), taking into account thatHT (P∪{← v}) satisfies these conditions.

For the negative results, Wang et al. (2012) provided counterexamples showing that FW does
not satisfy (W). The negative results for (CP) and (SP) can be illustrated with forgetting about b
from P = {a← not b, b← not a}. Since AS(P) = {{a},{b}}, the result must have two answer
sets {a} and /0, which is not possible for disjunctive programs obtained from operators in FW .

The counterexample for (wC) is similar to other cases, just by considering forgetting about b
from P = {a← not b, b← not a}. Since AS(P) = {{a},{b}}, to satisfy (wC), the result must
have the two answer sets {a} and /0, which is not possible for disjunctive programs. Therefore,
FW does not satisfy (wC), which also implies that it does not satisfy (wSP) by Thm. 1.

Theorem 16
FHT satisfies (SE), (W), (PP), (SI), (SC), (RC), (NC), (PI), (UI), (SIu), (ECH ), (ECe ), but not
(sC), (wE), (CP), (SP), (wC), (wSP), (sSP), (UP), (ECn ) and (ECd ).

Proof
Wang et al. (2012) proved that FHT satisfies (SE) (Proposition 3), (W), (PP) (Theorem 3),
(ECH ) (Theorem 2), and (ECe ) (Theorem 1).

For (SI), let f ∈ FHT, P be a program over a signature A, V ⊆ A, and R a program over
A\V . We aim to prove that f(P,V )∪R≡HT f(P∪R,V ), which is the same asHT (f(P,V )∪R) =
HT (f(P∪R,V )). Consider the following sequence of equalities.

HT (f(P,V )∪R) =HT (f(P,V ))∩HT (R)
= (HT ‖V (P))†V ∩ (HT ‖V (R))†V

= (HT ‖V (P)∩HT ‖V (R))†V

= (HT ‖V (P∪R))†V

=HT (f(P∪R,V ))

The first equality follows from a well-known property of HT -models. The second equality fol-
lows from the definition of HT -forgetting. The third equality follows from Lemma 8, while the
fourth equality follows from Lemma 6. Finally, the last equality also follows from the definition
of HT -forgetting.

The fact that FHT satisfies (SC), (RC), (NC) and (PI) was proved by Gonçalves et al. (2017).
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In the case of (UI) the result follows from the already proved fact that FHT satisfies (SI), and
item 15 of Thm. 1.

The fact that FHT satisfies (SIu) follows from the already proved fact that FHT satisfies (SI),
and item 17 of Thm. 1.

For the negative results, in the case of (sC), consider forgetting about a from P = {a← not a}.
The result should be strongly equivalent to /0, i.e., the forgetting operation introduces a new
answer-set. Turning to (wE), this property requires that the results of forgetting about p from
P = {q← not p,q← not q} and from Q = {q←} have the same answer sets, while FHT requires
that the results be strongly equivalent to f(P, p) = {q← not q} and f(Q, p) = {q←}, which are
obviously not equivalent.

The fact that FHT does not satisfy (CP) and (SP) follows immediately from the fact that it does
not satisfy (sC), and items 3. and 4. of Thm. 1.

For (wC), consider forgetting about b from P = {a ← not b, b ← not a}. Since AS(P) =
{{a},{b}}, to satisfy (wC), the result must have the two answer sets {a} and /0, but the result
of f(P,b) for f ∈ FHT is equivalent to the empty program. Therefore, the answer set {a} is not
preserved, and thus FHT does not satisfy (wC).

The fact that FHT does not satisfy (wSP) and (sSP) follows immediately from the fact that it
does not satisfy (sC) and (wC), and items 8. and 9. of Thm. 1.

Gonçalves et al. (2019) showed that FHT does not satisfy (UP). Wang (2012) provided coun-
terexamples showing that FHT does not satisfy (ECn ) and (ECd ).

Theorem 17
FSM satisfies (sC), (wE), (SE), (PP), (PI), (CP), (wC), (ECH ), (ECe ), but not (W), (SI), (SC),
(RC), (NC), (SP), (wSP), (sSP), (UP), (UI), (SIu), (ECn ) and (ECd ).

Proof
By definition, FSM satisfies (CP). From this and Thm. 1 it follows easily that FSM satisfies (sC),
(wC) and (wE). Wang et al. (2013) have shown that FSM satisfies (SE), (PP), (ECe ) (Proposition
1), and (ECH ) (Theorem 3), and the fact that FSM satisfies (PI) was proved by Gonçalves et
al. (2017).

For the negative results, Wang et al. (2013) pointed out that FSM does not satisfy (W). In the
case of (SI), consider forgetting about b from P = {a← not b, b← not c}. In this case we have
that f(P,b)≡HT /0 for f ∈ FSM, so adding c← results precisely in a program containing this fact.
If we add c← before forgetting, then the HT -models of the result of forgetting, ignoring all oc-
currences of b, correspond precisely to 〈{c},{c}〉,〈{c},{a,c}〉, and 〈{a,c},{a,c}〉. To preserve
the answer sets, only the last of these three can be considered. Hence, a← and c← (or strongly
equivalent rules) occur in the result of forgetting for any f ∈ FSM, and (SI) does not hold. Since
this counterexample only adds a fact before and after forgetting, it also shows that (UI) does not
hold.

The fact that FSM does not satisfy (SC), (RC), (NC) was proved by Gonçalves et al. (2017).
Knorr and Alferes (2014) provided a counterexample showing that FSM does not satisfy (SP).

Gonçalves et al. (2020) showed that FSM does not satisfy (wSP) and (sSP), and that it does
not satisfy (UP) (2019). For the case of (SIu), consider a program P = {a← not b,b← not c}.
We can easily check that for any f ∈ FSM, we have that f(P,b) ≡HT {}. We can then con-
clude that AS(f(P,b)∪{c←}) = {{c}}. On the other hand, since FSM satisfies (CP), we have
that AS(f(P∪{c←},b)) = AS(P∪{c←})‖{b} = {{a,c}}. But then, AS(f(P,b)∪{c←}) =



Forgetting in Answer Set Programming – A Survey - Supplementary Material 13

{{c}} 6= {{a,c}} = AS(f(P∪{c←},b)), and we can conclude that f(P,b)∪{c←} 6≡u f(P∪
{c←},b), showing that FSM does not satisfy (SIu).

Wang et al. (2013) provided counterexamples showing that FSM does not satisfy (ECn ) and
(ECd ).

Theorem 18
FSas satisfies (sC), (wE), (SE), (W), (PP), (SI), (SC), (RC), (NC), (PI), (CP), (SP), (wC), (wSP),
(sSP), (UP), (UI), (SIu), and (ECH ).

Proof
By definition of the class, (SP) is satisfied. From this fact it easily follows from the results in
Thm. 1 that FSas satisfies (sC), (wE), (SE), (PP), (SI), (CP), (SP), (wC), (wSP), (sSP), (UP),
(UI), (SIu).

For (W), (SC), (RC), (NC) and (PI), first note that Thm. 1 (Gonçalves et al. 2020) states that
there is no operator over a class of programs that contains normal programs and that satisfies
(SP). Therefore, every operator in FSas is necessarily defined over CH . Thm. 2 states that when
restricted to Horn programs the result of operators in FSas is strongly equivalent to the result of
operators in the class FS. Since Thm. 14 states that FS satisfies (W), (SC), (RC), (NC), (PI) and
(ECH ), so does FSas.

Theorem 19
FSE satisfies (SE), (W), (PP), (SC), (RC), (NC), (PI), (ECH ), (ECd ), but not (sC), (wE), (SI),
(CP), (SP), (wC), (wSP), (sSP), (UP), (UI), (SIu) and (ECn ).

Proof
The results follow from Thm. 3 and Thm. 14.

Theorem 20
FSP satisfies (SE), (PP), (SI), (wC), (wSP), (UI), (SIu), (ECH ), (ECe ), but not (sC), (wE), (W),
(SC), (RC), (NC), (PI), (CP), (SP), (sSP), (UP), (ECn ) and (ECd ).

Proof
Gonçalves et al. (2020) showed that FSP satisfies (SE), (PP), (SI), (wC), (wSP), (ECH ) and
(ECe ). Property (UI) follows from item 15 of Thm. 1 and the fact that FSP satisfies (SI).

The fact that FSP satisfies (SIu) follows from the already proved fact that FSP satisfies (SI),
and item 17 of Thm. 1.

The negative results for (sC), (wE), (W), (CP), (SP), (sSP), (ECn ) and (ECd ) were proven by
Gonçalves et al. (2020).

For (SC), consider the program P = {a← not p, p← not a}. We have that P |=HT a← not p,
but f(P,{p}) 6|=HT f({a← not p}, p), since f(P,{p}) is strongly equivalent to {a← not not a}
and f({a← not p},{p}) is strongly equivalent to {a←}.

The fact that FSP does not satisfy (RC) follows from item 14. of Thm. 1 and the fact that FSP

satisfies (wC) and (UI).
For (NC) consider the program P = {a← p; p← not not p}. Then, for f ∈ FSP we have that

f(P,{p})≡HT {a← not not a}. Therefore, f(P,{p}) |=HT a← not not a, but it is not the case that
P |=HT a← not not a,not p.
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The fact that FSP does not satisfy (PI) follows from the result given in (Gonçalves et al. 2017)
about the impossibility of iteration while satisfying (SP). The counterexample for (UP) was
presented by Gonçalves et al. (2019).

Theorem 21
FR satisfies (sC), (SE), (PP), (SI), (RC), (NC), (sSP), (UI), (SIu), (ECH ), (ECe ), but not (wE),
(W), (SC), (PI), (CP), (SP), (wC), (wSP), (UP), (ECn ) and (ECd ).

Proof
Gonçalves et al. (2020) showed that FR satisfies (sC), (SE), (PP), (SI), (sSP), (ECH ) and (ECe ).

To show that FR satisfies (NC), let r = A← B,not C,not not D be a rule such that f(P,V ) |=HT

r. Then, HT (f(P,V )) ⊆ HT (r). Let r′ = A ← B,not C,not V,not not D. Then it is clear that
HT (r) ⊆ HT (r′), and as a consequence we can conclude that HT (f(P,V )) ⊆ HT (r′). Con-
sider two cases: first let 〈X ,Y 〉 ∈HT (P) such that Y ∩V 6= /0. In this case, 〈X ,Y 〉 ∈HT (r′) since
Y |= r′ and {r′}Y = /0. Now take 〈X ,Y 〉 ∈ HT (P) such that Y ∩V = /0. By definition of FR, we
have that 〈X ,Y 〉 ∈ HT (f(P,V )), and therefore 〈X ,Y 〉 ∈ HT (r′). In both cases, 〈X ,Y 〉 ∈ HT (r′),
and therefore P |=HT r′.

To prove (RC), let r = A← B,not C,not not D be a rule such that f(P,V ) |=HT r. Let r′ =
A← B,not C,not V,not not D. We can easily prove that if 〈X ,Y 〉 ∈ HT (r′) and Y ∩V = /0 then
〈X ,Y 〉 ∈ HT (r). Now, since FR satisfies (NC), we can conclude that P |=HT r′. We aim to prove
that f({r′},V ) |=HT r. For that, let 〈X ,Y 〉 ∈ HT (f({r′},V )). Then, there exists A ∈ RelY〈{r′},V 〉
such that 〈X ∪X ′,Y ∪A〉 ∈HT (r′), where X ′ ⊆ A. We now prove that A = /0. Suppose not. Then,
since {r′}Y∪A = {}, we have that 〈Y,Y ∪A〉 is also a model of r′, which contradicts the fact that
A ∈ RelY〈{r′},V 〉. Since A must be empty we can conclude that 〈X ,Y 〉 ∈ HT (r′). Since Y ∩V = /0,
the above consideration entails that 〈X ,Y 〉 ∈ HT (r), which completes the proof.

Property (UI) follows from item 15 of Thm. 1 and the fact that FR satisfies (SI).
Property (SIu) follows from item 17 of Thm. 1 and the fact that FR satisfies (SI).
The negative results for (wE), (W), (PI), (CP), (SP), (wC), (wSP), (ECn ) and (ECd ) are due to

Gonçalves et al. (2020).
For (SC), consider the program P = {a← not p, p← not a}. We have that P |=HT a← not p,

but f(P,{p}) 6|=HT f({a← not p}, p), sinceHT (f(P,{p})) contains 〈 /0, /0〉, therefore f(P,{p}) 6|=HT

a←, but f({a← not p},{p}) is strongly equivalent to {a←}.
The fact that FR does not satisfy (PI) follows from the result about the impossibility of iteration

while satisfying (SP) (Gonçalves et al. 2017).
The counterexample for (UP) was given by Gonçalves et al. (2019).

Theorem 22
FM satisfies (sC), (wE), (SE), (PP), (CP), (wC), (sSP), (ECH ), (ECe ), but not (W), (SI), (SC),
(RC), (NC), (PI), (SP), (wSP), (UP), (UI), (SIu), (ECn ) and (ECd ).

Proof
Gonçalves et al. (2020) showed that FM satisfies (sC), (wE), (SE), (PP), (CP), (wC), (sSP),
(ECH ), (ECe ), as well as the negative results for (W), (SI), (SP), (wSP), (ECn ) and (ECd ).

In the case of (SC), consider the program P = {a← not p, p← not a}. We have that P |=HT

a← not p, but f(P,{p}) 6|=HT f({a← not p}, p), since f(P,{p}) is strongly equivalent to {a←
not not a} and f({a← not p},{p}) is strongly equivalent to {a←}.
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In the case of (RC) consider forgetting about p from the program P = {a← p, p← not not p}.
We have that f(P,{p}) is strongly equivalent to {a← not not a}. Nevertheless, there is no rule r′

over a and p such that P |=HT r′ and f({r′},{p}) |=HT a← not not a.
For (NC) consider the program P = {a← p; p← not not p}. Then, for f ∈ FM we have that

f(P,{p})≡HT {a← not not a}. Therefore, f(P,{p}) |=HT a← not not a, but it is not the case that
P |=HT a← not not a,not p.

The fact that FM does not satisfy (PI) follows from the result about the impossibility of itera-
tion while satisfying (SP) (Gonçalves et al. 2017). The counterexample for (UP) was presented
by Gonçalves et al. (2019).

The negative result for (UI) follows from item 16. of Thm. 1 and the fact that FM satisfies (CP)
but not (UP).

In the case of (SIu), consider a program P over A = {a,b, p} such that HT (P) = {〈ab,ab〉,
〈a,ab〉,〈abp,abp〉, 〈b,abp〉,〈a,a〉,〈 /0,a〉,〈ap,ap〉}. By definition, for f ∈ FM, we have that for-
getting p is such that HT (f(P, p)) ={〈ab,ab〉, 〈b,ab〉,〈a,ab〉,〈a,a〉}. Consider R over A\{p}
such that HT (R) = {〈ab,ab〉, 〈b,ab〉}. Then, HT (P∪ R) = {〈ab,ab〉,〈abp,abp〉, 〈b,abp〉}.
Again by definition, for f ∈ FM, we have that HT (f(P∪R, p)) = {〈ab,ab〉}. On the other hand,
HT (f(P, p)∪R) = {〈ab,ab〉,〈b,ab〉}. This then implies thatAS(f(P∪R, p)) = {{a,b}} 6= {}=
AS(f(P, p)∪R), which means that f(P∪R, p) 6≡u f(P, p)∪R, thus showing that FM does not
satisfy (SIu).

Theorem 23
FUP satisfies (sC), (wE), (SE), (PI), (CP), (wC), (UP), (UI), (ECH ), (ECe ), but not (W), (PP),
(SI), (SC), (RC), (NC), (SP), (wSP), (sSP), (SIu), (ECn ) and (ECd ).

Proof
Gonçalves et al. (2019) showed that FUP satisfies (sC), (wE), (SE), (PI), (CP), (wC), (UP), (UI)
(ECH ), (ECe ), and that it does not satisfy (W), (PP), (SI), (SP), (ECn ) and (ECd ). Also, a weaker
version of (PI) was proved, showing that it is possible to iterate the operators when applied in the
context of modular logic programming. Gonçalves et al. (2021) proved that FUP does not satisfy
(SIu).

In the case of (SC), consider the program P = {a← not p, p← not a}. We have that P |=HT

a← not p, but f(P,{p}) 6|=HT f({a← not p}, p), since f(P,{p}) is strongly equivalent to {a←
not not a} and f({a← not p},{p}) is strongly equivalent to {a←}.

The negative result for (RC) follows from item 14. of Thm. 1 and the fact that FUP satisfies
(wC) and (UI).

For (NC) consider the program P = {a← p; p← not not p}. Then, for f ∈ FUP we have that
f(P,{p})≡HT {a← not not a}. Therefore, f(P,{p}) |=HT a← not not a, but it is not the case that
P |=HT a← not not a,not p.

For (wSP), consider P such that HT (P) = {〈ab,ab〉,〈a,ab〉,〈b,abp〉,〈abp,abp〉,〈a,abp〉}.
Then, by definition HT (f(P,{p})) = {〈ab,ab〉,〈a,ab〉,〈 /0,ab〉}. Consider a program R over
{a,b} such thatHT (R)= {〈ab,ab〉,〈 /0,ab〉} (over {a,b}). Then,HT (P∪R)=HT (P)∩HT (R)=
{〈abp,abp〉,〈ab,ab〉}, thus {a,b} ∈ AS(P∪R)‖V , but {a,b} /∈ AS(f(P,V )∪R).

For (sSP), consider P such that HT (P) = {〈ab,ab〉,〈a,ab〉,〈b,abp〉,〈abp,abp〉}. Then, by
definition HT (f(P,{p})) = {〈ab,ab〉,〈 /0,ab〉}. Consider a program R over {a,b} s.t. HT (R) =
{〈ab,ab〉,〈a,ab〉,〈b,ab〉} (over {a,b}). Then f(P,{p})∪R has an answer set {a,b}, but this is
not an answer set of f(P∪R,{p}).
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Lemma 1
Let P be a disjunctive program over a signature A and v ∈ A. Then, for every f ∈ FW we have

HT ‖{v}(f(P,v)) =HT (P∪{← v}).

Proof
Let P be a disjunctive program over a signature A, and v ∈ A. We prove the equality for fW and
the result extends to every f ∈ FW since these only differ from fW up to strong equivalence. We
prove both inclusions of the equality HT ‖{v}(fW (P,v)) =HT (P∪{← v}). In what follows let
A,B,C ⊆A\{v}.

We start with the left to right inclusion. Let I = 〈X ,Y 〉 such that I ∈ HT ‖{v}(fW (P,v)). Since
v does not occur in f(P,v) we have that I ∈ HT (fW (P,v)). Since I does not contain v, then
I |=HT← v. We now show that I |=HT r, for every r ∈ P. If r ∈ P such that it does not contain v,
then clearly r ∈ f(P,v), and so I |=HT r. If r ∈ P and it contains v, then we have the following
cases:

• If r is a tautology, then clearly I |=HT r;
• If v ∈ body(r), then, since I does not contain v, trivially I |=HT r;
• If r = A,v← B,not v,not C then the rule r∗ = A← B,not C ∈ fW (P,v). Suppose I 6|=HT r.

Then we have two cases:

— Y 6|= r, which is an absurd since v /∈ Y and I |=HT r∗;
— Y ∩C = /0 and X 6|= A,v← B. This is an absurd since v /∈ X , r∗Y = A,v← B, and

X |= r∗Y .

• If r = A,v← B,not C then r∗ = A← B,not C ∈ fW (P,v). Suppose I 6|=HT r. Then we have
two cases:

— Y 6|= r, which is an absurd since v /∈ Y and I |=HT r∗;
— Y ∩C = /0 and X 6|= A,v← B. This is an absurd since v /∈ X , r∗Y = A← B, and X |= r∗Y .

• If r = A← B,not v,not C then r∗ = A← B,not C ∈ fW (P,v). Suppose I 6|=HT r. Then we
have two cases:

— Y 6|= r, which is an absurd since v /∈ Y and I |=HT r∗;
— Y ∩C = /0 and X 6|= A← B. This is an absurd since in this case r∗Y = A← B, and

X |= r∗Y .

We now prove the right to left inclusion. Let I = 〈X ,Y 〉 ∈ HT (P∪{← v}). Since I |=HT← v
then clearly I does not contain v. We prove that for every r ∈ fW (P,v) we have that I |=HT r. This
immediately implies that HT (P∪{← v}) ⊆HT ‖{v}(f(P,v)). Let r ∈ fW (P,v). We consider the
following cases.

• r ∈Cn(P,v). In this case, since I ∈HT (P∪{← v}), we have that I ∈HT (P), and therefore
I |=HT r;

• If r /∈Cn(P,v) then we have the following three possibilities:

— r = A← B,not C such that r∗ = A,v← B,not v,not C ∈ Cn(P,v). Suppose I 6|=HT r.
Then we have two cases:

– Y 6|= r, which is an absurd since v /∈ Y and I |=HT r∗;

– Y ∩C = /0 and X 6|= A← B. This is an absurd since v /∈ X , r∗Y = A,v← B, and
X |= r∗Y .
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— r = A← B,not C and r∗ = A,v← B,not C ∈Cn(P,v). Suppose I 6|=HT r. Then we have
two cases:

– Y 6|= r, which is an absurd since v /∈ Y and I |=HT r∗;

– Y ∩C = /0 and X 6|= A← B. This is an absurd since v /∈ X , r∗Y = A,v← B, and
X |= r∗Y .

— r = A← B,not C and r∗ = A← B,not v,not C ∈ Cn(P,v). Suppose I 6|=HT r. Then we
have two cases:

– Y 6|= r, which is an absurd since v /∈ Y and I |=HT r∗;

– Y ∩C = /0 and X 6|= A← B. This is an absurd since r∗Y = A← B, and X |= r∗Y .

Lemma 2
Let P be a disjunctive program over a signature A and V ⊆A. Then, for every f ∈ FW we have

HT ‖V (f(P,V )) =HT (P∪{← v : v ∈V}).

Proof
The result follows easily by induction on the number of elements of V , using the definition of
fW (P,V ) and Lemma 3.

Lemma 3
Let P be a disjunctive program over a signature A and V ⊆A. Then, for every f ∈ FW

AS(f(P,V )) = {X ∈ AS(P) : V ∩X = /0}.

Proof
Let f ∈ FW . We will prove both inclusions.

Let us start with the left to right inclusion. Let X ∈ AS(f(P,V )). Then 〈X ,X〉 ∈ HT (f(P,V ))

and there is no X ′ ⊂ X such that 〈X ′,X〉 ∈ HT (f(P,V )). We can conclude that V ∩X = /0, since
otherwise 〈X \V,X〉 ∈ HT (f(P,V )), which contradicts X ∈ AS(f(P,V )).

Since 〈X ,X〉 ∈ HT ‖V (f(P,V )), by Lemma 2, we have that 〈X ,X〉 ∈ HT (P∪{← v : v ∈ V}),
and therefore, 〈X ,X〉 ∈ HT (P). We need to prove that there is no X ′ ⊂ X such that 〈X ′,X〉 ∈
HT (P). Suppose there is. Then 〈X ′,X〉 ∈HT (P∪{← v : v ∈V})=HT ‖V (f(P,V )), thus contra-
dicting the fact that X ∈ AS(f(P,V )).

Now let us prove the right to left inclusion. Let X ∈AS(P) such that V ∩X = /0. Then 〈X ,X〉 ∈
HT (P) and there is no X ′ ⊂ X such that 〈X ′,X〉 ∈ HT (P). Since V ∩X = /0 we have 〈X ′,X〉 ∈
HT (P∪{← v : v∈V}) =HT ‖V (f(P,V )). We just need to prove that there is no X ′ ⊂ X such that
〈X ′,X〉 ∈ HT (P∪{← v : v ∈V}). Suppose there is. Then, 〈X ′,X〉 ∈ HT (P), which contradicts
X ∈ AS(P).

Lemma 4
LetA be a signature and V ⊆A. Let I = 〈X ,Y 〉 an HT -interpretation overA that does not contain
any v ∈V and I∗ such that I∗ ∼V I. Then, for every formula ϕ over A not containing any v ∈V ,
we have that I |=HT ϕ iff I∗ |=HT ϕ .
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Proof
We prove the result by induction on the structure of the formula ϕ . For the base case suppose
ϕ is a propositional atom p ∈ A, thus p /∈ V . Then, I |=HT p iff p ∈ X iff p ∈ X ′ with X ′ ∼V X
(since p /∈V ) iff I∗ |=HT p.

For the induction step we only consider the case ϕ = ϕ1 ⊃ ϕ2. The other cases are straightfor-
ward. We have that I |=HT ϕ iff (i) Y |=HT ϕ1 ⊃ ϕ2 and (ii) I |=HT ϕ2 whenever I |=HT ϕ1. From
a well known result from classical logic, we have that Y |=HT ϕ1 ⊃ ϕ2 iff Y ∪V |=HT ϕ1 ⊃ ϕ2

(since no v ∈V occurs in ϕ1 nor in ϕ2). The equivalence of condition (ii) with the correspondent
one for I∗ follows easily using induction hypothesis.

Lemma 5
Let A be a signature and V ⊆A. For every formula ϕ over A not containing any v ∈V we have
thatHT (ϕ) = (HT ‖V (ϕ))†V

Proof
Let us prove both inclusions. For the left to right inclusion, assume that I ∈ HT (ϕ). Then,
I‖V ∈HT ‖V (ϕ). Therefore, I ∈ (HT ‖V (ϕ))†V .

For the reverse inclusion, let I ∈ (HT ‖V (ϕ))†V . Then, I‖V ∈ HT ‖V (ϕ). Then, there exists
I∗ ∈HT (ϕ) such that I∗ ∼V I‖{v}. Using Lemma 4 we have that I‖V ∈HT (ϕ). Since I ∼V I‖{v},
we can conclude, again using Lemma 4, that I ∈HT (ϕ).

Lemma 6
Let A be a signature, v ∈ A, and P1,P2 programs over A, such that P2 does not contain v. Then,

(HT ‖V (P1∪P2))†V = (HT ‖V (P1)∩HT ‖V (P2))†V

Proof
We prove both inclusions. Let us start with the left to right inclusion. Let I ∈ (HT ‖V (P1∪P2))†V .
Then, I‖V ∈ HT ‖V (P1∪P2). Therefore, there exists I′ ∼V I‖V such that I′ ∈ HT (P1∪P2). From
this we can conclude that I′ ∈HT (P1) and I′ ∈HT (P2), and thus I‖V ∈HT ‖V (P1) and I‖V ∈ (P2).
Therefore, we have that I‖V ∈HT ‖V (P1)∩HT ‖V (P2), thus I ∈ (HT ‖V (P1)∩HT ‖V (P2))†V .

For the reverse inclusion consider that I ∈ (HT ‖V (P1)∩HT ‖V (P2))†V . Then, I‖V ∈HT ‖V (P1)∩
HT ‖V (P2), and thus I‖V ∈HT ‖V (P1) and I‖V ∈HT ‖V (P2). Therefore, there exists I∗∼V I‖V such
that I∗ ∈ HT (P1). Since HT (P2) = (HT ‖V (P2))†V (by Lemma 5 and since no v ∈ V occurs in
P2), I‖V ∈ HT ‖V (P2) and since I∗ ∼V I‖V , we can conclude that I∗ ∈ HT (P2). Therefore, I∗ ∈
HT (P1∪P2), and then I‖V ∈HT ‖V (P1∪P2). We can then conclude that I ∈ (HT ‖V (P1∪P2))†V .

Lemma 7
Let A be a signature and v ∈A. Let B1, B2, C1, C2, {a} sets of atoms over A\{v}. Consider the
rules

r1 = a← B1,v,not C1
r2 = v← B2,not C2
r = a← B1,B2,not C1,not C2

Then,

HT ({r1}∪{r2})⊆HT ({r})
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Proof
Let I = 〈X ,Y 〉 ∈ HT ({r1}∪{r2}). Then, we have

i1) Y |= a← B1,v,not C1,
ii1) X |= a← B1,v whenever C1∩Y = /0,
i2) Y |= v← B2,not C2,
ii2) X |= v← B2 whenever C2∩Y = /0.

Our aim is to prove that I ∈HT ({r}), i.e.,

i) Y |= a← B1,B2,not C1,not C2 and
ii) X |= a← B1,B2 whenever (C1∪C2)∩Y = /0.

If (C1∪C2)∩Y 6= /0 then i) and ii) trivially hold. So, suppose that (C1∪C2)∩Y = /0. If B1∪B2 6⊆Y ,
then again i) and ii) trivially hold. So assume that B1 ∪B2 ⊆ Y . Then from i1) and i2) we can
conclude that Y |= a, and so i) holds. If B1∪B2 6⊆ X then immediately ii) holds. So assume that
B1∪B2 ⊆ X . Then ii1) and ii2) allow us to conclude that X |= a, and so ii) holds.

Lemma 8
LetA be a signature, V ⊆A, and P1,P2 programs overA. Then, (HT ‖V (P1))†V ∩(HT ‖V (P2))†V

= (HT ‖V (P1)∩HT ‖V (P2))†V .

Proof
Let I be an HT -interpretation over A. Consider the following sequence of equivalent sentences:

I ∈ (HT ‖V (P1))†V ∩ (HT ‖V (P2))†V iff
I ∈ (HT ‖V (Pi))†V , for each i ∈ {1,2} iff
I‖V ∈HT ‖V (Pi) for each i ∈ {1,2} iff
I‖V ∈ (HT ‖V (P1)∩HT ‖V (P2)) iff
I ∈ (HT ‖V (P1)∩HT ‖V (P2))†V .
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