
58 Roland Kaminski et al.

Appendix A Saturation-based meta encoding

The saturation-based meta encoding in Listing 47 relies on a partition of the atoms of the
input program induced by the strongly connect components of its positive dependency
graph. Each atom and each loop of the program is contained in some part. The idea
is to mimic the consecutive application of the immediate consequence operator to each
component of the partition.
In a nutshell, the encoding in Listing 47 combines the following parts (Gebser et al.

2011):

1. guessing an interpretation (in Lines 14 to 33),
2. deriving the unsatisfiability-indicating atom bot if the interpretation is not a

supported model (where each true atom occurs positively in the head of some rule
whose body holds; cf. Lines 35 and 36),

3. deriving bot if the true atoms of some non-trivial strongly connected component
are not acyclicly derivable (checked via determining the complement of a fixpoint
of the immediate consequence operator; cf. Lines 38 to 63), and

4. saturating interpretations that do not correspond to stable models by deriving all
truth assignments (for atoms) from bot (in Lines 65 and 66).

As an example, consider the simple logic program a.lp:
1 { a (1..2) }.

Computing its stable models with the meta encoding in Listing 47 (along with the
auxiliary #show statements from Listing 48) yields the three expected models:

UNIX > clingo --output = reify --reify -sccs a.lp | \
clingo - metaD .lp show.lp 0

clingo version 5.5.0
Reading from - ...
Solving ...
Answer : 1
a(2)
Answer : 2
a(1)
Answer : 3
a(1) a(2)
SATISFIABLE

Now, the addition of an empty integrity constraint, namely “:-.”, makes the program
unsatisfiable. This is reflected by a single answer set containing all atoms of the program.
This should not to be confused with the third model obtained above:

UNIX > clingo --output = reify --reify -sccs a.lp <(echo ": -.") | \
clingo - metaD .lp show.lp 0

clingo version 5.5.0
Reading from - ...
Solving ...
Answer : 1
a(1) a(2)
SATISFIABLE

In fact, additional show statements would reveal that the actual stable model also contains
the artificial atom bot from which all atoms occurring in the original program are derivable
(cf. Lines 65 and 66 in Listing 47). In other words, this special atom expresses the non-
existence of stable models, and by saturating the model with all atoms it can only exist if
no true stable models exist. This is because the semantics of disjunctive logic programs

How to build your own ASP-based system ?! 59

1 sum(B,G,T) :- rule(_,sum(B,G)), T = #sum { W,L: weighted _ literal _ tuple (B,L,W) }.

3 supp(A,B) :- rule(choice (H),B), atom_ tuple (H,A).
4 supp(A,B) :- rule(disjunction (H),B), atom_ tuple (H,A).

6 supp(A) :- supp(A,_).

8 atom (|L|) :- weighted _ literal _ tuple (_,L,_).
9 atom (|L|) :- literal _ tuple (_,L).

10 atom(A) :- atom_ tuple (_,A).

12 fact(A) :- rule(disjunction (H) ,normal (B)), atom_ tuple (H,A), not literal _ tuple (B,_).

14 true(atom(A)) :- fact(A).
15 true(atom(A)); fail(atom(A)) :- supp(A), not fact(A).
16 fail(atom(A)) :- atom(A), not supp(A).

18 true(normal (B)) :- literal _ tuple (B),
19 true(atom(L)): literal _ tuple (B, L), L >0;
20 fail(atom(L)): literal _ tuple (B, -L), L >0.
21 fail(normal (B)) :- literal _ tuple (B, L), fail(atom(L)), L >0.
22 fail(normal (B)) :- literal _ tuple (B, -L), true(atom(L)), L >0.

24 true(sum(B,G)) :- sum(B,G,T),
25 #sum {
26 W,L: true(atom(L)), weighted _ literal _ tuple (B, L,W), L >0;
27 W,L: fail(atom(L)), weighted _ literal _ tuple (B, -L,W), L >0
28 } >= G.
29 fail(sum(B,G)) :- sum(B,G,T),
30 #sum {
31 W,L: fail(atom(L)), weighted _ literal _ tuple (B, L,W), L >0;
32 W,L: true(atom(L)), weighted _ literal _ tuple (B, -L,W), L >0
33 } >= T-G+1.

35 bot :- rule(disjunction (H),B), true(B), fail(atom(A)): atom_ tuple (H,A).
36 bot :- true(atom(A)), fail(B): supp(A,B).

38 internal (C,normal (B)) :- scc(C,A), supp(A,normal (B)), scc(C,A ’),
39 literal _ tuple (B,A ’).
40 internal (C,sum (B,G)) :- scc(C,A), supp(A,sum (B,G)), scc(C,A ’),
41 weighted _ literal _ tuple (B,A ’,W).

43 external (C,normal (B)) :- scc(C,A), supp(A,normal (B)), not internal (C,normal (B)).
44 external (C,sum (B,G)) :- scc(C,A), supp(A,sum (B,G)), not internal (C,sum (B,G)).

46 steps (C,Z -1) :- scc(C,_), Z = { scc(C,A): not fact(A) }.

48 wait(C,atom (A),0) :- scc(C,A), fail(B): external (C,B), supp(A,B).
49 wait(C,normal (B),I) :- internal (C,normal (B)), steps (C,Z), I=0..Z -1,
50 fail(normal (B)).
51 wait(C,normal (B),I) :- internal (C,normal (B)), steps (C,Z), I<Z,
52 literal _ tuple (B,A), wait(C,atom (A),I).

54 wait(C,sum (B,G),I) :- internal (C,sum (B,G)), steps (C,Z), I=0..Z -1, sum(B,G,T),
55 #sum {
56 W,L: fail(atom(L)), weighted _ literal _ tuple (B, L,W), L >0, not scc(C,L);
57 W,L: wait(C,atom (L),I), weighted _ literal _ tuple (B, L,W), L >0, scc(C,L);
58 W,L: true(atom(L)), weighted _ literal _ tuple (B, -L,W), L >0
59 } >= T-G+1.
60 wait(C,atom (A),I) :- wait(C,atom (A),0), steps (C,Z), I=1.. Z,
61 wait(C,B,I -1): supp(A,B), internal (C,B).

63 bot :- scc(C,A), true(atom(A)), wait(C,atom (A),Z), steps (C,Z).

65 true(atom(A)) :- supp(A), not fact(A), bot.
66 fail(atom(A)) :- supp(A), not fact(A), bot.

Listing 47. A disjunctive meta encoding implementing saturation (metaD.lp)

60 Roland Kaminski et al.

1 #show .
2 #show X: output (X,B), literal _tuple(B,A), true(atom(A)).
3 #show X: output (X,B), not literal _tuple(B,_).

Listing 48. Auxiliary #show statements for Listing 47 (show.lp)

is based on subset minimization. Saturation makes sure that bot is derived only if it is
inevitable, that is, if it is impossible to construct any other models.26

Appendix B Intermediate language

To accommodate the rich input language, a general grounder-solver interface is needed.
Although this could be left internal to clingo, it is good practice in ASP and neighboring
fields to explicate such interfaces via an intermediate language. This also allows for using
alternative downstream solvers or transformations.
Unlike the block-oriented smodels format, the aspif format is line-based. Notably, it

abolishes the need of using symbol tables in smodels’ format (Syrjänen 2001) for passing
along meta-expressions and allows gringo to output information as soon as it is grounded.
An aspif file starts with a header, beginning with the keyword asp along with version
information and optional tags, viz.

asp␣vm␣vn␣vr␣t1␣ . . . ␣tk

where vm, vn, vr are non-negative integers representing the version in terms of major,
minor, and revision numbers, and each ti is a tag for k ≥ 0. Currently, the only tag is
incremental, meant to set up the underlying solver for multi-shot solving. An example
header is given in the first lines of Listings 49 and 50 below. The rest of the file comprises
one or more logic programs. Each logic program is a sequence of lines of aspif statements
followed by a 0, one statement or 0 per line, respectively. Positive and negative integers
are used to represent positive or negative literals, respectively. Hence, 0 is not a valid
literal.

Let us now briefly describe the format of aspif statements and illustrate them with the
simple logic program in Listing 1 as well as the result of grounding a subset of Listing 33
only pertaining to difference constraints in Listing 50.
Rule statements have form

1␣H␣B
in which head H has form

h␣m␣a1␣ . . . ␣am

where h ∈ {0, 1} determines whether the head is a disjunction or a choice, m ≥ 0 is the
number of head elements, and each ai is an atom.
Body B has one of two forms:

26 In fact, without the two saturating rules in Lines 65 and 66, Listing 47 would produce a stable model
for each interpretation of the original program. The ones without bot represent stable models, while
the ones with bot are mere interpretations. By saturation, all these interpretations are mapped to the
set of all atoms. Given that the latter is a superset of all conceivable stable models, it can only exist if
no stable models exist.

How to build your own ASP-based system ?! 61

1 asp 1 0 0
2 1 1 1 1 0 0
3 1 0 1 2 0 1 1
4 1 0 1 3 0 1 -1
5 4 1 a 1 1
6 4 1 b 1 2
7 4 1 c 1 3
8 0

Listing 49. Representing the logic program from Listing 1 in aspif format

• Normal bodies have form
0␣n␣l1␣ . . . ␣ln

where n ≥ 0 is the length of the rule body, and each li is a literal.
• Weight bodies have form

1␣l␣n␣l1␣w1␣ . . . ␣ln␣wn

where l is a positive integer to denote the lower bound, n ≥ 0 is the number of
literals in the rule body, and each li and wi are a literal and a positive integer.

All types of ASP rules are included in the above rule format. Heads are disjunctions or
choices, including the special case of one-element disjunctions for representing normal
rules. As in the smodels format, aggregate rules are restricted to one-element bodies, just
that in aspif cardinality constraints are taken as special weight constraints. Otherwise, a
body is simply a conjunction of literals.

The three rules in Listing 1 are represented by the statements in Lines 2–4 of Listing 49.
For instance, the four occurrences of 1 in Line 2 capture a rule with a choice in the head,
having one element, identified by 1. The two remaining zeros capture a normal body
with no element. For another example, Lines 2–7 of Listing 50 represent 6 of the facts
in Listing 34, the four regular atoms in Lines 1–4 along two comprising theory atoms in
Lines 11 and 12.
Minimize statements have form

2␣p␣n␣l1␣w1␣ . . . ␣ln␣wn

where p is an integer priority, n ≥ 0 is the number of weighted literals, each li is a literal,
and each wi is an integer weight. Each of the above expressions gathers weighted literals
sharing the same priority p from all #minimize directives and weak constraints in a logic
program. As before, maximize statements are translated into minimize statements.
Projection statements result from #project directives and have form

3␣n␣a1␣ . . . ␣an

where n ≥ 0 is the number of atoms, and each ai is an atom.
Output statements result from #show directives and have form

4␣m␣s␣n␣l1␣ . . . ␣ln

where n ≥ 0 is the length of the condition, each li is a literal, and m ≥ 0 is an integer

62 Roland Kaminski et al.

indicating the length in bytes of string s (where s excludes byte ‘\0’ and newline). The
output statements in Lines 5–7 of Listing 49 print the symbolic representation of atom a,
b, or c, whenever the corresponding atom is true. For instance, the string ‘a’ is printed if
atom ‘1’ holds. Unlike this, the statements in Lines 8–11 of Listing 50 unconditionally
print the symbolic representation of the atoms stemming from the four facts in Lines 1–4
of Listing 34.
External statements result from #external directives and have form

5␣a␣v

where a is an atom, and v ∈ {0, 1, 2, 3} indicates free, true, false, and release.
Assumption statements have form

6␣n␣l1␣ . . . ␣ln

where n ≥ 0 is the number of literals, and each li is a literal. Assumptions instruct a
solver to compute stable models containing l1, . . . , ln. They are only valid for a single
solver call.
Heuristic statements result from #heuristic directives and have form

7␣m␣a␣k␣p␣n␣l1␣ . . . ␣ln

where m ∈ {0, . . . , 5} stands for the (m+1)th heuristic modifier among level, sign,
factor, init, true, and false, a is an atom, k is an integer, p is a non-negative integer
priority, n ≥ 0 is the number of literals in the condition, and the literals li are the
condition under which the heuristic modification should be applied.
Edge statements result from #edge directives and have form

8␣u␣v␣n␣l1␣ . . . ␣ln

where u and v are integers representing an edge from node u to node v, n ≥ 0 is the
length of the condition, and the literals li are the condition for the edge to be present.
Let us now turn to the theory-specific part of aspif. Once a theory expression is

grounded, gringo outputs a serial representation of its syntax tree. To illustrate this,
we give in Listing 50 the (sorted) result of grounding all lines of Listing 33 related to
difference constraints, viz. Lines 1–20 and Line 24.
1 asp 1 0 0
2 1 0 1 1 0 0
3 1 0 1 2 0 0
4 1 0 1 3 0 0
5 1 0 1 4 0 0
6 1 0 1 5 0 0
7 1 0 1 6 0 0
8 4 7 task (1) 0
9 4 7 task (2) 0
10 4 15 duration (1 ,200) 0
11 4 15 duration (2 ,400) 0
12 9 0 1 200
13 9 0 3 400
14 9 0 6 1

How to build your own ASP-based system ?! 63

15 9 0 11 2
16 9 1 0 4 diff
17 9 1 2 2 <=
18 9 1 4 1 -
19 9 1 5 3 end
20 9 1 8 5 start
21 9 2 7 5 1 6
22 9 2 9 8 1 6
23 9 2 10 4 2 7 9
24 9 2 12 5 1 11
25 9 2 13 8 1 11
26 9 2 14 4 2 12 13
27 9 4 0 1 10 0
28 9 4 1 1 14 0
29 9 6 5 0 1 0 2 1
30 9 6 6 0 1 1 2 3
31 0

Listing 50. aspif format (excerpt of result)
Theory terms are represented using the following statements:

9␣0␣u␣w (B1)
9␣1␣u␣n␣s (B2)
9␣2␣u␣t␣n␣u1␣ . . . ␣un (B3)

where n ≥ 0 is a length, index u is a non-negative integer, integer w represents a numeric
term, string s of length n represents a symbolic term (including functions) or an operator,
integer t is either -1, -2, or -3 for tuple terms in parentheses, braces, or brackets,
respectively, or an index of a symbolic term or operator, and each ui is an integer for a
theory term. Statements (B1), (B2), and (B3) capture numeric terms, symbolic terms, as
well as compound terms (tuples, sets, lists, and terms over theory operators).

Fifteen theory terms are given in Lines 12–26 of Listing 50. Each of them is identified by
a unique index in the third spot of each statement. While Lines 12–20 stand for primitive
entities of type (B1) or (B2), the ones beginning with ’9␣2’ represent compound terms.
For instance, Lines 21 and 22 represent end(1) or start(1), respectively, and Line 23
corresponds to end(1)-start(1).
Theory atoms are represented using the following statements:

9␣4␣v␣n␣u1␣ . . . ␣un␣m␣l1␣ . . . ␣lm (B4)
9␣5␣a␣p␣n␣v1␣ . . . ␣vn (B5)
9␣6␣a␣p␣n␣v1␣ . . . ␣vn␣g␣u1 (B6)

where n ≥ 0 and m ≥ 0 are lengths, index v is a non-negative integer, a is an atom or 0
for directives, each ui is an integer for a theory term, each li is an integer for a literal,
integer p refers to a symbolic term, each vi is an integer for a theory atom element, and
integer g refers to a theory operator. Statement (B4) captures elements of theory atoms
and directives, and statements (B5) and (B6) refer to the latter.

64 Roland Kaminski et al.

For instance, Line 27 captures the (single) theory element in ‘{ end(1)-start(1) }’,
and Line 29 represents the theory atom ‘&diff { end(1)-start(1) } <= 200’.
Comments have form

10␣s
where s is a string not containing a newline.

The aspif format constitutes the default output of gringo 5. With clasp 3.2, ground
logic programs can be read in both smodels and aspif format. The tool lpconvert can be
used to convert between both formats (Potassco Team 2021f).

