
Under consideration for publication in Theory and Practice of Logic Programming 1

Appendices for the Paper “Planning for an Efficient
Implementation of Hypothetical Bousi∼Prolog”

Pascual Julián-Iranzo∗
Dept. of Information Technologies and Systems, University of Castilla-La Mancha, Spain

(e-mail: Pascual.Julian@uclm.es)

Fernando Sáenz-Pérez
Dept. of Software Engineering and Artificial Intelligence, Universidad Complutense de Madrid, Spain

(e-mail: fernan@sip.ucm.es)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

∗ This work was supported by the State Research Agency (AEI) of the Spanish Ministry of Science and Innovation
under grant PID2019-104735RB-C42 (SAFER), by the Spanish Ministry of Economy and Competitiveness, under the
grants TIN2016-76843-C4-2-R (MERINET), TIN2017-86217-R (CAVI-ART-2), and by the Comunidad de Madrid,
under the grant S2018/TCS-4339 (BLOQUES-CM), co-funded by EIE Funds of the European Union.



2 P. JULIÁN-IRANZO and F. SÁENZ PÉREZ

Appendix A Performance comparison: meta-interpreted vs. interpreted

This section analyses the performance of the different solving alternatives explained above: the
meta-interpreter and the compiler-based solver interpreter. They are also compared, when appli-
cable, to the native implementation and the solving in SWI-Prolog of the program under test.
Two alternatives are first described for the meta-interpreter, and then the performance analysis is
given, comparing them to the compiled approach in Section 3. The Prolog interpreter for non-
hypothetical programs is also included in the comparison as a reference for the overhead caused
by the compiled approach.

A.1 Hypothetical Meta-interpreters

Figure A 1 illustrates the hypothetical propositional meta-interpreter, which has been enlarged to
deal with disjunctive rules and built-in calls, where a fact is a rule with a true body. The predicate
builtin/1 checks whether its argument represents a call to a built-in predicate (different from ∧,
∨ and⇒).

solve((φ1∧φ2),Π)← solve(φ1,Π)∧ solve(φ2,Π).

solve((φ1∨φ2),Π)← solve(φ1,Π)∨ solve(φ2,Π).

solve(φ ,Π)← builtin(φ)∧ call(φ).

solve((R⇒ φ),Π)← solve(φ , [R|Π]).

solve(φ ,Π)← member((φ ← φ
′),Π)∧ solve(φ ′,Π).

Fig. A 1. Meta-interpreter for hypothetical propositional logic programs

The meta-interpreter for hypothetical propositional logic programs depicted in Figure A 1 is
not applicable to predicate logic programs. For example, the goal ← p for the program {p←
q(1)∧ q(2),q(X)} should succeed, but it does not because solving← q(1) creates the substitu-
tion {X/1}, which is not compatible with the second call← q(2). Nonetheless, it can be easily
adapted to the non-propositional case by modifying the last clause to:

solve(φ ,Π)← copy term(Π,Π′)∧member((φ ← φ
′),Π′)∧ solve(φ ′,Π).

However, copying the entire program each time the unification of a rule or fact with the goal
is sought, is hugely resource consuming. A more convenient approach is to look for a matching
clause and copy only this clause, as follows:

solve(φ ,Π)← uni f member((φ← ),Π,R)∧copy term(R,(φ ′← φ
′′))∧φ = φ

′∧solve(φ ′′,Π).

where uni f member(X ,L,Y ) stands for: Y is a member of L that is unifiable with X .
This can be slightly enhanced by using an ordered list for the program predicates (though pre-

serving rule user ordering in each predicate), therefore reducing the serial access time complex-
ity by a factor of 2, on average. Also, adding cuts for selecting the appropriate meta-interpreter
clause will prune choice points in advance, and will also save some tests. Thus, an actual imple-
mentation in Prolog could be:



Theory and Practice of Logic Programming 3

solve((Goal1, Goal2), Program) :-

!, solve(Goal1, Program), solve(Goal2, Program).

solve((Goal1; Goal2), Program) :-

!, (solve(Goal1, Program) ; solve(Goal2, Program)).

solve((Hyp => Goal), Program) :-

!, insert_rule(Hyp, Program, NProgram), solve(Goal, NProgram).

solve(Goal, _Program) :-

builtin(Goal), !, Goal.

solve(Goal, Program) :-

unif_member((Goal :- _Body), Program, (UGoal :- UBody)),

copy_term((UGoal :- UBody), (CGoal :- CBody)),

CGoal=Goal, solve(CBody, Program).

Note that, in particular, the last clause will not be selected uselessly, as opposed to the skeleton
shown in Figure A 1. The predicate insert rule/3 inserts a rule in the place corresponding to
its ordering.

As suggested by an anonymous referee, there are more alternatives that may be considered.
In particular, this meta-interpreter can be further enhanced by passing only assumed rules to
solve/2, instead of the whole program. Then, the static user program can be accessed by the
built-in predicate clause/2. Moreover, the assumed rules can be better represented by a tree,
whose nodes are predicates (key of the tree), with their rules in a list, thereby improving access
when many predicates are assumed. To implement this approach, the last clause of the former
meta-interpreter is replaced by:

% Lookup in the consulted (static) program:

solve(Goal, Program) :-

clause(Goal, Body), solve(Body, Program).

% Lookup in the augmented program:

solve(Goal, Program) :-

functor(Goal, Functor, Arity), atomic_concat(Functor, Arity, Key),

get_assoc(Key, Program, Rules),

unif_member((Goal :- _Body), Rules, (UGoal :- UBody)),

copy_term((UGoal :- UBody), (CGoal :- CBody)),

CGoal=Goal, solve(CBody, Program).

Association lists are implemented with AVL trees, with O(logn) worst-case (and expected)
time operations, where n denotes the number of elements in the association list (Wielemaker
et al. 2012). This meta-interpreter uses get assoc/3 in solve/2 to retrieve nodes in the tree and
put assoc/4 in insert rule/3 (cf. its implementation in meta2.pl at the URL mentioned in
the next subsection).

A.2 Performance Analysis

All experiments were run on an Intel Xeon CPU E3-1505M v5 with 4 physical cores at 2.8
GHz, 16GiB RAM, with the Windows 10 64-bit operating system. Benchmarks are run on the
last stable version of SWI-Prolog 64-bit 8.2.4-1 at the time of writing this. Times in the Ta-
bles are given in seconds and are the result of averaging 10 runs (and discarding the first),



4 P. JULIÁN-IRANZO and F. SÁENZ PÉREZ

and individual times were measured with the built-in predicate statistics/2. We have col-
lected the time for the total run-time measurement (key cputime for SWI-Prolog), which returns
the (user) CPU time, and the run-time (key runtime) which returns the total run-time, eliding
the time for memory management (garbage collection) and system calls. Tables include the
column CPUtime (for the total run-time), and Diftime (for the total run-time minus the run-
time, primarily to reflect the cost of garbage collection). Garbage collection and stack trimming
are carried out before each trial is run; then the time measurement can start. On completion
of the trial, these operations are performed again before taking the elapsed time, in order to
account for housekeeping tasks due to running the tests. Also, inferences is another mea-
surement from the statistics predicate, which indicates the number of passes via the call and
redo ports in order to execute a goal. All benchmarks and systems can be downloaded from
http://www.fdi.ucm.es/profesor/fernan/iclp2021/Experiments.zip.

Several classical benchmark programs have been selected (they can be found at the SWI-

Prolog site), where some have been adapted to remove cuts. These programs are intended, firstly,
to make clear the price to be paid for including hypothetical reasoning in the system; and, sec-
ondly, to compare meta-interpreted alternatives with respect to the compiled alternative. In any
case, it should be recalled that a compiled approach is preferred for the implementation of a
system such as BPL, because assuming a rule implies a recompilation. Furthermore, most of
those programs have been adapted to build hypothetical versions by assuming either facts or a
rule for the data generator. These versions add a preceding h before the classical test name. With
respect to the factorial test program, facttr is the tail recursive version, and all benchmark sizes
can be consulted at the URL above. As a stress test, several parametric hypothetical programs
are included, to test embedded implications: The first (labelled as hypo1 in the following Ta-
bles): {p← a1⇒ a2⇒ . . .⇒ an⇒ a1∧a2∧ . . .∧an} with a goal← p for n = 2000; the second
(hypo2): {p(0)← a, p(N)← N > 0∧N1 is N− 1∧ (a⇒ p(N1))} with a goal ← p(3000) and
requesting all solutions; and the third (hypo3): {p← a⇒ . . .⇒ a⇒ a} with a goal← p for 3000
assumptions, also requesting all solutions. The first program is intended to test the system by as-
suming a large batch of different predicates iteratively. The second recursively assumes facts of
the same predicate and is intended to analyse the performance in the presence of backtracking by
requesting all solutions. The third is similar to the second but iteratively adding those facts with
nested assumptions.

Table A 1 collects the running measurements for classical tests and Table A 2 for hypothet-
ical tests. Rows in the Table include the following labels: Meta1 for the first meta-interpreter
as shown in this appendix, Meta2 for the second, improved, instance, Comp for the compiled
approach as described in Definition 3.5, and Prolog for the native execution of (classical, non-
hypothetical) tests in the Prolog system.

For classical tests (Table A 1) Meta2 performs better than Meta1 with significant speed-ups,
and there is even a notable speed-up in the case of path, where recursively traversing the list of
the program, including many arcs in the graph, takes a lot of effort that is avoided with Meta2,
because the program is consulted. Looking now at the compiled alternatives Comp and Prolog,
they perform better than the meta-interpreted versions. Comparing Comp to Prolog, they behave
similarly in most cases other than in nrev and queens, where Prolog is faster (4.62× and 1.44×,
respectively).

For hypothetical versions of classical tests (Table A 2, roughly similar conclusions can be
drawn. Performance of Comp is almost always better than Meta2, and the latter is better than
Meta1. Only in hpath is Meta2 faster by a small amount. Results can be different for other non-



Theory and Practice of Logic Programming 5

classical stress tests such as hypo1, for which Meta2 performs better. In this case, note that AVL
trees play an important role in fast accessing of each rule (in hypo1 there is one assumed rule
for each predicate, with a total of 2000). In turn, Comp takes more time, both in total time and
memory management, even when the number of inferences is roughly a fifth compared to Meta1,
but the time taken by memory management is noticeable compared to the other two alternatives.
This system Comp performs better for hypo2 with a similar inference ratio with respect to Meta2.
With respect to the last test hypo3, Meta2 is the slowest, while there is a small difference between
Comp and the fastest, Meta1.



6 P. JULIÁN-IRANZO and F. SÁENZ PÉREZ

Program System CPUtime Diftime Inferences

deriv

Meta1 1.989 0.245 10,230,177
Meta2 1.205 0.128 4,070,102
Comp 0.491 0.030 660,078
Prolog 0.491 0.023 660,077

fact

Meta1 2.470 0.497 11,005,602
Meta2 1.194 0.123 4,070,102
Comp 0.848 0.253 1,500,077
Prolog 0.888 0.231 1,500,076

facttr

Meta1 2.636 0.648 11,016,606
Meta2 1.234 0.123 4,070,102
Comp 0.414 0.036 2,001,077
Prolog 0.450 0.056 2,001,076

fib

Meta1 1.156 0.439 4,827,118
Meta2 0.859 0.345 4,006,022
Comp 0.109 0.006 485,645
Prolog 0.111 0.002 485,644

nrev

Meta1 2.258 0.575 5,699,379
Meta2 1.194 0.127 4,070,102
Comp 0.527 0.092 1,130,321
Prolog 0.114 0.017 1,130,320

path

Meta1 572.533 0.428 5,414,424,890
Meta2 1.197 0.130 4,070,102
Comp 0.152 0.014 1,799,669
Prolog 0.148 0.007 1,799,668

primes

Meta1 4.503 0.859 29,145,106
Meta2 1.220 0.116 4,070,102
Comp 0.409 0.023 1,873,577
Prolog 0.408 0.016 1,873,576

qsort

Meta1 2.083 0.439 10,075,127
Meta2 1.167 0.119 4,070,506
Comp 0.287 0.016 1,005,071
Prolog 0.256 0.008 1,005,070

queens

Meta1 6.231 0.000 47,984,882
Meta2 1.173 0.116 4,070,102
Comp 0.417 0.000 1,971,077
Prolog 0.289 0.000 1,971,076

Table A 1. Comparing Meta1, Meta2, Comp and Prolog for classical programs



Theory and Practice of Logic Programming 7

Program System CPUtime Diftime Inferences

hderiv
Meta1 2.084 0.175 11,430,623
Meta2 1.181 0.117 4,070,102
Comp 0.303 0.020 660,124

hfact
Meta1 2.706 0.512 12,034,102
Meta2 1.211 0.111 4,070,102
Comp 0.703 0.077 3,012,069

hfacttr
Meta1 3.469 0.328 12,058,106
Meta2 1.216 0.130 4,070,102
Comp 0.670 0.044 3,514,569

hnrev
Meta1 2.742 0.386 5,699,425
Meta2 1.164 0.119 4,070,102
Comp 0.605 0.098 1,130,333

hpath
Meta1 9.698 0.089 76,637,002
Meta2 1.189 0.120 4,070,102
Comp 1.330 0.102 4,537,562

hprimes
Meta1 4.694 0.277 30,589,606
Meta2 1.241 0.119 4,070,102
Comp 0.892 0.030 5,264,319

hqsort
Meta1 2.020 0.294 10,075,159
Meta2 1.172 0.116 4,070,102
Comp 0.272 0.014 1,005,083

hqueens
Meta1 6.039 0.000 51,927,280
Meta2 1.139 0.116 4,070,102
Comp 0.289 0.000 1,971,081

hypo1
Meta1 0.700 0.017 9,090,603
Meta2 0.042 0.004 166,743
Comp 0.939 0.162 2,023,076

hypo2
Meta1 2.045 0.081 31,618,620
Meta2 1.498 0.128 22,657,550
Comp 1.014 0.002 4,534,580

hypo3
Meta1 1.477 0.058 22,543,610
Meta2 1.828 0.177 22,573,604
Comp 1.611 0.077 4,531,578

Table A 2. Comparing Meta1, Meta2 and Comp for hypothetical programs



8 P. JULIÁN-IRANZO and F. SÁENZ PÉREZ

Appendix B Proof for Proposition 3.6

We divide the proof of Proposition 3.6 into two parts, starting with the proof of the statement
“if there exists a derivation D ≡ (〈(← Q), id,Π〉 ∗⇒HSLD 〈�,σ ,Π〉) then there exists a derivation
D′ ≡ (〈← Q′, id,Π′〉 ∗⇒SLD 〈�,σ ′,Π′′〉)”. This direction constitutes a kind of completeness result
where we prove that derivations in the original program using the HSLD resolution rule can
be reproduced by the SLD operational mechanism in the transformed program. In the second
part, we prove the converse of the first statement, that is “there exists a derivation D : 〈(←
Q),θ ,Π〉 ∗⇒HSLD 〈�,σ ,Π〉 if there exists a derivation D′ : 〈← Q′,θ ,Π′〉 ∗⇒SLD 〈�,σ ′,Π′′〉”, which
guarantees that the present implementation does not compute answers which are not computed
by the HSLD semantics, leading to a sort of soundness result.

B.1 Proof of Part I

Lemma Appendix B.1
Let Π be a program and G ≡ (← A∧Q1) a goal, if there exists the step

S ≡ 〈(← A∧Q1),θ ,Π〉 ⇒HSLD 〈(← Q2σ),θσ ,Π〉

then there exists the following derivation in the translated program Π′:

〈(← A′∧Q′1),θ ,Π′〉
+⇒SLD 〈(← Q′2(σ ∪δ )),θσ ∪δ ,Π′∪Πreg〉,

where A′, Q′i are the goal translations of A, Qi respectively, and Πreg is the set of all the reg/3 as-
sertions due to embedded implication solving. The domain of the substitution δ shares variables
with neither θ nor σ , and θσ = θ(σ ∪δ )[Var(G )]. �

Proof
We proceed by induction on the context identifier s associated with the program context.

1. Base case(s = ε): In this case query A must be an atom, that is, A≡ p(sn) and there must
be a rule (p(tn)←B) ∈Π for which σ = mgu({p(sn) = p(tn)}) = mgu({sn = tn}) (where
si = ti, with 1≤ i≤ n, are unification problems) and step S is

(〈← p(sn)∧Q1,θ ,Π〉 ⇒HSLD 〈← (B∧Q1)σ ,θσ ,Π〉)

According to Definition 3.5, the rule translation of (p(tn)←B) ∈Π is p(tn, [],0,ε,SC)←
B′ and the goal translation of ← p(sn) is ← p(sn,L, I,C,S) where SC, L, I, C and S are
fresh variables. It is then easy to verify that:

mgu({p(sn,L, I,C,S) = p(tn, [],0,ε,SC)})
= mgu({sn = tn,L = [], I = 0,C = ε,S = SC})
= σ{L/[], I/0,C/ε,S/SC}= σ ∪δ

where δ = {L/[], I/0,C/ε,S/SC}, and its domain does not share variables with σ . Hence,
the following step is possible in the translated program Π′:

〈← p(sn,L, I,C,ε)∧Q′1,θ ,Π′〉 ⇒SLD 〈← (B′∧Q′1)(σ ∪δ ),θ(σ ∪δ ),Π′〉

and θσ = θ(σ ∪δ )[Var(G )].



Theory and Practice of Logic Programming 9

2. Inductive case (s > ε): The query A≡ (H⇒G), that is, an embedded implication (chain),
and the step

S ≡ 〈(← (H⇒ G)∧Q1),θ ,Π〉 ⇒HSLD 〈(← Q1σ),θσ ,Π〉

Therefore, Rule 2 of Definition 3.1 was applied and the derivation

D1 ≡ (〈(← G), id,Π1〉
∗⇒HSLD 〈�,σ ,Π1〉)

must exist, where Π1 = Π∪{H} is a new program with context identifier 1 > ε . Then, by
the Inductive hypothesis, the following derivation in the translated program Π′:

D′1 ≡ (〈(← G′), id,Π′〉 ∗⇒SLD 〈�,σ ∪δ ,Π′∪Πreg〉)

must exist, where G′ is the goal translation of G, Πreg is the set of rule registrations and
δ is a substitution for which its domain shares variables with neither the original (not
translated) goal G nor the substitution σ .
On the other hand, note that the translation of the goal (H ⇒ G) is ⇒ (0, [X ],G′, IC,SC)

plus the rule translation H ′ of H.
Now, using Definition 3.4 for solving embedded implication clauses and Definition 3.3 of
rule registration, and the derivation D′1, it is possible to build the following derivation D′:

〈← (⇒ (0, [X ],G′, IC,SC)∧Q′1),θ ,Π′〉
⇒SLD 〈← (get ci(IC)∧ reg rule(0, [X ], IC,SC)∧ call(G′)∧Q′1),θ ,Π′〉
⇒SLD 〈← (reg rule(0, [X ],1,SC)∧ call(G′)∧Q′1){IC/1},θ ∪{IC/1},Π′〉
⇒SLD 〈← (assertz(reg(0, [X ],SC))∧ call(G′)∧Q′1){IC/1},θ ∪{IC/1},Π′〉
⇒SLD 〈← (call(G′)∧Q′1){IC/1},θ ∪{IC/1},Π′∪{reg(0, [X ],SC)}〉
⇒SLD 〈← (G′∧Q′1){IC/1},θ ∪{IC/1},Π′∪{reg(0, [X ],SC)}〉
∗⇒SLD 〈← Q′1(σ ∪{IC/1}∪δ ),(θσ)∪{IC/1}∪δ ,Π′∪{reg(0, [X ],SC)}∪Πreg〉

where the domain of {IC/1}∪ δ shares variables with neither θ nor σ , and θσ = (θσ ∪
{IC/1}∪δ )[Var(G )].

Proposition Appendix B.2
For a program Π and a goal← Q, if there exists a derivation D≡ 〈(← Q), id,Π〉 ∗⇒HSLD 〈�,σ ,Π〉
then there exists a derivation D′ ≡ 〈← Q′, id,Π′〉 ∗⇒SLD 〈�,σ ′,Π′∪Πreg〉, where Π′ is the trans-
lation of each rule in Π, Q′ is the goal translation of Q, Πreg is the set of rule registrations, that
is, all the reg/3 assertions due to embedded implication solving, and σ = σ ′[Var(G )]. �

Proof
By induction on the length of the derivation D and Lemma Appendix B.1.

As mentioned above, Proposition Appendix B.2 constitutes a kind of completeness result. In
the following we concentrate on the other direction, which leads to a sort of soundness result.



10 P. JULIÁN-IRANZO and F. SÁENZ PÉREZ

B.2 Proof of Part II

Proposition Appendix B.3
Let Π′ be the translation of a program Π and G ′ ≡ (← Q′1) the goal translation of a goal G ≡
(← Q1), if there exists a derivation D′ ≡ 〈← Q′,θ ∪δ ,Π′〉 ∗⇒SLD 〈�,(θσ)∪δ ′,Π′∪Πreg〉, where
Πreg is the set of rule registrations, that is, all the reg/3 assertions due to embedded implication
solving, then there exists a derivation D≡ 〈(← Q),θ ,Π〉 ∗⇒HSLD 〈�,θσ ,Π〉. The domains of the
substitutions δ and δ ′ share variables with neither θ nor σ , and θσ = (θσ)∪δ ′[Var(G )]. �

Proof
The proof proceeds by induction on the length of the derivation D′. Without loss of generality,
thanks to the independence of the computation rule in the SLD operational mechanism, several
steps in the derivation D′ can be conveniently ordered. So, it is possible to group fragments of
the derivation D′ in the translated program Π′, which correspond with the steps in the derivation
D, in the program Π.

1. Base case(n = 1): In this case the query Q′ ≡ p(sn, [], I,C,ε) (translation of Q ≡ p(sn),
since an initially launched goal is solved in the initial context ε and its list of shared
variables is empty) and there must be a rule p(tn, [], i,ε,SC), with rule index i (translation
of the fact p(tn) ∈Π), for which

mgu({p(sn, [], I,C,ε) = p(tn, [], i,ε,SC)})
= mgu({sn = tn, [] = [], I = i,C = ε,ε = SC})
= σ{I/i,C/ε,SC/ε}= σ ∪δ1

where mgu({sn = tn}) = σ must be solvable, δ1 = {I/i,C/ε,SC/ε}, and its domain shares
variables with neither θ nor σ . Therefore, the following one-step derivation D is possible
in the program Π: 〈← p(sn),θ ,Π〉 ⇒HSLD 〈�,θσ ,Π〉 .

2. Inductive case (n > 1): In the analysis of the inductive case we consider two possibilities,
depending on whether the first step is performed with a sub-goal, which is an instance
of the atom ⇒ (IH , [X ′],G′, IC,SC), or not. This kind of sub-goal comes from embedded
implications that appear in the body of some rule, or are submitted directly in the initial
query proposed to the system.

(a) First, consider that Q′ ≡← p(sn, [], I,C,epsilon)∧Q′1 (translation of Q≡← p(sn)∧Q1)
and the first step is performed with a rule (p(tn, [], i,ε,SC)←B′) ∈Π′, with index rule
i (translation of (p(tn)←B) ∈Π),1 whose head unifies with the selected sub-goal:

mgu({p(sn, [], I,C,epsilon) = p(tn, [], i,ε,SC)})
= mgu({sn = tn, [] = [], I = i,C = ε,ε = SC})
= σ{I/i,C/ε,SC/ε}= σ1∪δ1

where mgu({sn = tn}) = σ1 must be solvable, δ1 = {I/i,C/ε,SC/ε} and its domain

1 Note that in the translated program Π′, we can find rules of the form p(tn, [X ′], IH ,SH ,SC) ← reg(IH , [X ′],CR)∧
chk(CR,SC)∧B′ coming from the translation of the embedded implications in the body of the rules in Π (see Definition
3.5). However, this type of rule does not contribute to the first step of a derivation.



Theory and Practice of Logic Programming 11

shares variables neither with θ nor with σ . Hence, derivation D′ proceeds thus:

〈← p(sn)∧Q′1,θ ∪δ ,Π′〉
⇒SLD 〈← (B′∧Q′1)(σ1∪δ1),(θ ∪δ )(σ1∪δ1),Π

′〉
∗⇒SLD 〈�,(θ ∪δ )(σ1∪δ1)(σ2∪δ2),Π

′∪Πreg〉

Now, because mgu({p(sn) = p(tn)}) = mgu({sn = tn}) = σ1 is solvable, there exists
the step in Π:

〈← p(sn)∧Q1,θ ,Π〉 ⇒HSLD 〈← (B′∧Q′1)σ1,θσ1,Π〉

on the other hand, by the inductive hypothesis, there exists a derivation in Π such that:

〈← (B∧Q1)σ1,θσ1,Π〉
∗⇒HSLD 〈�,θσ1σ2,Π〉

and the derivation D in Π can be constructed.
(b) In this case, the first step is performed on a solving implication clause, that is Q′ ≡←

(⇒ (i, [X ],G′, IC,SC)∧Q′1) which is the translation of Q≡← (H⇒ G)∧Q1. For sim-
plicity, we will assume that G′ ≡ q(sn) and the goal translation G≡ q(sn,L, I,C,SC.IC).
Then the shape of the derivation D′ is:

〈← (⇒ (i, [X ],G′, IC,SC)∧Q′1),θ ,Π′〉
⇒SLD 〈← (get ci(IC)∧ reg rule(i, [X ], IC,SC)∧ call(G′)∧Q′1),θ ,Π′〉
⇒SLD 〈← (reg rule(i, [X ], j,SC)∧ call(G′)∧Q′1){IC/ j},θ ∪{IC/ j},Π′〉
⇒SLD 〈← (assertz(reg(i, [X ],SC))∧ call(G′)∧Q′1){IC/ j},θ ∪{IC/ j},Π′〉
⇒SLD 〈← (call(G′)∧Q′1){IC/ j},θ ∪{IC/ j},Π′∪{reg(i, [X ],SC)}〉
⇒SLD 〈← (G′∧Q′1){IC/1},θ ∪{IC/1},Π′∪{reg(0, [X ],SC)}〉
+⇒SLD 〈← Q′1(σ1∪{IC/1}∪δ1),(θσ1)∪{IC/ j}∪δ1,Π

′∪{reg(i, [X ],SC)}∪Πreg1〉
∗⇒SLD 〈�,(θσ1σ2)∪{IC/ j}∪δ1∪δ2,Π

′∪{reg(i, [X ],SC)}∪Πreg1∪Πreg2〉

with two clear parts. The first part corresponds to the HSLD step performed on (H ⇒
G) using Rule 2 of Definition 3.1. It groups the associated derivations submitted by
the occurrence of embedded implications and their successive program contexts. Then
there must exist the HSLD step 〈← (H ⇒ G)∧Q1),θ ,Π〉 ⇒HSLD 〈Q1σ1,θσ1,Π〉 in
the program Π. As for the second part, by the inductive hypothesis, there must exist
the HSLD derivation 〈Q1σ1,θσ1,Π〉

∗⇒SLD 〈�,θσ1σ2,Π〉. Combining both, the former
step and the last derivation, we obtain the derivation D.

Corollary Appendix B.4
Let Π′ be the translation of a program Π and G ′ ≡ (← Q′1) the goal translation of a goal G ≡ (←
Q1), if there exists a derivation D′ ≡ 〈← Q′, id,Π′〉 ∗⇒SLD 〈�,σ ′,Π′∪Πreg〉, where Πreg is the set
of rule registrations, that is, all the reg/3 assertions due to embedded implication solving, then
there exists a derivation D≡ 〈(← Q), id,Π〉 ∗⇒HSLD 〈�,σ ,Π〉, and σ = σ ′[Var(G )]. �



12 P. JULIÁN-IRANZO and F. SÁENZ PÉREZ

Appendix C Related Work

The term ”hypothetical reasoning” appears in many important contexts in the philosophical and
scientific literature. Auguste Comte, founder of Positivism, is one of the first thinkers to high-
light the importance of hypotheses in science (Bourdeau 2020). Although Comte does not es-
tablish laws for hypothetical reasoning, he begins the path, influencing (according to Bourdeau
(2014)) other thinkers such as Peirce and its abductive reasoning. According to that American
philosopher, human thought has three modes of reasoning: deductive, inductive and abductive.
“Abduction is the first step of scientific reasoning,” because, as he says, “abduction is the process
of forming explanatory hypotheses. It is the only logical operation that introduces a new idea”
(Douven 2021).

However, our work is centered in a more specific area with a long tradition in the field of Logic
Programming, in which the purpose is prospective: to propose hypotheses in order to evaluate
its consequences. Mainly, our work is influenced by those of Gabbay and Reyle (1984), Gabbay
(1985) and Bonner (1988; 1990; 1994; 1997) and, to a lesser extent, by those of L.T. McCarty
(1988a; 1988b).

Gabbay first deals with hypothetical implications in logic programming. In Gabbay and Reyle
(1984), they focused only on addition operations because deletion is problematic; thus they let it
for another paper. Addition is essentially monotonic and deletion is not. We use a similar tech-
nique to the one followed by Gabbay for implementing hypothetical implications, by asserting
the antecedent to the program database, trying to derive the consequent and finally retracting
the antecedent. Gabbay (1985) investigates the logical properties of N-PROLOG and the way it
relates to classical logic and the classical quantifiers. He also introduced negation as failure into
N-PROLOG. He saw that success in the N-PROLOG computation of a goal G from the database
P means logically that P `G in intuitionistic logic. It is credited that was Gabbay the first one to
realize the important connection between hypothetical reasoning and intuitionistic logic (Bonner
1994).

McCarty (1988a) presents a clausal language that extends Horn-clause logic by adding nega-
tions and embedded implications (i.e., hypothetical implications –he was the one who first used
this designation–) to the right-hand side of a rule, and interpreting these new rules intuitionisti-
cally in a set of partial models. Lately, McCarty (1988b) shown that clausal intuitionistic logic
has a tableau proof procedure that generalizes Horn-clause refutation proofs and it is proved
sound and complete.

As it has been said, Bonner has extensive experience in this field, starting from a language
with embedded implications (close to ours) and exploring its applications and formal properties,
including results on complexity (Bonner 1988; Bonner 1990; Bonner 1994). In his latest work
on this topic (Bonner 1997), he broke with his initial works and he developed a logic program-
ming language with a dedicated syntax in which users can create hypotheses and draw inferences
from them. He provides two specific operations with a modal-like notation: hypothetical inser-
tion of facts into a database (Q[add : A] meaning that “Q would be true if A were added to
the database”), that has a well-established logic (intuitionistic logic) and hypothetical deletion
(Q[del : A] meaning that “Q would be true if A were deleted from the database”). In this paper,
he develop a logical semantics for hypothetical insertions and deletions (including a proof theory,
model theory, and fixpoint theory). He analyses the expressibility of the language and he shows
that classical logic cannot express some simple hypothetical queries. However, we believe that
the language introduced, with specific insertion and deletion operations, may have limitations



Theory and Practice of Logic Programming 13

compared to the one we have proposed in this work (e.g., only atoms can be inserted or deleted).
Finally, he augmented the logic with negation-as-failure so that nonmonotonic queries can be
expressed, a subject that we let as future work.

Another piece of related work is λ -Prolog, which uses a syntax based on the so-called “hered-
itary Harrop formulas.” Thanks to this type of formulas, λ -Prolog subsumes a set of increasingly
complex sublanguages, ranging from Horn clauses and higher-order Horn clauses to hereditary
Harrop formulas. This type of formula, for example, allows rules with bodies that contain (hypo-
thetical) implications whose hypotheses are in turn rules.

The use of higher-order Horn clauses and a non-deterministic goal-directed search-based op-
erational semantics (which is complete with respect to an intuitionistic sequent calculus as stated
by Miller et al. (1991)) allows λ -Prolog the ability to perform hypothetical reasoning. In practi-
cal and informal terms, the λ -Prolog operational mechanism performs operations similar to those
performed by Comp to solve a hypothetical implication (H ⇒ G): Assert H to the rules of the
program (creating a new context) and launch the goal G; if G is successful, then (H⇒G) is also
successful. It is nothing other than the rule ”AUGMENT” (P ` (D⇒G) only if P+D `G.), one
of the operational rules that models the computation-as-goal-directed-search of λ -Prolog.

Therefore, both mechanisms are comparable, except that λ -Prolog fits into a more general and
ambitious framework, while Comp simply tries to extend the language of Horn clauses and the
resolution principle with additional features, among which the hypothetical reasoning is found,
as a platform for a fuzzy logic programming system.

What specific expressive capabilities for hypothetical reasoning λ -Prolog incorporates de-
pends on the implementation. For example, we know in the words of D. Miller himself2 about
Teyjus, an implementation of λ -Prolog, that “Teyjus does not permit implications to be used
in top-level goals. This is a characteristic that may change in the future when the compilation
model is extended also to these goals but, for now, it means that some of the examples presented,
eg, in Section 3.2, cannot be run directly using this system.” Instead, the future implementation
of Comp is planned to be able to allow this by compiling the goal in the context of the loaded
program before submitting it.

Moreover, λ -Prolog does not work with ”negative assumptions”, a matter that we have let
marked as future work, and that we will undertake by following some ideas already proposed
for the implementation of a Fuzzy Datalog system (Julián-Iranzo and Sáenz-Pérez 2018; Julián-
Iranzo and Sáenz-Pérez 2020).

Despite all the above and the possible relations between the foundations of our proposal and
λ -Prolog, as we have just commented in this section, our work has its roots in the previous
work carried out by Gabbay and Bonner. On the other hand, the main contribution of this article
is the development of efficient high-level implementation techniques for implementing a fuzzy
logic programming system (HBPL) with the possibility of hypothetical reasoning based on BPL

(Rubio-Manzano and Julián-Iranzo 2014; Julián-Iranzo and Rubio-Manzano 2017). In such a
system, assumptions imply compilations which with our proposal are possible to perform at
compile-time.

2 stackoverflow.com/questions/65176668/?prolog-rejecting-hypothetical-reasoning-queries



14 P. JULIÁN-IRANZO and F. SÁENZ PÉREZ

References

BONNER, A. J. 1988. A logic for hypothetical reasoning. In Proceedings of the 7th National Conference on
Artificial Intelligence, St. Paul, MN, USA, August 21-26, 1988. AAAI Press / The MIT Press, 480–484.

BONNER, A. J. 1990. Hypothetical datalog: Complexity and expressibility. Theor. Comput. Sci. 76, 1,
3–51.

BONNER, A. J. 1994. Hypothetical reasoning with intuitionistic logic. Non-Standard Queries and Answers,
Studies on Logic and Computation, 187–219.

BONNER, A. J. 1997. A logical semantics for hypothetical rulebases with deletion. J. Log. Program. 32, 2,
119–170.

BOURDEAU, M. 2014. La théorie positive des hypothéses (in french). In In Proc of the Conf. on Hypothet-
ical Reasoning. University of Tübingen, 23–29.

BOURDEAU, M. 2020. Auguste Comte. In The Stanford Encyclopedia of Philosophy, E. N. Zalta, Ed.
Metaphysics Research Lab, Stanford University.

DOUVEN, I. 2021. Abduction. In The Stanford Encyclopedia of Philosophy, E. N. Zalta, Ed. Metaphysics
Research Lab, Stanford University.

GABBAY, D. M. 1985. N-PROLOG: An extension of PROLOG with hypothetical implication II - logical
foundations, and negation as failure. J. Log. Program. 2, 4, 251–283.

GABBAY, D. M. AND REYLE, U. 1984. N-PROLOG: An extension of PROLOG with hypothetical impli-
cations I. J. Log. Program. 1, 4, 319–355.

JULIÁN-IRANZO, P. AND RUBIO-MANZANO, C. 2017. A sound and complete semantics for a similarity-
based logic programming language. Fuzzy Sets and Systems, 1–26.

JULIÁN-IRANZO, P. AND SÁENZ-PÉREZ, F. 2018. A Fuzzy Datalog Deductive Database System. IEEE
Transactions on Fuzzy Systems 26, 5, 2634–2648.

JULIÁN-IRANZO, P. AND SÁENZ-PÉREZ, F. 2020. A System implementing Fuzzy Hypothetical Datalog.
In International Conference on Fuzzy Systems (FUZZ-IEEE), UK, July 19-24. 1–8.

MCCARTY, L. T. 1988a. Clausal intuitionistic logic I - fixed-point semantics. J. Log. Program. 5, 1, 1–31.
MCCARTY, L. T. 1988b. Clausal intuitionistic logic II - tableau proof procedures. J. Log. Program. 5, 2,

93–132.
MILLER, D., NADATHUR, G., PFENNING, F., AND SCEDROV, A. 1991. Uniform proofs as a foundation

for logic programming. Ann. Pure Appl. Log. 51, 1-2, 125–157.
RUBIO-MANZANO, C. AND JULIÁN-IRANZO, P. 2014. Fuzzy Linguistic Prolog and its Applications.

Journal of Intelligent and Fuzzy Systems 26, 1503–1516.
WIELEMAKER, J., SCHRIJVERS, T., TRISKA, M., AND LAGER, T. 2012. SWI-Prolog. Theory and Prac-

tice of Logic Programming 12, 1-2, 67–96.


