
16 F. Q. Weitkämper

Appendix A Proofs

In the appendix we collate the proofs of the claims made in the paper.

Proof of Proposition 6. We have seen that the independent distribution induced on the
space of R-structures with domain D is projective. Additionally, closed quantifier-free
formulas hold in a substructure if and only if they hold in the original structure. So
let ω be an S-structure with domain D and let D ⊂ D′. Let ω(R) be the R-structure
on ω. If ω has probability 0 because ω |= ∃~a∈~D∃R∈S\R : R(~a) < φR(~a), then so will
all superstructures of ω since existential formulas are closed under superstructure. So
assume this is not the case. Then

QD′

T

({
ω′(R) ∈ Ωn|ω(R) is the substructure of ω′(R) with domain {1, . . . , n}

})
= QD

T (ω(R)).

Every ω′(R) has a unique extension to an S-structure ω′ with R(~a) < φR(~a) for all
R ∈ S \R. Since quantifier-free formulas with values in ω(R) are true in ω′(R) if and only
if they are true in ω(R), those are exactly the extensions of ω to D′ that have non-zero
weight.

Proof of Proposition 11. The first claim follows from the fact that RANDOM(T) is the
reduct of RANDOM(R) to T for any T ⊆ R.

To show the second claim, consider the vocabulary R̄ containing R~x(~y) for every
atomic subformula R(~x, ~y) of ϕ and let ϕ̄ be the R̄-formula obtained from ϕ by re-
placing every occurrence of R(~x, ~y) with R~x(~y). Let M be a model of RANDOM(R)

and let ~a ∈ M . Then define an R̄-structure on M by setting R~x(~y) : ⇔ R(~a, ~y). One
can verify that M satisfies the extension axioms in RANDOM(R̄). Since RANDOM(R̄)

is complete, RANDOM(R̄) ` ϕ̄ or RANDOM(R̄) ` ¬ϕ̄. Therefore, either ϕ(~a) or
¬ϕ(~a) holds uniformly for all ~a ∈ M . Therefore, either RANDOM(R) ` ∀~xϕ(~x) or
RANDOM(R) ` ∀~x¬ϕ(~x).

Proof of Theorem 23. By Fact 22 and the finiteness of the vocabulary V, there is a finite
set G of extensions axioms over R such that there are quantifier-free R-formulas φ′R for
every R ∈ V\R with G ` ∀~xφR(~x)↔ φ′R(~x).

By Fact 12, lim
n→∞

Q
(n)
T ({ω ∈ Ωn|ωR |= G}) = 1 for any finite subset G ⊆ RANDOM(R)

and thus lim
n→∞

Q
(n)
T ({ω ∈ Ωn|∀R∈V\RωR |= φR ↔ φ′R}) = 1. Let (Q

(n)
T) be the family

of distributions induced by the quantifier-free FO-distribution over R, in which every
φR is replaced by φ′R. By construction, Q(n)(ω) = Q′(n)(ω) for every world ω with
∀R∈V\RωR |= φR ↔ φ′R. Therefore, sup

A⊆Ωn

|Q(n)(A) − Q′(n)(A)| is bounded by above by

1 − Q(n)({ω ∈ Ωn|∀R∈V\RωR |= φR ↔ φ′R}), which limits to 0 since lim
n→∞

Q(n)({ω ∈
Ωn|∀R∈V\RωR |= φR ↔ φ′R}) = 1.

Proof of Theorem 27. Let S\R be the extensional vocabulary of the probabilistic logic
program Θ and let Π be its underlying Datalog program. Then for every relation R ∈
S\R, R(~t) is given by the Datalog formula (Π, R)~t over any given R-structure. By Fact
21, (Π, R)~t is equivalent to an LFP formula φR over R. Let T be the abstract LFP
distribution over R in which for every R ∈ R, qR is taken from Θ and for every R ∈ S\R,
this φR is used. Then T and Θ induce equivalent families of distributions. By Theorem
23, T is asymptotically equivalent to a quantifier-free abstract distribution, which in turn

Asymptotic analysis of probabilistic logic programming 17

is equivalent to a determinate probabilistic logic program by Fact 25. Therefore Θ itself
is asymptotically equivalent to a determinate probabilistic logic program.

Proof of Proposition 28. We will proceed by contradiction. So assume not. Then there is
an m such that Q(m) and Q′(m) are not equal. Let ω0 be a world of size m which does
not have the same probability in Q(m) and Q′(m). Let a := |Q(m)({ω0}) − Q′(m)({ω0})|
For any n ≥ m, consider the subset

An := {ω ∈ Ωn|the substructure of ω on the domain {1, . . . ,m} is ω0}.

Since both families are projective, |Q(n)(An)−Q′(n)(An)| = |Q(m)({ω0})−Q′(m)({ω0})| =
a. Therefore, (Q(n)) and (Q′(n)) are not asymptotically equivalent.

Proof of Proposition 30. Let (Q(n)) and (Q′(n)) be asymptotically equivalent families of
distributions over S. Then for any T ⊆ S, and any A ⊆ Ωn,

|Q(n)
T (A)−Q′(n)

T (A)| = |Q(n)({ω ∈ ΩSn |ωT ∈ A})−Q′(n)({ω ∈ ΩSn |ωT ∈ A})|.

Therefore, lim
n→∞

sup
A⊆ΩT

n

|Q(n)
T (A)−Q′(n)

T (A)| ≤ lim
n→∞

sup
A⊆ΩS

n

|Q(n)(A)−Q′(n)(A)| = 0

Proof of Theorem 31. By asymptotic quantifier elimination, we can choose Tq to be
asymptotically equivalent to T . Since Tq is a quantifier-free distribution, its induced
family of distributions (P (n)) is projective. By Proposition 30, Q(n)

S′ and P (n)
S′ are asymp-

totically equivalent. However, since they are both projective, this implies that they are
actually equivalent everywhere.

Proof of Proposition 33. Let the abstract distribution be defined over R. Then by re-
placing occurrences of other relations with their quantifier-free definitions, we can re-
duce to the case where all formulas and structures mentioned are R-formulas and R-
structures. Since by definition of the abstract distribution semantics, {1, . . . , n} |= ϕ and
{n+ 1, . . . , n+m} |= ψ are independent for R-structures, this suffices to show IP.

To show CIP, observe first that for all atoms R(x1, . . . , xk) and n1, . . . , nk ∈ {1, . . . , n−
1}, either ω |= R(a1, . . . , ak) or ω |= ¬R(a1, . . . , ak). Therefore, we can replace all occur-
rences of atoms with entries in x1, . . . xn−1 with > or ⊥, depending on whether ω satisfies
them under the substitution xi → ni. As only atoms remain in which xn occurs freely,
their interpretations refer to n or n+1 in {1, . . . , n} and {1, . . . , n+1}\{n} respectively.
Now we can conclude as for IP above.

Proof of Corollary 34. Such a projective family is in fact induced by a determinate prob-
abilistic logic program, which is equivalent to a quantifier-free family of distributions.

Proof of Corollary 35. (Q
(n)
S′) satisfies IP since (Q(n)) does and IP transfers to reducts.

Proof of Proposition 36. As in the previous proofs, we can reduce to the situation where
nullary predicates are the propositional facts. Since there are only finitely many nullary
predicates in S ′, there are only finitely many possible configurations of those nullary
predicates. For every such configuration ϕ, let qϕ be the probability of that configuration.
Then the distribution itself is given by the finite sum of the conditional distributions on
ϕ, weighted by qϕ , and every such conditional distribution is given by the probabilistic

18 F. Q. Weitkämper

logic program without nullary relations obtained by substituting > or ⊥ for the nullary
propositions, depending on whether they are true or false in the configuration ϕ.

Proof of Proposition 38. Assume there is such a probabilistic logic program. Since m∗ is
projective, it would have to be a finite sum of distributions satisfying IP. For each of these
finite components (P (n)), let pP be the unconditional probability of R(x) for any x (well-
defined by projectivity). We observe from Equation 5.1 that for variable n, the infimum
of m∗

(
R(an+1)| {R(ai)}i∈I⊆{1,...,n} ∪ {¬R(ai)}i∈{1,...,n}\I

)
is 0, even if we assume that

there is at least one i with R(ai). As there are only finitely many components (P (n)), the
infimum c of the nonzero pP is greater than 0. By the IP for the (P (n)), R(an+1) is condi-
tionally independent of {R(ai)}i∈I⊆{1,...,n}∪{¬R(ai)}i∈{1,...,n}\I under (P (n)). Thus, the
conditional probability of R(an+1) given {R(ai)}i∈I⊆{1,...,n} ∪ {¬R(ai)}i∈{1,...,n}\I is a
weighted mean of the non-zero pP and therefore bounded below by c > 0, in contradiction
to 0 being the infimum of m∗

(
R(an+1)| {R(ai)}i∈I⊆{1,...,n} ∪ {¬R(ai)}i∈{1,...,n}\I

)
.

Appendix B Background and notation

B.1 First-order logic

This paper follows the notation of Ebbinghaus and Flum (2006), which we outline here.
Full information can be found in Chapter 1 there. A vocabulary, sometimes called a
relational vocabulary for emphasis, is a finite set of relation symbols, each of which are
assigned a natural number arity, and of constant symbols, but does not contain function
symbols. We also assume an infinite set of first-order variables, customarily referred to by
lower-case letters from the end of the alphabet, i. e. u to z. For a vocabulary S, an atomic
S-formula or S-atom is an expression of the form R(t1, . . . , tn), where R is a relation
symbol of arity n and every ti is either a variable or a constant. An S-literal is either
an atom ϕ or its negation ¬ϕ. A quantifier-free S-formula is a Boolean combination of
atoms, where conjunction is indicated by ∧, disjunction by ∨ and logical implication by
→. We use the big operators

∧
A first-order or FOL-formula is made up from atoms

using Boolean connectives as well as existential and universal quantifiers over variables
x, indicated by ∃x and ∀x respectively. To simplify the notation for longer strings of
quantifiers, we use the shorthand ∀x1,...,xn

for ∀x1
. . . ∀xn

, and analogously for ∃.
In Section 3 we also refer to second-order formulas, which are introduced there.
Let ϕ be a first-order formula. An occurrence of a variable x in ϕ is called bound if it

is in the scope of a quantifier annotated with that variable and free otherwise. x is called
free in ϕ if it occurs freely. We use the notation ϕ(x1, . . . , xn) for ϕ to assert that every
free variable in ϕ is from x1, . . . , xn. We also abuse notation and write R(~x,~c) for an
atomic formula with constants ~c and free variables ~x, even though they don’t necessarily
appear in that order. A formula with no free variables is called a sentence, and a set
of sentences is called a theory. Sentences making up a given theory are also called its
axioms.

Since tuples such as x1, . . . , xn occur frequently and their exact length is often not
important, we use the notation ~x to indicate a tuple of arbitrary finite length in many
contexts.

If S is a vocabulary, then an S-structure ω consists of a finite non-empty set D, the

Asymptotic analysis of probabilistic logic programming 19

domain of ω, along with an interpretation of the relation symbols and constants of S as
relations and elements of D respectively. If R is a relation symbol and c a constant, then
we write Rω and cω for their respective interpretations in ω. A bijective map f : D → D′

between the domains of two S-structures ω and ω′ respectively is an S-isomorphism if it
maps the interpretation of every relation symbol and constant in ω to the interpretation
of the same symbol in ω′. Given a subset D′ ⊆ D of the domain of a structure ω, we call
a structure ω′ with domain D′ the substructure of ω on D′ if the interpretation of the
relation symbols in ω′ are obtained by restricting the interpretations of the symbols in ω
to D′. Let S ′ ⊆ S be two vocabularies. Then the reduct ωS′ of an S-structure ω is given
by simply omitting the interpretations of the symbols not in S. In this situation, we call
ω an extension of ωS′ .

Let ω be an S-structure, let ϕ(x1, . . . , xn) be a first-order S-formula and let a1, . . . , an
be a tuple of elements of the domain D of ω. Then we write ω |= ϕ(a1, . . . , an) whenever
ϕ(x1, . . . , xn) holds with respect to the interpretation of a1, . . . , an for x1, . . . xn, and call
ω a model of ϕ(a1, . . . , an). Similarly, for a theory T , we call ω a model of T if ω |= ϕ for
all axioms ϕ in T . We also express this situation by saying that ω satisfies ϕ or T .

Let T be a theory and ϕ a sentence. We use the notation T ` ϕ to indicate that ω |= ϕ

for all models ω of T .

B.2 Logic Programming

Our terminology for logic programs is taken from Chapter 9 of Ebbinghaus and Flum
(2006), where one can find a more detailed exposition.

A general logic program in a vocabulary S is a finite set Π of clauses of the form
γ ← γ1, . . . , γn, where n ≥ 0, γ is an atomic formula and γ1, . . . , γn are literals. We call γ
the head and γ1, . . . , γn the body of the logic program. The intensional relation symbols
are those that occur in the head of any clause of a program, while the relation symbols
occurring only in the body of clauses are called extensional. We write (S,Π)ext for the
extensional vocabulary, or Sext where the logic program is clear from context.

An acyclic logic program is one in which no intensional relation symbol occurs in the
body of any clause (This is at first glance a stronger condition than the usual definition
of acyclicity, but by successively unfolding head atoms used in the body of a clause every
acyclic logic program in the usual sense can easily be brought to this form).

A pure Datalog program is a general logic program in which no intensional relation
symbol appears within any negated literal. To affix a meaning to a pure Datalog program,
consider it as a function which take as input a finite Sext-structure ω and returns as output
an extension ωΠ of ω to S. Starting from an empty interpretation of the relation symbols
not in Sext, we successively expand them by applying the rules of Π. We give an informal
description of this process:

Let γ(~x) be the head of a clause and γ1(~x, ~y), . . . , γn(~x, ~y) the body, and let ~a be a
tuple of elements of the domain D of length equal to ~x. Then whenever there is a tuple
~b such that ω |= γi(~a,~b) for every i, we add γ(~a) to the interpretation of the relation
symbol R of the atom γ. Successively proceed in this manner until nothing can be added
by applying any of the clauses of Π. Since the domain of ω is finite, this is bound to
happen eventually.

As the restriction for no intensional relation symbol to occur negated in the body

20 F. Q. Weitkämper

of a clause turns out to be too strong for many practical applications, we consider a
generalisation to stratifiable Datalog programs. A general logic program Π in a vocabulary
S is called a stratifiable Datalog program if there is a partition of S into subvocabularies
Sext = S0, . . .Sn such that the following holds:

The corresponding logic programs Π1, . . . ,Πn, where Πi is defined as the set of clauses
whose head atom starts with a relation symbol from Si, are pure Datalog programs, and
the extensional vocabulary of Πi is contained in S0 ∪ · · · ∪ Si−1.

If Π is a stratifiable Datalog program in S and ω an Sext-structure, then ω is obtained
by applying Π1, . . . ,Πn successively.

A (pure/stratified) Datalog formula is an expression of the form (Π, P)~x, where Π is
a (pure/stratified) Datalog program, P an intensional relation symbol and ~x a tuple of
variables. We say that a Datalog formula holds in an Sext-structure ω for a tuple of
elements ~a of the same length as ~x, written ω |= (Π, P)~a, if P (~a) is true in ωΠ.

