Online appendix for the paper

Reasoning on Multi-Relational Contextual Hierarchies
via Answer Set Programming with Algebraic Measures

published in Theory and Practice of Logic Programming

LORIS BOZZATO

Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento, Italy
(e-mail: bozzato@fbk. eu)

THOMAS EITER RAFAEL KIESEL

Technische Universitdit Wien, Favoritenstrafle 9-11, A-1040 Vienna, Austria
(e-mail: (thomas.eiter|rafael.kiesel)@tuwien.ac.at)

Appendix A Single-relational Example
We also give an example of a single-relational sSCKR.

Example 5

We consider a single-relation hierarchy on coverage by reviewing the example from (Bozzato
etal. 2019; Bozzato et al. 2018b). Let us consider a sCKR R,o1 = (€, Kn) with with € = (N, <,)
describing the organization of a corporation. The corporation wants to define different policies
with respect to its local branches, represented by the coverage hierarchy in €. The corporation is
active in the fields of Musical instruments (M), Electronics (E) and Robotics (R). A supervisor
(S) can be assigned to manage only one of these fields. Defeasible axioms in contexts in Ky
define the assignment of local supervisors to their field:

¢: {Cbr] =¢ Cworlds Cbr2 =c Cworld, Cbrl =c¢ Cbr2, Clocall <c¢ Cbr]a}
Cworld . {MMEC L, MORC L, ENRC 1L, D(SCE)}
Chrl * {DC(S E M)} Cpr2 - {DC(S E R)} Clocall - {S(l)}

In ¢4 We say that supervisors are assigned to Electronics, while in the sub-context for ¢y,
we contradict this by assigning all local supervisors to the Robotics area and in c;,; we further
specialize this by assigning supervisors to the Musical instruments area. In the context cj,cq7
for a local site we have information about an instance i. Note that different assignments of ar-
eas for i are possible by instantiating the defeasible axioms: intuitively, we want to prefer the
interpretations that override the higher defeasible axioms in ¢,y and cp,».

Observe that different justified CAS models are possible, depending on the different assign-
ments of the individual 7 in ¢,.4; to the alternative areas denoted by defeasible axioms. We have
three possible clashing assumptions sets for context Cjoeq/7:

XLl (Clocall) = {<S EE7i>7<S ;R7i>} Xg(clocall) = {(SEM,I'>,<S ER7i>}
Xg(clocull) ={(SEM,i),(SCE,i)}

By the ordering on clashing assumption sets, in particular X, (Cpcarr) > %2 (Clocat1)> X (Ciocatr) >
22 (Clocarr) and X2 (Crocarr) > %2 (Clocarr)- Thus, Rorgl has one preferred model which corresponds
to %Ll it corresponds to the intended interpretation in which the defeasible axiom D(S = M)
associated to cp,; wins over the more general rules asserted in ¢y, and Cyypp4- O

Table B 1. SROZQ-RLD normal form for axioms in Ly

Strict axioms: for A,B € NC, R,S,T € NR, a,b € N[, c € N:
A(a) R(a,b) a=b a#b
ACB {a}CTB ANBCC
3RACB AC3R{a} ALCVRB ALCKIRT
RCT RoSCT Dis(R,S) Inv(RS) Irr(R)
eval(A,c) C B eval(R,c)C S

Defeasible axioms: for A,B € NC, R,S € NR, a € NI, rel € {t,c}:
D,y(ACB) D, (ANBCC) D, (3RACB)
Di(AC3R{a}) D, (ACVRB) D,(ACKIRT)
Dy/(RES) Dyy(RoSET) Dye(Dis(R,S)) Dye(Inv(R,S)) Dye(Irr(R))

Appendix B ASP Translation and Rule Set Tables

We provide further details on the ASP encoding introduced in Section 5. The ASP translation
is defined by adapting the encoding presented in (Bozzato et al. 2019; Bozzato et al. 2018b)
(which, in turn, is based on the translation introduced in (Bozzato et al. 2018a)) to the manage
the interpretation of multiple relations in simple CKRs.

The ASP translation is defined for SROZ Q-RLD multi-relational simple CKRs of the form
R =(¢,Ky) with € = (N, <,,<,), i.e. over time and coverage contextual relations.

The language of SROZQ-RLD (Bozzato et al. 2018a) restrict the form of SROZQ-RL ex-
pressions in defeasible axioms: in defeasible axioms, DD can not appear as a right-side con-
cept and each right-side concept VR.D has D € NC. We consider the SROZ Q-RLD normal form
transformation proposed in (Bozzato et al. 2018a) for the formulation of the rules (considering
axioms that can appear in simple CKRs) and we assume again the Unique Name Assumption.
For ease of reference, the form of (strict and defeasible) axioms in normal form is presented in
Table B 1. Note that we further simplified the normalization of defeasible class and role asser-
tions and negative assertions as they can be easily represented using defeasible class and role
inclusions with auxiliary symbols.

As in the original formulation (inspired by the materialization calculus in (Krétzsch 2010)),
the translation includes sets of input rules I (which encode DL axioms and signature as facts),
deduction rules P (normal rules providing instance level inference) and output rules O (that
encode in terms of a fact the ABox assertion to be proved).

The sets of rules for the proposed translation are presented in tables in the following pages. The
input rules ,; and deduction rules P,; for SROZ Q-RL axioms are shown in Table B 2. Table B 3
shows input rules Iy, and deduction rules Py, for the translation of the contextual structure
in € local input rules /,,, and deduction rules P,,, for managing eval expressions, and output
rules O for encoding the output instance query. Input rules Ip in Table B 4 provide the encoding
of defeasible axioms. Deduction rules in Pp manage the interpretation of defeasible axioms and
knowledge propagation. Table B 5 shows rules defining the overriding of axioms. Rules for the
inheritance of strict axioms are shown in Table B 6, while rules in Table B 7 define defeasible

Table B2. SROZQ-RL input and deduction rules

SROZQ-RL input translation 7,;(S,c)

(irl-nom) a € NI— {nom(a,c)} (irl-subenj) A} MAy C B+ {subConj(Aj,A2,B,c)}
(irl-cls) A eNCw {cls(4,c)} (irl-subex) JR.A C B+ {subEx(R,A,B,c)}
(irlrol) R €NR > {rol(R,c)} (irl-supex) A C 3R.{a} — {supEx(A,R,a,c)}
(irl-instl) A(a) — {insta(a,A,c)} (irl-forall) A C VR.B — {supForall(A,R,B,c)}
(irl-triple) R(a,b) — {triplea(a,R,b,c)} (irl-leqone) A C <1R.T + {supLeqOne(A,R,c)}
(ireq) a=bw {eq(a,b,c,main)} (irl-subr) R C S+~ {subRole(R,S,c)}

(i-neq) a#b—0 (irl-subre) RoS T T+ {subRChain(R, S, T,c)}
(irl-inst3) {a} C B+ {insta(a,B,c)} (irl-dis) Dis(R,S) — {dis(R,S,c)}
(irl-subc) A C B+ {subClass(A,B,c)} Grl-inv) Inv(R.S) s {inv(R,S,c)}

(irl-top) T(a) — {insta(a,top,c)} (irl-irr) Ire(R) — {irr(R c)}

(irl-bot) L (a) — {insta(a,bot,c)} '

SROZO-RL deduction rules P,
(prl-instd) instd(x,z,¢,main) < insta(x,z,c).
(prl-tripled) tripled(x,ry,c,main) + triplea(x,r,y,c).

(prl-eq) unsat(r) < eq(x,y,c,1).

(prl-top) instd(x,top,c, main) < nom(x,c).

(prl-bot) unsat(f) < instd(x,bot,c,t).

(prl-subc) instd(x,z,c¢,t) « subClass(y,z,c),instd(x,y,c,?).

(prl-subcnj) instd(x,z,¢,t) « subConj(yy,y2,2,¢), instd(x,y1,¢,t),instd(x,y2,c,1).

(prl-subex) instd(x,z,c,t) + subEx(v,y,z,¢), tripled(x,v,x,¢,1),instd (X, y,c,1).

(prl-supex) tripled(x,r,¥,c,t) « supEx(y,r,x’,c), instd(x,y,c,1).

(prl-supforall) instd(y,7,c,t) ¢ supForall(z,r,7,c),instd(x,z,c,1), tripled(x,r,y,c,1).

(prl-leqone) unsat(t) < supLeqOne(z,r,c),instd(x,z,c,t),
tripled(x,r,x|,c,f),tripled(x,r,x,c,t).

(prl-subr) tripled(x,w,x,c,t) < subRole(v,w,c),tripled(x,v,xc,t).

(prl-subrc) tripled(x,w,z,c¢,t) < subRChain(u,v,w,c),tripled(x,u,y,c,t), tripled(y,v,z,c,t).

(prl-dis) unsat(r) + dis(u,v,c),tripled(x,u,y,c,t), tripled(x,v,y,c,1).

(prl-inv1) tripled(y,v,x,c,t) < inv(u,v,c),tripled(x,u,y,c,1).

(prl-inv2) tripled(y,u,x,c,t) < inv(u,v,c),tripled(x,v,y,c,t).

(prl-irr) unsat(r) < irr(u,c),tripled(x,u,x,c,1).

(prl-sat) < unsat(main).

inheritance. Table B 8 shows rules for the propagation of defeasible axioms on a relation rell over
the other relation. Auxiliary test rules in Pp are shown in Table B 9. Finally, rules and directives in
Py y define the asprin preference: the definition of asprin local and global preferences is shown
in Table B 11, while rules in Table B 10 provide auxiliary rules.

Given a multi-relational sSCKR & = (€,Ky) in SROZQ-RLD normal form with € = (N, <;
,=c), a program PK(R) that encodes £ is obtained as follows:

1. the global program for € is built as: PG(€) = Lo, (C) U Pyrp

2. for each c € N, we define each local program for context ¢ as: PC(c,R) = [,(Kc,¢) U Py,
where Iloc(Kcvc) = rl(KmC) Uleval(KCa C) UID(KCaC) and Poe = Py U Peyyy U Pp

3. The CKR program PK(R) is defined as: PK(R) = PG(€) U ey PC(c, R)

Query answering R |= ¢ : « is then obtained by testing whether the instance query, translated
to ASP by O(a,c), is a consequence of the preferred models of PK(R), i.e., whether PK(8) U
Pyref = O(0t,c) holds. This can be extended to conjunctive queries Q by applying the output
rules to its atoms and checking if PK(R) U P,..r = O(Q) holds.

Table B 3. Global, local and output rules

Global input rules /g, (¢)

(igl-ctx) ce N {context(c)}
(igl-rel-t) =<t€ €+ {relation(time)}
(igl-rel-c) <€ €+ {relation(covers)}

(igl-covers-t) ¢ < ¢ — {prec(cy,cy,time)}
(igl-covers-c) ¢ <. ¢p — {prec(cy,cy,covers)}
Global deduction rules Py,
(pgl-preceql) preceq(cy,cp,rel) « prec(cy,cp,rel).
(pgl-preceq2) preceq(cy,cy,rel) « context(cy),relation(rel).
(pgl-preceqexcl) preceq-except(cy,cy,rel) < relation(rel),preceq(cy,c3,rely),

preceq(cs,ca,rely),rel # rely,rel # rel,.
(pgl-preceqexc2) preceq-except(cy,cy,rel) < relation(rel),preceq(cy,co,rely), rel # rely.

Local eval input rules /,,,(S,c)
(ilc-subevalat) eval(A,c;) C B — {subEval(A,c;,B,c)}
(ilc-subevalr) eval(R,c;) C T +— {subEvalR(R,c;,T,c)}
Local eval deduction rules P,
(plc-subevalat) instd(x,b,c,t) < subEval(a,cy,b,c),instd(x,a,cy,1).
(plc-subevalr) tripled(x,s,y,c,t) < subEvalR(rcy,s,c),tripled(x,ny,cy,t).
(plc-subevalatp) instd(x,b,c,t) « subEval(a,cy,b,c3),instd(x,a,c,t),
prec(c,c3,rell),preceq(cs,ca,rel2), rell # rel2.
(ple-subevalrp) tripled(x,s,y,c,t) < subEvalR(rcy,s,cz), tripled(x,r,y,c1,t),
prec(c,c3,rell),preceq(cs,ca,rel2), rell # rel2.

Output translation O(, c)
(o-concept) A(a) — {instd(a,A,c,main)}
(o-role) R(a,b) — {tripled(a,R,b,c,main)}

Table B4. Input rules In(S,c) for defeasible axioms

(id-subc) D,./(A C B) — {def_subclass(A,B,c,rel). }
(id-subcnj) D,y (A MA, C B) — { def_subcnj(A1,A;,B,c,rel). }
(id-subex) D,¢(3R.A C B) — {def_subex(R,A,B,c,rel).}
(id-supex) Dml(A C 3R.{a}) — {def_supex(A,R,a,c,rel).}
(id-forall) D, (A C VR.B) — { def_supforall(A,R,B,c,rel).}
(id-leqone) D,(A C <1R.T) — { def_supleqone(A,R,c,rel). }
)
)
S))
)
)

(id-subr) D,/(RC S) — {def_subr(R,S,c,rel). }
(id-subrc) Dy (RoSCT) — {def_subrc(A;,A;,B,c,rel). }
(id-dis) D, (Dis(R,S)) — {def_dis(R,S,c,rel).}
(id-inv) D,/ (Inv(R,S)) — {def_inv(R,S,c,rel). }

(id-irr) D, (Irt(R)) — {def_irr(R,c,rel).}

Appendix C Translation correctness: more details

Let us consider a CAS-interpretation Jcas = (J,%) with ¥ = (X, xc). We construct its set of
atoms corresponding to its overriding assumptions as:

OVR(Jcas) = {ovr(p(e),c,rel) | (o ,€) € xrei(c), [i(a,c1)=p}.

4

Table B 5. Deduction rules P for defeasible axioms: overriding rules

(ovr-subc) ovr(subClass,x,y,z,c1,c,rell) « def_subclass(y,z,cq,rell),
prec(c,ca,rell),preceq(ca,cy,rel2), rell # rel2,
instd(x,y,c,main),not test fails(nlit(x,z,c)).

(ovr-cnj) ovr(subConj,x,yi,y2,2,¢1,¢,rell) < def_subenj(yy,y2,z,c1,rell),
prec(c,ca,rell),preceq(cy,cy,rel2),rell # rel2,
instd(x,y;,c,main), instd(x,ys,c, main),
nottest_fails(nlit(x,z,c)).

(ovr-subex) ovr(subEx,x,ny,z,cq,c,rell) « def_subex(r,y,z,c1,rell),
prec(c,ca,rell),preceq(cy,cy,rel2),rell # rel2,
tripled(x,r,w,c,main),instd(w,y,c, main),
nottest_fails(nlit(x,z,c)).

(ovr-supex) ovr(supEx,x,y,r,w,cy,c,rell) < def_supex(y,r,w,cy,rell),
prec(c,ca,rell),preceq(cy,cy,rel2),rell # rel2,
instd(x,y,c,main),not test_fails(nrel(x,r,w,c)).

(ovr-forall) ovr(supForall,x,y,z,r,w,c],c,rell) < def_supforall(z,r,w,c,rell),
prec(c,cp,rell),preceq(cy,cy,rel2),rell # rel2,
instd(x,z,¢,main),tripled(x,r,y,c,main),
nottest_fails(nlit(y,w,c)).

(ovr-leqone) ovr(supLeqOne,x,x|,X2,z,1C],C,rell) < def_supleqone(z,r,cy,rell),
prec(c,cp,rell),preceq(cy,cy,rel2),rell # rel2,
instd(x,z,¢,main), tripled(x,r,x;,c,main),
tripled(x,rx;,c, main),

(ovr-subr) ovr(subRole,x,y,r,s,c,c,rell) < def_subr(rs,cy,rell),
prec(c,cp,rell),preceq(cy,cy,rel2), rell # rel2,
tripled(x,r,y,c,main),not test_fails(nrel(x,s,y,c)).

(ovr-subrc) ovr(subRChain,x,y,z,r,s,t,c1,c,rell) < def_subrc(r,s,t,cq,rell),
prec(c,ca,rell),preceq(ca,cy,rel2), rell # rel2,
tripled(x,r,y,c,main),tripled(y,s,z,c, main),
nottest_fails(nrel(x,?,z,¢)).

(ovr-dis) ovr(dis,x,y,rs,cy,c, rell) «+ def_dis(rs,cy,rell),
prec(c,ca,rell),preceq(cy,cy,rel2), rell # rel2,
tripled(x,r,y,c,main),tripled(x,s,y,c, main).

(ovr-inv1) ovr(inv,x,y,1,s,c],c,rell) < def_inv(rs,cy,rell),
prec(c,cp,rell),preceq(cy,cy,rel2),rell # rel2,
tripled(x,r,y,c,main),not test_fails(nrel(x,s,y,c)).

(ovr-inv2) ovr(inv,x,y,1,s,c1,c,rell) < def_inv(rs,cy,rell),
prec(c,cp,rell),preceq(cy,cy,rel2), rell # rel2,
tripled(y,s,x,c,main),not test_fails(nrel(x,ry,c)).

(ovr-irr) ovr(irr,x,r,cy,c,rell) < def_irr(r,cy,rell),
prec(c,ca,rell),preceq(cy,cy,rel2), rell # rel2,
tripled(x,r,x,c, main).

We can build! from its components a corresponding Herbrand interpretation /(Jcas) of the pro-
gram PK(R) as the smallest set of literals containing:

— all facts of PK(R);

- instd(a,A,c,main), if Z(c) E A(a);

- tripled(a,R,b,c,main), if Z(c) &= R(a,b);
— each ovr-literal from OVR(Jcas);

! See similar construction in (Bozzato et al. 2018a, Section A.5.2) for further details.

Table B 6. Deduction rules Pp for defeasible axioms: strict inheritance rules

(props-inst) instd(x,z,¢, main) < insta(x,z,cy),
prec(c,cy,rell),preceq(ca,cy,rel2),rell # rel2.

(props-triple) tripled(x,r,y,c,main) < triplea(x,r,y,c),
prec(c,cy,rell),preceq(cy,cy,rel2),rell # rel2.

(props-subc) instd(x,z,c¢,t) ¢ subClass(y,z,c1),instd(x,y,c,1),
prec(c,cy,rell),preceq(cy,cy,rel2), rell # rel2.

(pI’OpS—an) inStd(xzzv Cvt) < subConj (yl »Y2,2,€1) ’ iHStd(xvyl ~,C~,t)7 inStd(XJLQ t)7
prec(c,cy,rell),preceq(ca,cy,rel2),rell # rel2.

(props-subex) instd(x,z,c,1) « subEx(v,y,z,c1), tripled(x,v,x’,c,t), instd (¥, y,c,t),

prec(c,cy,rell),preceq(ca,cy,rel2),rell # rel2.
(props-supex) tripled(x,r,x/,c,t) < supEx(y,r,x’,c1),instd(x,y,c,1),
prec(c,cy,rell),preceq(cy,cy,rel2), rell # rel2.
(props-forall) instd(y,7,c,t) + supForall(z,r,7,c}), instd(x,z,¢,t), tripled(x,r,y,c,t),
prec(c,cy,rell),preceq(cy,cy,rel2), rell # rel2.
(props-leqone) unsat(r) < supLeqOne(z,r,c1),instd(x,z,¢,1),
tripled(x,rxy,c,t),tripled(x,r,xz,c,1),
prec(c,ca,rell),preceq(ca,cy,rel2),rell # rel2.
(props-subr) tripled(x,w,x’,c,t) < subRole(v,w,cy),tripled(x,v,x’,c,1),
prec(c,cy,rell),preceq(ca,cy,rel2),rell # rel2.
(props-subrc) tripled(x,w,z,c,t) < subRChain(u,v,w,c1),tripled(x,u,y,c,t), tripled(y,v,z,¢,t),
prec(c,cy,rell),preceq(c,cy,rel2),rell # rel2.

(props-dis) unsat(t) < dis(u,v,c;),tripled(x,u,y,c,), tripled(x,v,y,¢,t),
prec(c,cy,rell),preceq(cy,cy,rel2), rell # rel2.
(props-inv1) tripled(y,v,x,c,t) < inv(u,v,cy), tripled(x,u,y,c,1),
prec(c,cy,rell),preceq(cy,cy,rel2),rell # rel2.
(props-inv2) tripled(x,u,y,c,t) < inv(u,v,cy),tripled(y,v,x,c,1),

prec(c,cy,rell),preceq(cy,cy,rel2), rell # rel2.
(props-irr) unsat(t) < irr(u,cy),tripled(x,u,x,c,t),
prop: P
prec(c,ca,rell),preceq(ca,cy,rel2),rell # rel2.

— each literal / with environment ¢ # main, if test(¢) € I(Jcas) and [is in the head of a rule
r € grnd(PK(R)) with B(r) C I(Jcas);

— test(r), if test_fails(¢) appears in the body of an overriding rule r in grnd(PK(£)) and the
head of r is an ovr literal in OVR(Jcas);

— unsat(t) € I(Jcas), if adding the literal corresponding to ¢ to the local interpretation of its
context c violates some axiom of the local knowledge K;

— test_fails(t), if unsat(s) ¢ I(Jcas).

Note that unsat(main) is not included in 7(Jcas). Moreover, as all the facts of PK(R) are in-
cluded in the set, also the atoms prec and preceq defining the contextual relations of K are
included in I(Jcas).

The correctness result provided by Theorem 2 in Section 5 is a consequence of the following
Lemma 1, showing the correspondence between the minimal justified CKR-models of £ and the
answer sets of PK(£), and Lemma 2, proving the correspondence between preferred models and
answer sets selected by the asprin preference in Py, .

Lemma 1
Let £ be a multi-relational sSCKR in SROZ Q-RLD normal form, then:

Table B7. Deduction rules Py for defeasible axioms: defeasible inheritance rules

(propd-subc) instd(x,z,¢,t) < def_subclass(y,z,cy,rell),instd(x,y,c,1),
prec(c,ca,rell),preceq(ca,cy,rel2),rell # rel2,
not ovr(subClass,x,y,z,cq,c,rell).

(propd-cnj) instd(x,z,¢,t) < def_subcnj(y),y2,z,¢1,rell),instd(x,y;, ¢, 1), instd(x,y2,¢,1),
prec(c,ca,rell),preceq(cy,cy,rel2), rell # rel2,
not ovr(subConj,x,yi,y2,2,¢1,¢,rell).

(propd-subex) instd(x,z,c,t) < def_subex(v,y,z,c1,rell), tripled(x,v,x,c,t), instd (¥, y,c,1),
prec(c,ca,rell),preceq(cy,cy,rel2), rell # rel2,
not ovr(subEx,x,v,y,z,c1,c,rell).

(propd-supex) tripled(x,rx',c,t) + def_supex(y,r,x,cy,rell),instd(x,y,c,1),
prec(c,ca,rell),preceq(cy,cy,rel2), rell # rel2,
not ovr(supEx, x,y,r,x,c1,c,rell).

(propd-forall) instd(y,7,c,t) « def_supforall(z,r,7,cy,rell),instd(x,z,¢,t), tripled(x, r,y,c,1),
prec(c,ca,rell),preceq(ca,cy,rel2),rell # rel2,
not ovr(supForall, x,y,z,1,7,c1,c,rell).

(propd-leqone) unsat(r) < def_supleqone(z,r,cy,rell),instd(x,z,c,1),
tripled(x,rxy,c,t),tripled(x,r,xz,c,t),
prec(c,ca,rell),preceq(ca,cy,rel2),rell # rel2,
not ovr(supLeqOne, x,x|,X2,2, 1, ¢, ¢, rell).

(propd-subr) tripled(x,w,x’,c,t) <+ def_subr(v,w,cy,rell), tripled(x,v,x c,1),
prec(c,ca,rell),preceq(ca,cy,rel2),rell # rel2,
not ovr(subRole,x,y,v,w,cy,c,rell).

(propd-subrc) tripled(x,w,z,c,t) < def_subrc(u,v,w,cy,rell), tripled(x,u,y,c,t), tripled(y,v,z,c,t),
prec(c,ca,rell),preceq(ca,cy,rel2),rell # rel2,
not ovr(subRChain, x,y,z,u,v,w,cy,c,rell).

(propd-dis) unsat(r) < def_dis(u,v,cy,rell), tripled(x,u,y,c,), tripled(x,v,y,c,t),
prec(c,ca,rell),preceq(cy,cy,rel2),rell # rel2,
notovr(dis,x,y,u,v,cy,c,rell).

(propd-invl) tripled(y,v,x,c,r) < def_inv(u,v,c,rell), tripled(x,u,y,c,1),
prec(c,ca,rell),preceq(cy,cy,rel2),rell # rel2,
notovr(inv,x,y,u,v,cy,c,rell).

(propd-inv2) tripled(x,u,y,c,t) < def_inv(u,v,cy,rell),tripled(y,v,x,c,t),
prec(c,ca,rell),preceq(ca,cy,rel2),rell # rel2,
notovr(inv,x,y,u,v,cy,c,rell).

(propd-irr) unsat(r) < def_irr(u,cy,rell),tripled(x,u,x,c,t),
prec(c,cp,rell),preceq(cy,cy,rel2),rell # rel2,
notovr(irr,x,u,cy,c,rell).

(i). for every (named) justified clashing assumption %, the interpretation S = I(J())) is an
answer set of PK(R);

(ii). every answer set S of PK(R) is of the form S = I(3(%)) with ¥ a (named) justified clashing
assumption for K.

Proof (Sketch)
Intuitively, we are interested in computing the correspondence with all (not necessarily preferred)
answer sets of PK(R): we can show that the new form of rules for managing multiple contextual
relations do not influence the construction of such answer sets, thus the result can be proved
similarly to Lemma 6 in (Bozzato et al. 2018a) and its extension to hierarchies in (Bozzato et al.
2018b, Lemma 1).

Let us consider the interpretation S = I(3(%)) as defined above and the reduct Gs(PK(R))

Table B 8. Deduction rules Pp for defeasible axioms: parallel inheritance rules

(propp-subc) instd(x,z,¢,t) < def_subclass(y,z,cy,rell),instd(x,y,c,1),
preceq(c,cy,rel2),rell # rel2.

(propp-cnj) instd(x,z,c,r) < def_subenj(yy,y2,z,c1,rell),instd(x,y;,c,t), instd(x,y2,¢,1),
preceq(c,cy,rel2),rell # rel2.

(propp-subex) instd(x,z,c,t) + def _subex(v,y,z,c,rell), tripled(x,v,x’,c,t), instd(X,y,c,t),
preceq(c,cy,rel2),rell # rel2.

(propp-supex) tripled(x,rx',c,t) < def_supex(y,r,x,cy,rell),instd(x,y,c,1),
preceq(c,cy,rel2),rell # rel2.

(propp-forall) instd(y,7,c,t) « def_supforall(z,r,7,cy,rell),instd(x,z,c,t), tripled(x, r,y,c,1),
preceq(c,cy,rel2),rell # rel2.

(propp-leqone) unsat(r) < def_supleqone(z,r,cy,rell),instd(x,z,¢,1),
tripled(x,r,xy,c,f),tripled(x,rnxa,c,t),
preceq(c,cy,rel2),rell # rel2.

(propp-subr) tripled(x,w,x’,c,t) < def_subr(v,w,cy,rell),tripled(x,v,x’,c,t)
preceq(c,cy,rel2),rell # rel2.

(propp-subrc) tripled(x,w,z,c,t) < def_subrc(u,v,w,cy,rell), tripled(x,u,y,c,t),tripled(y,v,z,c,t),
preceq(c,cy,rel2),rell # rel2.

(propp-dis) unsat(r) < def_dis(u,v,cy,rell),tripled(x,u,y,c,t), tripled(x,v,y,c,1),
preceq(c,cy,rel2),rell # rel2.

(propp-invl) tripled(y,v,x,c,t) < def_inv(u,v,c,rell),tripled(x,u,y,c,1),
preceq(c,cy,rel2),rell # rel2.

(propp-inv2) tripled(x,u,y,c,t) < def_inv(u,v,cy,rell),tripled(y,v,x,c,t),
preceq(c,cy,rel2),rell # rel2.

(propp-irr) unsat(r) < def_irr(u,cy,rell),tripled(x,u,x,c,t),
preceq(c,cy,rel2),rell # rel2.

of PK(8) with respect S. The lemma can then be proved by showing that the answer sets of
PK(£) coincide with the sets S = I(J())) where ¥ = (), Xc) is composed by justified clashing
assumptions of K.

(i). Assuming that % = (), x.) is justified, we show that S = I(J(%)) is an answer set of PK(8).

We first prove that S = Gs(PK(R)), that is for every rule instance r € Gs(PK(R)) it holds that
S |= r. This is proved by examining the possible rule forms that occur in Gs(PK(8)). Here we
show some representative cases (see also (Bozzato et al. 2018a)):

-

— (prl-instd): then insta(a,A,c) € I(J(X)) and, by definition of the translation, A(a) € K.
This implies that Z(c) = A(a) and thus instd(a,A,c, main) is added to I(3(%)).

— (prl-subc): then {subClass(A,B,c),instd(a,A,c,7)} C I(3(X)). By definition of the trans-
lation, we have A C B € K_. For the construction of /(3()), if t = main then Z(c) |= A(a). This
implies that Z(c) = B(a) and instd(a, B,c, main) is added to I(J(%)). Otherwise, if # # main
then instd(a,B,c,t) is directly added to 1(J()) by its construction.

— (ovr-subc): then {def_subclass(A,B,cj,rell), prec(c,cp,rell), preceq(cy,cy,rel2),
instd(a,A,c,main)} C I(3(%)). Since r € Gs(PK(R)), then test_fails(nlit(a,B,c)) ¢
1(3(%)). By construction of 1(3(%)), this implies that unsat(nlit(a,B,c)) € I(3(X)), mean-
ing that Z(c) = —B(a). Thus, Z(c) satisfies the clashing set {A(a),—B(a)} for the clashing
assumption (A C B, a) for rell in context c. Consequently, (A C B,a) € X1 (c) and by con-
struction ovr(subClass,a,A, B, c) is added to I(3(%)).

— (props-subc): then {subClass(A,B,c;), instd(a,A,c,t), preceq(cy,ci,rel2),

Table B9. Deduction rules Py for defeasible axioms: test rules

(test-subc)

(constr-subc)

(test-subcnj)

(constr-subcnj)

(test-subex)

(constr-subex)

(test-supex)

(constr-supex)

(test-supforall)

(constr-supforall)

(test-subr)

(constr-subr)

(test-subrc)

(constr-subrc)

(test-inv1)
(test-inv2)

(constr-inv1)
(constr-inv2)

(test-fails1)
(test-fails2)
(test-add1)
(test-add2)
(test-copy1)
(test-copy?2)

tripled(x,ny,c,nrel(x,rny,c

test(nlit(x,z,c)) « def_subclass(y,z,cy,rell),instd(x,y,c,main),
prec(c,cy,rell),preceq(cy,cy,rel2),rell # rel2.
+ test_fails(nlit(x,z,c)),ovr(subClass,x,y,z,c],c,rel).
test(nlit(x,z,c)) < def_subenj(yy,y2,z,c1,rell),
instd(x,y;,c,main), instd(x,y;,c,main),
prec(c,cy,rell),preceq(cy,cy,rel2),rell # rel2.
+ test_fails(nlit(x,z,c)),ovr(subConj,x,y1,¥2,2,C1,C,rel).
test(nlit(x,z,c)) < def_subex(r,y,z,cy,rell),
tripled(x,r,w,c,main),instd(w,y,c, main),
prec(c,cy,rell), preceq(cy,cy,rel2),rell # rel2.
« test_fails(nlit(x,z,c)),ovr(subEx,x,1y,zcq,c,rel).
test(nrel(x,r,w,c)) < def_supex(y,r,w,cy,rell),instd(x,y,c, main),
prec(c,cy,rell),preceq(cy,cy,rel2),rell # rel2.
+ test_fails(nrel(x,r,w,c)),ovr(supEx,x,ry,w,c,c,rel).
test(nlit(y,w,c)) < def_supforall(z,r,w,cy,rell),
instd(x,z,¢, main), tripled(x,r,y,c, main),
prec(c,cy,rell),preceq(cy,cy,rel2),rell # rel2.
« test_fails(nlit(y,w,c)),ovr(supForall,x,y,z,r,w,cy,c,rel).
test(nrel(x,s,y,c)) < def_subr(rs,cy,rell),tripled(x,ry,c, main),
prec(c,cy,rell),preceq(cy,cy,rel2),rell # rel2.
< test_fails(nrel(x,s,y,c)),ovr(subRole,x,r,y,s,cy,c,rel).
test(nrel(x,t,z,c)) < def_subrc(r,s,t,cy,rell),
tripled(x,r,y,c,main),tripled(y,s,z,c, main),
prec(c,cy,rell), preceq(cy,cy,rel2),rell # rel2.
« test_fails(nrel(x,t,z,¢)),ovr(subRChain,x,y,z,7,5,t,¢1,c,rel).
test(nrel(x,s,y,c)) < def_inv(r,s,cy,rell), tripled(x,r,y,c,main),
prec(c,cy,rell), preceq(cy,cy,rel2),rell # rel2.
test(nrel(y,rx,c)) + def_inv(r,s,cy,rel), tripled(x,s,y,c,main),
prec(c,cy,rell),preceq(cy,cy,rel2),rell # rel2.
< nottest_fails(nrel(x,s,y,c)),ovr(inv,x,y,rs,cy,c,rel).
< nottest_fails(nrel(y,rx,c)),ovr(inv,x,y,rs,ci,c,rel).

test_fails(nlit(x,z,c
test_fails(nrel(x,ny,c

+ instd(x,z,¢,nlit(x,z,¢)),notunsat(nlit(x,z,c)).
+ tripled(x,ry,c,nrel(x,ry,c)),not unsat(nrel(x,ry,c)).
+ test(nlit(x,z,c)).
« test(nrel(x,ry,c)).

instd(x,y;,c,
tripled(x,nyi,c,

+ instd(xj,y;,c,main), test().

)
c))
instd(x,z,¢,nlit(x,z,c))
c))
B
,t) < tripled(x,r,y;,c, main),test(r).

prec(c,cy,rell)} CI(3(%)). By definition, A C B € K, and, if t = main, Z(c) |= A(a). Thus,
for the definition of CAS-model (condition (i) on strict axioms propagation), instd(a,B,c,f)
is added to I(3(%)). If # main, then instd(a, B, c,t) is added to 1(J())) by construction.

— (propd-subc): then {def_subclass(A,B,cj,rell),instd(a,A,c,t),prec(c,cy,rell),
preceq(cy,cy,rel2)} € I1(3(%)). Since r € Gs(PK(R)), ovr(subClass,a,A,B,cy,c,rell) ¢
OVR(3(x)) and hence (A C B,a) ¢ X1 (c). By definition, D(A C B) € K, and, if = main,
Z(c) = A(a). Thus, for the definition of CAS-model (condition (iii) on defeasible axioms prop-
agation), instd(a,B,c,t) is added to 1(5(7)). If ¢ # main, then instd(a,B,c,t) is added to
1(3(x)) by construction.

— (propp-subc): then {def _subclass(A,B,c,rell),instd(a,A,c,t), preceq(c,ci,rel2)} C
1(3(%)). By definition, D(A C B) € K, and, if # = main, Z(c) |= A(a) with ¢ <, c;. Thus,

9

Table B 10. Rules in Py for preference definitions: preparation rules

(prep-indiv) ind(x) + nom(x,c).

(prep-ovr-subs) p-ovr(subClass(x,y,z),c,rel) + def_subclass(y,z,c,rel),
ind(x).

(prep-ovr-subc) p-ovr(subConj(x,y1,y2,z),c,rel) < def_subcnj(yl,y2,z,c,rel),
ind(x).

(prep-ovr-subex) p-ovr(subEx(x,ry,z),c,rel) « def_subex(r,y,z,c,rel),
ind(x).

(prep-ovr-supex) p-ovr(supEx(x,y,r,w),c,rel) < def _supex(y,r,w,c,rel),
ind(x).

(prep-ovr-supfa) p-ovr(supForall(x,y,z,r,w),c,rel) < def_supforall(z,r,w,c,rel),
ind(x),ind(y).
(prep-ovr-suble) p_ovr(supLeqOne(x,x1,x2,z,7),c,rel) < def_supleqone(z,r,c,rel),
ind(x),ind(x1),ind(x2).
(prep-ovr-subr) p-ovr(subRole(x,y,r,s),c,rel) < def_subr(r,s,c,rel),
ind(x),ind(y).
(prep-ovr-subrc) p_ovr(subRChain(x,y,z,7,s,t),c,rel) < def_subrc(r,s,t,c,rel),
ind(x),ind(y),ind(z).

(prep-ovr-dis) p-ovr(dis(x,y,ns),c,rel) < def_dis(ns,c,rel),
ind(x),ind(y).
(prep-ovr-inv) p-ovr(inv(x,y,r,s),c,rel) < def_inv(rs,c,rel),
ind(x),ind(y).
(prep-ovr-irr) p-ovr(irr(x,r),c,rel) < def_irr(r,c,rel),
ind(x).
(act-ovr-subs) ovr(subClass(x,y,z),cy,c,rel) + ovr(subClass,x,y,z,c1,c,rel)
(act-ovr-subc) ovr(subConj(x,y1,y2,z),cy,c,rel) « ovr(subConj,x,yl,y2,z,c1,c,rel).
(act-ovr-subex) ovr(subEx(x,ny,z),c1,c,rel) < ovr(subEx,x,r,y,z,c1,c,rel).
(act-ovr-supex) ovr(supEx(x,y,r,w),cy,c,rel) < ovr(supEx,x,y,r,w,cy,c,rel).

)) (
)) (
)) (
)) (
(act-ovr-supfa) ovr(supForall(x,y,z,r,w),c1,c,rel) < ovr(supForall,x,y,z,r,w,cy,c,rel).
(act-ovr-suble) ovr(supLeqOne(x,x1,x2,z,r),cy,c,rel) < ovr(supLeqOne,x,x1,x2,z,r,¢c1,c,rel).
(act-ovr-subr) ovr(subRole(x,y,1,s),c],c,rel) < ovr(subRole,x,y,r,s,cy,c,rel).
(act-ovr-subrc) ovr(subRChain(x,y,z,r,s,t),c],c,rel) < ovr(subRChain, x,y,z,1,s,t,c,c,rel).
(act-ovr-dis) ovr(dis(x,y,ns),c1,c,rel) < ovr(dis,x,y,rs,cy,c,rel).
(act-ovr-inv) ovr(inv(x,y,r,s),c1,c,rel) < ovr(inv,x,y,rs,cy,c,rel).

)) (

(act-ovr-irr) ovr(irr(x,r),c1,c,rel) < ovr(irr,x,rcy,c,rel).

for the definition of CAS-model (condition (ii) on propagation of defeasible axioms over other
relations), instd(a, B,c,?) is added to I(3(%)). If £ # main, then instd(a, B,c,?) is added to
1(3(x)) by construction.

— (test-subc): then {def _subclass(A,B,cy,rell),instd(a,A,c,main), prec(c,cp,rell),
preceq(cz,ci,rel2)} C1(3(x)). Thus D(A C B) € K, and Z(c) |= A(a) with ¢ <,e1 2 <rer2
c1. By the construction of I(J(})) we have that test(nlit(a,B,c)) € I(3(x)).

Minimality of § = I(3())) w.r.t. the positive deduction rules of Gs(PK(£)) can then be motivated
as in the original proof in (Bozzato et al. 2018a): thus, /(3(%)) is an answer set of PK(8).

(ii). Let S be an answer set of PK(R). We show that there is some justified clashing assumption
7 for & such that § = I(3(%)) holds.

Note that as S is an answer set for the CKR program, all literals on ovr and test_fails in
S are derivable from the reduct Gs(PK(R)). By the definition of 7(3(%)) we can easily build

10

Table B 11. asprin program Py.y for preference definitions

#preference (LocPref (C, REL), poset){
—ovr(A,Cp, C,REL) >> ovr(A,Cp,C,REL);
—ovr(A1,C1,C,REL) >> -ovr(A2,C2,C,REL)

(pref-local) preceq-except (C1b,C1,REL), preceqg_-except(C2b,C2,REL),
prec(C,C2b,REL), prec(C2b,Cib,REL),
p-ovr(Al1,C1,REL), p-ovr(A2,C2,REL).

} : context(C), relation(REL).

#preference (RelPref (REL), pareto){
(pref-rel_local) **xLocPref (C, REL) : context (C)
} : relation(REL).

#preference (GlobPref, lexico){
(pref-global) W::**xRelPref (REL) : relation_weight (REL, W)
}.

(pref-optima) #optimize (GlobPref) .

a model Jg = (Js5,%°) from the answer set S as follows: for every ¢ € N, we build the local
interpretation Zg(c) = (A, -Z()) as follows:

- A.={d|d eNI},

— a*©) = g, for every a € NI;

_ AZ() — {d € A | S = instd(d,A,c, main)}, for every A € NC;

~ R™) = {(d,d') € Ac x A | S |- tripled(d,R,d',c,main)} for R € NR;

Finally, 7° = (7, x5) where x3,(c) = {(a,e) | Li(c,c') = p,ovr(p(e),c,rel) € S}. We have to
show that Jg meets the definition of a least justifed CAS-model for a multi-relational K, that is:

(i) forevery a € K, (strict axiom), and ¢’ <, ¢, Zs(c') = o;
(i) forevery D;(ot) € Kcand ¢’ <_; ¢, Ty(d) = a3
(iii) for every D;(a) € Kcand ¢’ <; ¢/ <_; ¢, if (@,d) ¢ x:(c”), then Zg(c") = 9o (d).

Note that, since we are considering multi-relational CKRs based only on two relations (time and
coverage), the relational closure ¢’ <_; ¢ can be read as ¢’ < j ¢ with j # i: this corresponds to
the conditions preceq(c’,c, rel2) with rell # rel2 in the formulation of the rules.

Item (i) should be proved in the local case where ¢’ = ¢ and in the “strict propagation” case
where ¢’ <, c. The second case can be shown similarly to the local case, considering strict prop-
agation rules in Table B 6. Thus, considering ¢’ = ¢, we verify the condition by showing that, for
every K., we have Zg(c) = K. This can be shown by cases considering the form of all of the
(strict) axioms f3 € Ly y that can occur in K. For example (the other cases are similar):

— Let B = A(a) € K, then, by rule (prl-instd), S |= instd(a,A,c,main). This directly implies
that a(¢) € AT(),

—Let B =ALC B €K, then S = subClass(A,B,c). If d € AZ(©) | then by definition
S |= instd(d,A, c,main). By rule (prl-subc) we obtain that S |= instd(d, B, c,main) and thus
d € BT

Condition (ii) can be proved similarly, considering rules of Table B 8. In particular, assuming that

11

D;(B) € Ko with ¢ <_; ¢ we can proceed by cases on the possible forms of § and consider the
(strict) propagation of defeasible axioms to c along the “parallel” relations. For example:

— Let B = A(a). Then, by definition of the translation, we have S = def_insta(a,A,c,rell).
Moreover, since ¢ <, ¢, we have S |= preceq(c,c’,rel2) with rell # rel2. By the corre-
sponding instantiation of rule (propp-inst), it holds that S |= instd(a,A,c,main). By defini-
tion, this means that aZ(e) g AZ(0),

— Let B =A C B. Then, by definition of the translation, S }= def_subclass(A,B,c,rell). Since
¢ =yern ¢, we have S |= preceq(c, c, rel2) with rell # rel2. If a*(©) € AZ(©) then by definition
S |= instd(a,A, c,main): by rule (propp-subc), we obtain that S = instd(a,B,c,main) and
thus a*(¢) € BZ(©),

To prove condition (iii), let us assume that D;() € Ky with ¢ <; ¢”” <_; ¢’. We proceed again by
cases on the possible forms of 3 as in the original proof in (Bozzato et al. 2018a), by considering
the defeasible propagation to c along the relation i. For example:

— Let B =A(a). Then, by definition of the translation, we have that S |= def_insta(a,A,c’, rell).
Suppose that (A(x),a) ¢ x5, (c). Then by definition, ovr(insta,a,A,c’,c,rell) ¢ OVR(3(%)).
By construction, we have S |= prec(c,c”,rell) and S = preceq(c”,c’, rel2). By the definition
of the reduction, the corresponding instantiation of rule (propd-inst) has not been removed
from Gg(PK(R)): this implies that S |= instd(a,A,c,main). By definition, this means that
aZ(e) ¢ AZ(9),

— Let § = A C B. Then, by definition of the translation, S |= def _subclass(A,B,c ,rell). As
above, we also have S |= prec(c,c”,rell) and S = preceq(c”,c’,rel2). Let us suppose that
b*(©) € AT(): then S |= instd(b,A,c, main). Suppose that (A C B,b) ¢ xs(c): by definition,
ovr(subClass,b,A,B,c,c,rell) ¢ OVR(3(%)). By the definition of the reduction, the cor-
responding instantiation of rule (propd-subc) has not been removed from Gs(PK(R)): this
implies that § = instd(b, B,c, main). Thus, by definition, this means that %) ¢ BZ(¢),

We have shown that Jg is a CAS-model of £: using the same reasoning in the original proof
in (Bozzato et al. 2018a) we can also prove the Jg corresponds to the least model and that 73 is
justified, thus proving the result. [

Lemma 2

Let £ be a multi-relational SCKR in SROZQ-RLD normal form. Then, J is a CKR model of &
iff there exists a (named) justified clashing assumption % s.t. I(J(%)) is a preferred answer set of
PK(R)UPyey.

For the proof we need the following result:

Theorem 5
Let R be an eval-disconnected sCKR and Jcas = (I, X1,---, Xm) & justified model of K. Then
Jcas is preferred with respect to Py ; defined by

P3N xl k), (32,27, x2)) iff there exists some ¢ € N s.t. ¥/ (c) > x?(c) and not x?(c) >
2} (c), and for no context ¢’ # ¢ € N it holds that ;' (/) < x?(c’) and not x?(c') < x}(c).

iff it is preferred with respect to P ; defined by

Py (3N 2k, o)), (3%, %3, .., x2)) iff there exists some ¢ € N s.t. ! (c) > x?(c) and not x?(c) >
%} (c), and for all contexts ¢’ € N it holds that x () > x?(c') or x} (¢/) = 2?(¢).

12

Proof (sketch) of Theorem 5
Pyi({(3', 21), (3%, x2)) implies Py ;((3', x1), (3%, x2)). So we consider the other direction.

Let Jcas be preferred with respect to P ;. Assume that there exists a justified model Ji-, ¢ of &
such that Py j(J45, Icas) holds.

Let Jcas = ({Z(c) }een, x) and Tug = ({Z7(c) }een, x')- We know there exists some c* € N
such that x'(c*) > x(c*). This implies that some D(cot) € K and e exist such that (a,e) €
x(c*)\ x'(c*). Let C be the component of DEP(£) that contains X+, where X is any concept
or role appearing in ¢. Note that C is independent of the choice of X, since any two possible
choices X, X’ satisfy that X+ and X/. are reachable from one another.

We take J7,g = ({Z"(c)}cen, x”) such that X7"©) = XZ(9) for X, ¢ C and XZ'(c) = xT'(©)
otherwise, and we let x”(c) = x/(c) for c # c¢* and x”(c) = x’(c) otherwise. That is, we take the
original justified model Jcas and swap the interpretations of all the concepts and roles that were
changed in order to satisfy a(e) at context c* by their changed interpretation in J,. The result,
Tl is still a model of R, as we exchanged the interpretation for the whole component and
therefore any relevant axioms stay satisfied, since they were satisfied in J, ¢. Furthermore, since
£ is eval-disconnected, x” is justified because the default D() does not use any concept/role
X such that X+ is connected to X! such that ¢ # ¢* and X is used in another default D(f). This
implies that only the clashing assumptions for c* were changed.

Now, we however know that Pzﬂi(j’é s> Jcas). This is a contradiction to our original assump-
tion. Therefore, there cannot exist some J’CAS such that Pl,i(j/CASajCAS) and Jcys is preferred
with respect to Py ;. [

Proof (sketch) of Lemma 2
Our definition of the preferences in P, s mirrors the definition of preference: both go from local
preference on the clashing assumptions per context, i.e. x;(c), to per relation preference and
finally to the global preference. We show that the definitions correspond for each step.

We start with the local preference. So let X,Y be two interpretations of PK(R), ¢ a context and
i arelation. Then it holds that X >p,cpres(c,iy Y iff:

— X and Y do not have the same clashing assumptions at ¢ w.r.t. relation i;
— for each —ovr(ay,e,cy,c,i) s.t. X = —ovr(ay,e,cy,c,i) and Y = —ovr(ay,e,cy,c,i) there ex-
ists movr(oy, f,ca,¢, i) > —ovr(oy,e,ci,c,i) s.t. X = —ovr(op, f,ca,c,i) and Y [~ —ovr(ay, f,c2,¢,i).

or equivalently:

— X and Y do not have the same clashing assumptions at ¢ w.r.t. relation i;

— for each o, e, where @ is from context ¢c; >=_; ¢p >=; ¢, s.t. X |= ovr(oy,e,cy,c,i) and ¥ [~
ovr(oy,e,cy,c,i) there exists 0y, f, where o is from context ¢ »=_; ¢pp >; C, S.t. C1p > Cop
and X [~ ovr(on, f,c2,c,i) and Y |= ovr(an, f,c2,C,i).

The second item is equivalent to

for every 1 = (ay,€) € x!(c)\ x?(c) with D;(ey1) at a context ¢; =_; ¢y =; ¢, there exists an 1 =
(on,f) € x?(c)\ x (c) with D;(0r2) at context ¢ =_; cgp, > ¢ such that ¢1j > Cop.
So, we see that the only difference between >p,cpres(c,;y and the order on the context c is the first
condition, i.e. that the clashing assumptions on ¢ must be different. However, this does not affect
us, since the definition of preference for justified interpretations always uses E =" xil (o) < xlz(c)
and not xlz(c) < xl.l (c)”. This is equivalent to “X >1ocpref (c,n ¥ and not Y >pqcpres(c,in X > since
E can only hold when the clashing assumption sets at ¢ w.r.t. relation i are different.

13

Next, we consider the preference per relation. As we have shown in Theorem 5 the preferred
models with respect to the original preference relation Py are the same as the preferred models
with respect to the preference relation P> ;. However, as can be easily seen from the definition, P ;
is the order that has the models that are pareto optimal with respect to the local preference orders
LocPref (c,i) per context as its optimal models. We see that RelPref (i) correctly captures
this, as it is the pareto combination of the orders LocPref (c,i) for each context c.

Last but not least, we consider the global preference. In our definition, we say that we prioritize
the preference on the clashing assumptions with respect to the relations with a lower index. This
corresponds to the lexicographical combination of the orders LocPref (i) for each relation i,
when assigning the weight i to relation i, when it is the preference relation with index i. [

Appendix D Proofs for Overall Weight Queries
Before we define the semiring, we ensure that the preference relation LocPref (rel) is transitive.

Lemma 3
The preference relation LocPref (rel) defined in Section 5 is transitive.

We use the transitivity of the local preference:

Lemma 4

Let xil(c) > x,z(c) and xlz(c) > X,S (c). Then xil(c) > X? (0).

Proof
Assume ! (c) > x?(c), x?(c) > x’(c) and (0u4,e) € x(c) \ x7(c) with D;(0y) at a context
€l Z—iCp =i C.

Case 1: If (a,e) & x?(c) then since x;' (c) > x?(c) there exists (o, f) € x?(c)\ x/ (c) with
D;(a) at context ¢ »=_; cpp >=; ¢ such that cjp, >; Cop.

Case 1.1: If (0, f) € x?(c) we are done.

Case 1.2: Else, (a,f) € x?(c)\ x*(c). Then since x?(c) > x?(c) there exists (a3,g) € x7(c)\
xlz(c) with D;(03) at context c3 = _; c3p, >; ¢ such that ¢, > C3p.

Case 1.2.1: If (a3, 8) & x/' (c) we are done.

Case 1.2.2: Otherwise, (a3,g) € x;'(c)\ x?(c). Note that this is the same situation as in case 1
except that D;(or3) is at context c3; =; ¢ such that ¢y, >; ¢z >; C3p. Since >; is a strict (partial)
order and we only have finitely many contexts this can only occur finitely often. Since in all other
cases below case 1 we have that ;' (c) > x?(c) we are done with case 1.

Case 2: If (at;,€) € x?(c) we are in a similar situation as in case 1.2 the statement follows by
analogous reasoning. []

Proof
As we have seen, LocPref (c,rel) is transitive for each context c and relation rel. Thus their
pareto combination is also transitive. []

As the domain of the semiring we choose R = {(S, x) | S € N&, x clashing assumption multiset-map}.
Here, we need S to be a multiset and y to map to multisets of clashing assumptions for technical
reasons (namely so that our semiring satisfies the distributive law). We generalize the definition
of the local preference to multisets by using

14

%} (c) > x*(c), if for every n = (0,) s.t. the multiplicity of 1 in ¥/ (c) is greater than its multiplicity
in x7(c) with D;(a;) at a context ¢ =_; c1, = ¢, there exists an) = (ap,f) s.t. the multiplicity of n’ in

27 (c) is greater than its multiplicity in ¥ (c) with D;(@) at context ¢y =_; ¢y, > ¢ such that ¢y >=; Cop.

With this in mind, we can define the semiring Rone (&) = (RU{0,1},®,®,0,1) by letting
0Pa:=a=:a80,
1Ga:=1=1ad1,

0Ra:=0=:a®0,
1Qa:=a=:a®1.

a ifa > LocPref (rel) b
adb= b itb > LocPref (rel) 4
lex—min(a,b) otherwise.

(1M @ (S2.2%) = (S1 82,2 +2?)

Here, lex—min(a, b) takes the lexicographical minimum of a,b and the addition refers to point-
wise multiset union, i.e., (¥ + x®)(c) = x M (c)+ x P (c).
Now we can define the following weighted formula:

Oone = (X * 0
o =Iyep(ax({a},0)+—a
0 =Ieec H(a,e,i)Epclash(c)ovr(a7evCa i) * (®7 {C = {{<(Z,€> }}) + —|OVI‘((X7E,C, i),

where B is the Herbrand base and pclash(c) = {{a,e,i) | (a,e) is a possible clashing assump-
tion for ¢ and i }. Intuitively, c; collects the atoms that are true in the given interpretation and
0 builds the clashing assumption map, which is used to decide whether one interpretation is
preferred over the other.

Theorem 6

Rone(R) is a semiring and the overall weight of y = (PK(R), tone; Rone(8])) is (1, %), where I
is the minimum lexicographical preferred model of K and its clashing assumption map or O if
there is no preferred model.

Proof
Associativity of @ follows from transitivity of LocPref (c,rel) and the lexicographical order.
Commutativity of & is clear. 0 and 1 are identities and annihilators of ®,® by definition. Asso-
ciativity of ® is clear.

It remains to prove that multiplication distributes over addition. So let A; = (I}, x;) for i =
1,2,3. Then, in the expression

Al ® (A2 B A3)

Assume w.l.0.g. that (Ay @ A3) evaluates to Ay. If Ay >1,cpresrery A3 then there exists a context
c such that x2(c) >Locpres (c,rey X3(C). Then it also holds that ()1 + X2)(C) >vocpret(c,reny (X1 +
x3)(c) and thus

AR (A BA3) =A1 QA=A RA, DA ®A;3.

If Ay Frocpres (rely Az this implies that A; is either equal to A3 (in this case we are done) or that A,
is smaller lexicographically. In the latter case the sum A} ® A; is however also lexicographically
smaller than A; ® A3 since we add A; both times.

15

Thus we have established that Rope(R) is a semiring. For each answer set I of PK(R), we
know that I corresponds to a (least) CAS model. Thus,

[Cone] Rone (1) = (3, %)

where J € {0,1}% and x only maps to multisets that can be interpreted as sets (i.e. each of
their elements has at most multiplicity one). The lexicographical minimum CKR model (J*, x*)
satisfies that (J,x) & (T%, x*) = (3%, x*) for all (7, x) that are the semantics of Ofpe W.I.t. some
answer set of PK(R). Therefore, if there exists a CKR model, the overall weight is (J*, x*).
Otherwise, it is 0. [J

We continue with the R, semiring. Again, we need some additional lemma

Lemma 5
Let £ be a single relational sSCKR without eval expressions. Then a CAS model ({Z(c)}cen, X)
is a CKR model iff no CAS model ({Z/}cen, x’) and c € N exist such that ¥’(c) > x(c).

Therefore, we can take the locally optimal models Z(c) for each context ¢ and obtain the global
optimal models as arbitrary combinations of locally preferred models.
In the following, we let D be the Herbrand base.
Using this notation, we define the semiring R = (R¢, Bc, ®c, €, €5) that collects all locally
optimal models Z(c). Here,
R.={opt(B) |A C2P,B={(S,%) | S € A, x multiset of clashing assumptions}}
A®.B=opt.(AUB)
A®cB=optc({(S1US2, 21+ x2) | (S1,.201) €A, (82, %2) € B}
eqp = 0
ee ={(0,{})}
opte(A) ={(S,2) €A V(S 2") €A1 ~(x'(c) > x(c))}
We again have to use multisets for y instead of sets. This is necessary because otherwise multi-
plication and addition do not satisfy the distributive law.
Then, we can define the measure . = (PK(8), 01, Rc), where
Ol = QA * 0
o =Tgepd +{({d},{{}})} +—d
0 = H(a,e.i)Epclash(c) OVI‘((X7 ¢, C) * {(0a {C = {{<(X7 e> }})} + —|ovr(a, e, C)'
where pclash(c) is the set of all possible clashing assumptions (a,e) for c. We obtain

Theorem 7

R is a semiring and the overall weight u.(PK(R)) is equal to the set containing for each lo-
cally optimal interpretation Z(c) of & the pair (Z(c), ¥z(c)), where ¥z(c) is the unique multiset
containing each justified clashing assumption of Z(c) once.

We take R to be the crossproduct semiring (R)cen defined by
(Re)een = ((Re)cen, ®, @, (0)cen, ({ (0, {{}}) })cen), where
(Ac)ceN © (Bc)eeN = (Ac Oc Be)cen, for © € {@,®}

Using it, we can obtain the locally optimal interpretations for each context as the crossproduct of

16

measures U* = (U)cen Which is a measure over the crossproduct semiring (R¢)cen- As we have
shown in Lemma 5, this gives us all the preferred models. Namely, let *(PK(8)) = (Ac)cens
then {(Z(c))cen | (Z(c),x(c)) € A} is the set of preferred models.

Example 6

The sCKR £ defined in Example 5 has five contexts C,id, Chranchls Shranch2s Clocalls and Crocaia-
Therefore, the measure (1* is a crossproduct of the five measures L, .. s ey unent s Menrancin s Meioeart
and U, - Their overall weight is given by

Cworld (PK(R)) = Heprancin (PK(R)) = Mepranciz (PK(R)) = Mejpearn (PK(R)) ={(0,{}}
Hepean (PK(R)) = {({S(i),M(i)L {{OVI(S E R,i,Cpranch2),0vr(SC E, ivcworld)}})}

Accordingly, there is exactly one preferred model (Z(c)).en, where

Ic 7, = chranchZ = Lciocar2 =0 Iclocall = {S(l)’M(l)}

world — Chranchl

Theorem 8

Let R be a single-relational, eval-free sSCKR, then R, is a semiring and the overall weight of
Uant = (PK(R), a1, Ran (R)) is (Ac)cen and the set of preferred models corresponds to {(Z(c))cen |
foreach c € N: (Z(c), x(c)) € A}

Proof
The reasoning that R, is a semiring is along the same lines as that for Rpe. The fact that the
result is as desired can be clearly seen during the construction of the semiring. [J

References

Bozzato, L., EITER, T., AND SERAFINI, L. 2018a. Enhancing context knowledge repositories with
justifiable exceptions. Artif. Intell. 257, 72—126.

BozzATo, L., EITER, T., AND SERAFINI, L. 2019. Justifiable exceptions in general contextual hierarchies.
In Proc. Context 2019, G. Bella and P. Bouquet, Eds. LNCS, vol. 11939. Springer, 26-39.

BozzATO, L., SERAFINI, L., AND EITER, T. 2018b. Reasoning with justifiable exceptions in contextual
hierarchies. In Proc. KR 2018. AAAI Press, 329-338.

KROTZSCH, M. 2010. Efficient inferencing for OWL EL. In Proc. JELIA 2010. Springer, 234-246.

17

