Online appendix for the paper

A Logical Characterization of the Preferred Models of Logic Programs with Ordered Disjunction

published in Theory and Practice of Logic Programming
A. CHARALAMBIDIS, P. RONDOGIANNIS, and A. TROUMPOUKIS

Department of Informatics and Telecommunications, National and Kapodistrian University of Athens (e-mail: \{a.charalambidis, prondo, antru\}@di.uoa.gr)

A Proofs of Section 5

Lemma 1

Let P be a consistent extended logic program. Then the three-valued answer sets of P coincide with the standard answer sets of P.

Proof

By taking $n=1$ in Definition 10, we get the standard definition of reduct for consistent extended logic programs.

Lemma 2

Let P be an LPOD and let M be an answer set of P. Then, M is a model of P.

Proof

Consider any rule R in P of the form:

$$
C_{1} \times \cdots \times C_{n} \leftarrow A_{1}, \ldots, A_{m}, \text { not } B_{1}, \ldots, \operatorname{not} B_{k}
$$

If $R_{\times}^{M}=\emptyset$, then $M\left(B_{i}\right)=T$ for some $i, 1 \leq i \leq k$. But then, the body of the rule R evaluates to F under M, and therefore M satisfies R. Consider now the case where R_{\times}^{M} is nonempty and consists of the following rules:

$$
\begin{array}{rll}
C_{1} & \leftarrow & F^{*}, A_{1}, \ldots, A_{m} \\
& \ldots & \\
C_{r-1} & \leftarrow & F^{*}, A_{1}, \ldots, A_{m} \\
C_{r} & \leftarrow & A_{1}, \ldots, A_{m}
\end{array}
$$

We distinguish cases based on the value of $M\left(A_{1}, \ldots, A_{m}\right)$:
Case 1: $M\left(A_{1}, \ldots, A_{m}\right)=F$. Then, for some $i, M\left(A_{i}\right)=F$. Then, rule R is trivially satisfied by M.

Case 2: $M\left(A_{1}, \ldots, A_{m}\right)=F^{*}$. This implies that $M\left(C_{r}\right) \geq F^{*}$. We distinguish two subcases. If $r=n$ then $M\left(C_{1} \times \cdots \times C_{n}\right)=M\left(C_{1} \times \cdots \times C_{r}\right) \geq F^{*}$ because, by the definition of P_{\times}^{M} it is $M\left(C_{1}\right)=\cdots=M\left(C_{r-1}\right)=F^{*}$ and we also know that $M\left(C_{r}\right) \geq F^{*}$. Thus, in this subcase M satisfies R. If $r<n$, then by the definition of $P_{\times}^{M}, M\left(C_{r}\right) \neq F^{*}$; however, we know that $M\left(C_{r}\right) \geq F^{*}$, and thus $M\left(C_{r}\right)=T$. Thus, in this subcase M also satisfies R.

Case 3: $M\left(A_{1}, \ldots, A_{m}\right)=T$. Then, for all $i, M\left(A_{i}\right)=T$. Since M is a model of P_{\times}^{M}, we have $M\left(C_{r}\right)=T$. Moreover, by the definition of $P_{\times}^{M}, M\left(C_{1}\right)=\cdots=M\left(C_{r-1}\right)=F^{*}$. This implies that $M\left(C_{1} \times \cdots \times C_{n}\right)=T$.

Lemma 3

Let M be a model of an LPOD P. Then, M is a model of P_{\times}^{M}.

Proof

Consider any rule R in P of the form:

$$
C_{1} \times \cdots \times C_{n} \leftarrow A_{1}, \ldots, A_{m}, \text { not } B_{1}, \ldots, \text { not } B_{k}
$$

and assume M satisfies R. If $M\left(B_{i}\right)=T$ for some $i, 1 \leq i \leq k$, then no rule is created in P_{\times}^{M} for R. Assume therefore that $M\left(\right.$ not B_{1}, \ldots, not $\left.B_{k}\right)=T$. By the definition of P_{\times}^{M} the following rules have been added to P_{\times}^{M} :

$$
\begin{array}{rll}
C_{1} & \leftarrow & F^{*}, A_{1}, \ldots, A_{m} \\
& \ldots & \\
C_{r-1} & \leftarrow & F^{*}, A_{1}, \ldots, A_{m} \\
C_{r} & \leftarrow & A_{1}, \ldots, A_{m}
\end{array}
$$

where r is the least index such that $M\left(C_{1}\right)=\cdots=M\left(C_{r-1}\right)=F^{*}$ and either $r=n$ or $M\left(C_{r}\right) \neq F^{*}$. Obviously, the first $r-1$ rules above are satisfied by M. For the rule $C_{r} \leftarrow A_{1}, \ldots, A_{m}$ we distinguish two cases based on the value of $M\left(A_{1}, \ldots, A_{m}\right)$. If $M\left(A_{1}, \ldots, A_{m}\right)=F$, then, the rule is trivially satisfied. If $M\left(A_{1}, \ldots, A_{m}\right)>F$, then, since rule R is satisfied by M and $M\left(C_{r}\right) \neq F^{*}$, it has to be $M\left(C_{r}\right)=T$. Therefore, the rule $C_{r} \leftarrow A_{1}, \ldots, A_{m}$ is satisfied by M.

Lemma 4

Every (three-valued) answer set M of an LPOD P, is a \preceq-minimal model of P.

Proof

Assume there exists a model N of P with $N \preceq M$. We will show that N is also a model of P_{\times}^{M}. Since $N \preceq M$, we also have $N \leq M$. Since M is the \leq-least model of P_{\times}^{M}, we will conclude that $N=M$.

Consider any rule R in P of the form:

$$
C_{1} \times \cdots \times C_{n} \leftarrow A_{1}, \ldots, A_{m}, \text { not } B_{1}, \ldots, \text { not } B_{k}
$$

Assume that R_{\times}^{M} is nonempty. This means that there exists some $r, 1 \leq r \leq n$, such that $M\left(C_{1}\right)=\cdots=M\left(C_{r-1}\right)=F^{*}$ and either $r=n$ or $M\left(C_{r}\right) \neq F^{*}$. Then, R_{\times}^{M} consists of the following rules:

$$
\begin{aligned}
C_{1} & \leftarrow F^{*}, A_{1}, \ldots, A_{m} \\
& \ldots \\
C_{r-1} & \leftarrow F^{*}, A_{1}, \ldots, A_{m} \\
C_{r} & \leftarrow A_{1}, \ldots, A_{m}
\end{aligned}
$$

We show that N satisfies the above rules. We distinguish cases based on the value of $M\left(A_{1}, \ldots, A_{m}\right)$:
Case 1: $M\left(A_{1}, \ldots, A_{m}\right)=F$. Then, $N\left(A_{1}, \ldots, A_{m}\right)=F$ and the above rules are trivially satisfied by N.

Case 2: $M\left(A_{1}, \ldots, A_{m}\right)=F^{*}$. Then, since $N \preceq M$, it is $N\left(A_{1}, \ldots, A_{m}\right) \leq F^{*}$. If $N\left(A_{1}, \ldots, A_{m}\right)=F$ then N trivially satisfies all the above rules. Assume therefore that $N\left(A_{1}, \ldots, A_{m}\right)=F^{*}$. Recall now that $M\left(C_{i}\right)=F^{*}$ for all $i, 1 \leq i \leq r-1$. Moreover, it has to be $M\left(C_{r}\right) \geq F^{*}$, because otherwise M would not satisfy the rule R. Since $N \preceq M$,
it can only be $N\left(C_{i}\right)=F^{*}$ for all $i, 1 \leq i \leq r-1$ and $N\left(C_{r}\right) \geq F^{*}$, because otherwise N would not be a model of P. Therefore, N satisfies the given rules of P_{\times}^{M}.
Case 3: $M\left(A_{1}, \ldots, A_{m}\right)=T$. Then, since $N \preceq M$, it is either $N\left(A_{1}, \ldots, A_{m}\right)=F$ or $N\left(A_{1}, \ldots, A_{m}\right)=T$. If $N\left(A_{1}, \ldots, A_{m}\right)=F$ then N trivially satisfies all the above rules. Assume therefore that $N\left(A_{1}, \ldots, A_{m}\right)=T$. Recall now that $M\left(C_{i}\right)=F^{*}$ for all $i, 1 \leq i \leq r-1$. Moreover, it has to be $M\left(C_{r}\right)=T$, because otherwise M would not satisfy the rule R. Since $N \preceq M$, it can only be $N\left(C_{i}\right)=F^{*}$ for all $i, 1 \leq i \leq r-1$ and $N\left(C_{r}\right)=T$, because otherwise N would not be a model of P. Therefore, N satisfies the given rules of P_{\times}^{M}.

In the proofs that follow, we will use the term Brewka-model to refer to that of Definition 2 and Brewka-reduct to refer to that of Definition 3 (although, to be precise, this definition of reduct was initially introduced in the paper by Brewka et al. (2004)).

In order to establish Lemmas 5 and 6 we first show the following three propositions.
Proposition A. 1
Let P be an LPOD and let M be a three-valued model of P. Then, $N=\operatorname{collapse}(M)$ is a Brewka-model of P.

Proof

Consider any rule R of P of the form

$$
C_{1} \times \cdots \times C_{n} \leftarrow A_{1}, \ldots, A_{m}, \text { not } B_{1}, \ldots, \text { not } B_{k}
$$

If there exists $A_{i} \notin N$ or there exists $B_{j} \in N$ then then N trivially satisfies R. Assume that $\left\{A_{1}, \ldots, A_{m}\right\} \subseteq N$ and $\left\{B_{1}, \ldots, B_{k}\right\} \cap N=\emptyset$. By Definition 15 it follows that $M\left(A_{1}, \ldots, A_{m}\right.$, not B_{1}, \ldots, not $\left.B_{k}\right)=T$. Since M is a three-valued model of P, it must satisfy R and therefore $M\left(C_{1} \times \cdots \times C_{n}\right)=T$. Then, there exists $r \leq n$ such that $M\left(C_{r}\right)=T$ and by Definition 15 we get that $C_{r} \in N$. Therefore, N satisfies rule R.

Proposition A. 2
Let P be an LPOD and M be a Brewka-model of P. Then, M is also a model of the Brewka-reduct P_{\times}^{M}.

Proof

Consider any rule R in P of the form:

$$
C_{1} \times \cdots \times C_{n} \leftarrow A_{1}, \ldots, A_{m}, \text { not } B_{1}, \ldots, \text { not } B_{k}
$$

and assume M satisfies R. If there exists $B_{i} \in M$ for some $1 \leq i \leq k$, then no rule is created in the Brewka-reduct for R. Moreover, if for all $i \leq n, C_{i} \notin M$ then also no rule is created in the Brewka-reduct. Assume therefore that $\left\{B_{1}, \ldots, B_{k}\right\} \cap M=\emptyset$ and there exists $r \leq n$ such that $C_{r} \in M$ and $\left\{C_{1}, \ldots, C_{r-1}\right\} \cap M=\emptyset$. By the definition of P_{\times}^{M} the only rule added to P_{\times}^{M} because of R is $C_{r} \leftarrow A_{1}, \ldots, A_{m}$. Since $C_{r} \in M$ the rule is satisfied by M.

Proposition A. 3
Let P be an LPOD and let M_{1}, M_{2} be three-valued answer sets of P such that collapse $\left(M_{1}\right)=$ collapse $\left(M_{2}\right)$. Then, $M_{1}=M_{2}$.

Proof
Assume, for the sake of contradiction, that $M_{1} \neq M_{2}$. We define:

$$
M(A)= \begin{cases}M_{1}(A) & \text { if } M_{1}(A)=M_{2}(A) \\ F & \text { otherwise }\end{cases}
$$

It is $M \prec M_{1}$ and $M \prec M_{2}$. We claim that M is a model of P. This will lead to contradiction because, by Lemma $4, M_{1}$ and M_{2} are \preceq-minimal models of P.

Consider any rule R in P of the form:

$$
C_{1} \times \cdots \times C_{n} \leftarrow A_{1}, \ldots, A_{m}, \text { not } B_{1}, \ldots, \text { not } B_{k}
$$

If $M\left(B_{i}\right)=T$ for some $i, 1 \leq i \leq k$, then M satisfies the rule. Assume therefore that $M\left(B_{i}\right) \neq T$ for all $i, 1 \leq i \leq k$. We distinguish cases:

Case 1: $M\left(A_{1}, \ldots, A_{m}\right)=F$. Then, obviously, M satisfies R.
Case 2: $M\left(A_{1}, \ldots, A_{m}\right)=F^{*}$. Then, $M_{1}\left(A_{1}, \ldots, A_{m}\right)=F^{*}$ and $M_{2}\left(A_{1}, \ldots, A_{m}\right)=F^{*}$. Since, by Lemma 2, M_{1} and M_{2} are models of P it follows that $M_{1}\left(C_{1} \times \cdots \times C_{n}\right) \geq F^{*}$ and $M_{2}\left(C_{1} \times \cdots \times C_{n}\right) \geq F^{*}$. First assume that $M_{1}\left(C_{1} \times \cdots \times C_{n}\right)=T$. This implies that there exists $1 \leq r \leq n$ such that $M_{1}\left(C_{r}\right)=T$ and $M_{1}\left(C_{i}\right)=F^{*}$ for all $1 \leq i<r$. Since, by assumption collapse $\left(M_{1}\right)=$ collapse $\left(M_{2}\right)$ it follows that $M_{2}\left(C_{r}\right)=T$ and therefore $M\left(C_{r}\right)=T$. Moreover, it must be $M_{2}\left(C_{i}\right)=F^{*}$ for all $i<r$ because we have already established that $M_{2}\left(C_{1} \times \cdots \times C_{n}\right) \geq F^{*}$. Therefore, $M\left(C_{i}\right)=F^{*}$ and $M\left(C_{1} \times \cdots \times C_{n}\right)=T$ and M satisfies the rule. Now assume that $M_{1}\left(C_{1} \times \cdots \times C_{n}\right)=F^{*}$. It is easy to see that the only case is $M_{1}\left(C_{i}\right)=F^{*}$ for all $1 \leq i \leq n$. Since M_{2} has the same collapse with M_{1} it follows that $M_{2}\left(C_{i}\right) \leq F^{*}$ and because $M_{2}\left(C_{1} \times \cdots \times C_{n}\right) \geq F^{*}$ it also follows that $M_{2}\left(C_{i}\right)=F^{*}$. By definition of $M, M\left(C_{i}\right)=F^{*}$ for all $1 \leq i \leq n$ and $M\left(C_{1} \times \cdots \times C_{n}\right)=F^{*}$.
Case 3: $M\left(A_{1}, \ldots, A_{m}\right)=T$. Then, $M_{1}\left(A_{1}, \ldots, A_{m}\right)=T$ and $M_{2}\left(A_{1}, \ldots, A_{m}\right)=T$ and therefore $M_{1}\left(C_{1} \times \cdots \times C_{n}\right)=T$ and $M_{2}\left(C_{1} \times \cdots \times C_{n}\right)=T$. This implies that there exists r such that $M_{1}\left(C_{1}\right)=M_{2}\left(C_{1}\right)=F^{*}, \ldots, M_{1}\left(C_{r-1}\right)=M_{2}\left(C_{r-1}\right)=F^{*}$, and $M_{1}\left(C_{r}\right)=M_{2}\left(C_{r}\right)=T$. Therefore, $M\left(C_{1}\right)=\cdots=M\left(C_{r-1}\right)=F^{*}$ and $M\left(C_{r}\right)=T$, which implies that $M\left(C_{1} \times \cdots \times C_{n}\right)=T$, and therefore M satisfies R.

Lemma 5

Let P be an LPOD and M be a three-valued answer set of P. Then, collapse (M) is an answer set of P according to Definition 4.

Proof

Since M is an answer set of P, then by Lemma $2, M$ is also a model of P. Moreover, by Proposition A.1, $N=\operatorname{collapse}(M)$ is a Brewka-model of P. It also follows from Proposition A. 2 that N is a model of the Brewka-reduct P^{N}. It suffices to show that N is also the minimum model of P^{N}. Assume there exists N^{\prime} that is a model of P^{N} and $N^{\prime} \subset N$. We define M^{\prime} as

$$
M^{\prime}(A)= \begin{cases}F^{*} & A \in N \text { and } A \notin N^{\prime} \\ M(A) & \text { otherwise }\end{cases}
$$

It is easy to see that $M^{\prime}<M$. We will show that M^{\prime} is also model of P_{\times}^{M} leading to contradiction because we assume that M is the minimum model of P_{\times}^{M}. Consider first a rule of the form $C_{i} \leftarrow F^{*}, A_{1}, \ldots, A_{m}$. Since M is an answer set of P it must be $M\left(C_{i}\right)=F^{*}$. By the definition of M^{\prime} it follows that $M^{\prime}\left(C_{i}\right) \geq F^{*}$ and M^{\prime} satisfies the
rule. Now consider a rule of the form $C_{r} \leftarrow A_{1}, \ldots, A_{m}$. We distinguish cases based on the value of $M\left(A_{1}, \ldots, A_{m}\right)$.
Case 1: $M\left(A_{1}, \ldots, A_{m}\right)=F$. Then, since $M^{\prime}<M$ it is $M^{\prime}\left(A_{1}, \ldots, A_{m}\right)=F$ and the rule is trivially satisfied.
Case 2: $M\left(A_{1}, \ldots, A_{m}\right)=F^{*}$. Then, $M\left(A_{i}\right) \geq F^{*}$ and there exists A_{i} such that $M\left(A_{i}\right)=$ F^{*}. It follows that $A_{i} \notin N$ and therefore $M^{\prime}\left(A_{i}\right)=M\left(A_{i}\right)=F^{*}$. Moreover, by the construction of M^{\prime}, for all A_{i} we have $M^{\prime}\left(A_{i}\right) \geq F^{*}$ and therefore $M^{\prime}\left(A_{1}, \ldots, A_{m}\right)=F^{*}$. Since M is a model of $P_{\times}^{M}, M\left(C_{r}\right) \geq F^{*}$. Again, by the construction of M^{\prime} we have $M^{\prime}\left(C_{r}\right) \geq F^{*}$ and the rule is satisfied.
Case 3: $M\left(A_{1}, \ldots, A_{m}\right)=T$. By the construction of P_{\times}^{M} the rule $C_{r} \leftarrow A_{1}, \ldots, A_{m}$ is a result of a rule in P of the form

$$
C_{1} \times \cdots \times C_{r} \times \cdots \times C_{n} \leftarrow A_{1}, \ldots, A_{m}, \operatorname{not} B_{1}, \ldots, \text { not } B_{k}
$$

and it must be $M\left(C_{i}\right)=F^{*}$ for all $i \leq r-1$ and $M\left(B_{j}\right) \leq F^{*}$ for all $1 \leq j \leq k$. It follows that $\left\{C_{1}, \ldots, C_{r-1}\right\} \cap N=\emptyset$ and $\left\{B_{1}, \ldots, B_{k}\right\} \cap N=\emptyset$. Moreover, since M is a model of P_{\times}^{M} we get that $M\left(C_{r}\right)=T$ and it follows that $C_{r} \in N$. By the construction of the Brewka-reduct, there exists a rule $C_{r} \leftarrow A_{1}, \ldots, A_{m}$ in P^{N}. We distinguish two cases. If $\left\{A_{1}, \ldots, A_{m}\right\} \subseteq N^{\prime}$ then $C_{r} \in N^{\prime}$ because N^{\prime} is a model of P^{N}. It follows by the construction of M^{\prime} that $M^{\prime}\left(C_{r}\right)=M\left(C_{r}\right)=T$ and M^{\prime} satisfies the rule. Otherwise, there exists $l, 1 \leq l \leq m$ such that $A_{l} \notin N^{\prime}$. Notice also that $\left\{A_{1}, \ldots, A_{m}\right\} \subseteq N$, so $A_{l} \in N$. Therefore, $M^{\prime}\left(A_{l}\right)=F^{*}$ and $M^{\prime}\left(A_{1}, \ldots, A_{m}\right) \leq F^{*}$. Moreover, since $\overline{C_{r}} \in N$, we have $M^{\prime}\left(C_{r}\right) \geq F^{*}$ that satisfies the rule.

Lemma 6

Let N be an answer set of P according to Definition 4. There exists a unique three-valued interpretation M such that $N=$ collapse (M) and M is a three-valued answer set of P.

Proof

We construct iteratively a set of literals that must have the value F^{*} in M. Let \mathcal{F}^{n} be the sequence:

$$
\begin{aligned}
& \mathcal{F}^{0}=\emptyset \\
& \mathcal{F}^{n+1}=\left\{C_{j} \mid\left(C_{1} \times \cdots \times C_{n} \leftarrow A_{1}, \ldots, A_{m}, \text { not } B_{1}, \ldots \text { not } B_{k}\right) \in P\right. \\
& \quad \text { and }\left\{B_{1}, \ldots, B_{k}\right\} \cap N=\emptyset \\
& \text { and }\left\{C_{1}, \ldots, C_{j}\right\} \cap N=\emptyset \\
&\left.\quad \text { and }\left\{A_{1}, \ldots, A_{m}\right\} \subseteq N \cup \mathcal{F}^{n}\right\} \\
& \mathcal{F}^{\omega}= \cup_{n<\omega} \mathcal{F}^{n}
\end{aligned}
$$

We construct M as

$$
M(A)= \begin{cases}F & A \notin N \text { and } A \notin \mathcal{F}^{\omega} \\ F^{*} & A \notin N \text { and } A \in \mathcal{F}^{\omega} \\ T & A \in N\end{cases}
$$

First we prove that M is a model of P_{\times}^{M}. Consider first any rule of the form $C_{i} \leftarrow$ $F^{*}, A_{1}, \ldots, A_{m}$. By the construction of P_{\times}^{M}, such a rule exists because $M\left(C_{i}\right)=F^{*}$; therefore M satisfies this rule. Now consider any rule of the form $C_{r} \leftarrow A_{1}, \ldots, A_{m}$. Such a rule was produced by a rule R in P of the form

$$
C_{1} \times \cdots \times C_{r} \times \cdots \times C_{n} \leftarrow A_{1}, \ldots, A_{n}, \ldots, \text { not } B_{1}, \ldots, \text { not } B_{k}
$$

By the construction of P_{\times}^{M} it follows that $M\left(C_{i}\right)=F^{*}$ for all $i<r$. Therefore $C_{i} \notin N$ and also $C_{i} \in \mathcal{F}^{\omega}$ for all $i<r$. Moreover, it must be $M\left(B_{j}\right) \leq F^{*}$ for all $1 \leq j \leq k$, so $\left\{B_{1}, \ldots, B_{k}\right\} \cap N=\emptyset$. We distinguish cases based on the value of $M\left(A_{1}, \ldots, A_{m}\right)$.
Case 1: If $M\left(A_{1}, \ldots, A_{m}\right)=F$ then the rule is trivially satisfied by M.
Case 2: If $M\left(A_{1}, \ldots, A_{m}\right)=F^{*}$ then for some $A_{i}, M\left(A_{i}\right)=F^{*}$. By the construction of M, it follows that $A_{i} \in \mathcal{F}^{\omega}$. It follows by the definition of \mathcal{F}^{ω} that $C_{r} \in \mathcal{F}^{\omega}$ and therefore $M\left(C_{r}\right) \geq F^{*}$.

Case 3: If $M\left(A_{1}, \ldots, A_{m}\right)=T$ then $\left\{A_{1}, \ldots, A_{m}\right\} \subseteq N$ and since N is an answer set according to Definition 4 it follows that N is a model of P. It follows that there exists a least $j \leq n$ such that $C_{j} \in N$. Since we have already established that for all $i<r$, $C_{i} \notin N$ it must be $r \leq j \leq n$. But, if $r<j$ then $C_{r} \notin N$ and by the construction of M it must be $M\left(C_{r}\right)=F^{*}$. If $M\left(C_{r}\right)=F^{*}$, then, by the construction of P_{\times}^{M}, the rule for C_{r} should be of the form $C_{r} \leftarrow F^{*}, A_{1}, \ldots, A_{m}$. So, it must $j=r$ and $C_{r} \in N$. Therefore, $M\left(C_{r}\right)=T$ and M satisfies the rule.

Therefore, we have established that M is a model of P_{\times}^{M}. It remains to show that M is the \leq-least model of P_{\times}^{M}. Assume now that there exists M^{\prime} that is a model of P_{\times}^{M} and $M^{\prime}<M$. Let $N^{\prime}=\operatorname{collapse}\left(M^{\prime}\right)$. We distinguish two cases.

Case 1: $N^{\prime}=N$ and thus M^{\prime} differs from M only on some atoms C_{r} such that $M^{\prime}\left(C_{r}\right)=F$ and $M\left(C_{r}\right)=F^{*}$. First, by the construction of M, if $M\left(C_{r}\right)=F^{*}$ then $C_{r} \in \mathcal{F}^{\omega}$. We show by induction on n that for every $C_{r} \in \mathcal{F}^{n}, M^{\prime}\left(C_{r}\right) \geq F^{*}$. This leads to contradiction and therefore M is minimal.

Induction base: $n=0$: the statement is satisfied vacuously.
Induction step: $n=n_{0}+1$: Every atom $C_{r} \in \mathcal{F}^{n_{0}+1}$ must occur in a head of a rule in P. such that $\left\{C_{1}, \ldots, C_{r-1}\right\} \cap N=\emptyset$ and therefore $\left\{C_{1}, \ldots, C_{r}\right\} \subseteq \mathcal{F}^{n_{0}+1}$. It follows then that $M\left(C_{i}\right)=F^{*}$ for $1 \leq i \leq r$. By the construction of P_{\times}^{M}, for every atom $C_{r} \in \mathcal{F}^{n_{0}+1}$ there must be a rule in $P_{\times}^{\bar{M}}$ either of the form $C_{r} \leftarrow F^{*}, A_{1}, \ldots, A_{m}$ or of the form $C_{r} \leftarrow A_{1}, \ldots, A_{m}$. Moreover, since $C_{r} \in \mathcal{F}^{n_{0}+1}$ it follows that $\left\{A_{1}, \ldots, A_{m}\right\} \subseteq N \cup \mathcal{F}^{n_{0}}$. Therefore, by the induction hypothesis, $M\left(A_{1}, \ldots, A_{m}\right)=M^{\prime}\left(A_{1}, \ldots, A_{m}\right) \geq F^{*}$. Since M^{\prime} is also a model of P_{\times}^{M} it must satisfy those rules thus $M^{\prime}\left(C_{r}\right) \geq F^{*}$.
Case 2: $N^{\prime} \subset N$. We show that N^{\prime} is a model of P^{N} leading to contradiction because, by definition, N is the minimum model of P^{N}. Consider a rule R of the form $C_{r} \leftarrow A_{1}, \ldots, A_{m}$ in P^{N}. The rule R has been produced by a rule in P of the form:

$$
C_{1} \times \cdots \times C_{r} \times \cdots \times C_{n} \leftarrow A_{1}, \ldots, A_{m}, \text { not } B_{1}, \ldots, \text { not } B_{k}
$$

such that $\left\{C_{1}, \ldots, C_{r-1}\right\} \cap N=\emptyset$ and $C_{r} \in N$.
If there exists $A_{i} \notin N$ then also $A_{i} \notin N^{\prime}$ and the rule is trivially satisfied by N^{\prime}. Assume, on the other hand, that $\left\{A_{1}, \ldots, A_{n}\right\} \subseteq N$. It follows, by the definition of M, that $M\left(A_{1}, \ldots, A_{m}\right)=T, M\left(C_{i}\right)=F^{*}$ for $i<r$ and $M\left(C_{r}\right)=T$. Therefore, there exist a rule in P_{\times}^{M} of the form $C_{r} \leftarrow A_{1}, \ldots, A_{m}$. If $M^{\prime}\left(A_{1}, \ldots, A_{m}\right)=F$ or $M^{\prime}\left(A_{1}, \ldots, A_{m}\right)=F^{*}$ then there exists $A_{i} \notin N^{\prime}$ and N^{\prime} again satisfies the rule. If $M^{\prime}\left(A_{1}, \ldots, A_{m}\right)=T$ then since M^{\prime} is a model of P_{\times}^{M} it follows that $M^{\prime}\left(C_{r}\right)=T$. Since N^{\prime} is the collapse of M^{\prime} it is $\left\{A_{1}, \ldots, A_{m}\right\} \subseteq N^{\prime}$ and $C_{r} \in N^{\prime}$. Therefore, N^{\prime} satisfies the rule R in P^{N}.

The uniqueness of M follows directly from Proposition A.3.

B Proofs of Section 6

In order to establish Theorem 1, we show two lemmas (which essentially establish the left-to-right and the right-to-left directions of the theorem, respectively).

Lemma B. 1

Let P be an LPOD program and let M be an answer set of P. Then, M is a \preceq-minimal model of P and M is solid.

Proof

Since M is an answer set of P, then, by Lemma $2, M$ is a model of P. Moreover, M is solid because our definition of answer sets does not involve the value T^{*}. It remains to show that it is minimal with respect to the \preceq ordering. Assume, for the sake of contradiction, that there exists a model N of P with $N \prec M$. By Lemma 4, M is (three-valued) \preceq-minimal. Therefore, N can not be solid. We first show that N can not be a model of the reduct P_{\times}^{M}. Assume for the sake of contradiction that N is a model of P_{\times}^{M}. We construct the following interpretation N^{\prime} :

$$
N^{\prime}(A)= \begin{cases}F^{*}, & \text { if } N(A)=T^{*} \\ N(A), & \text { otherwise }\end{cases}
$$

We claim that N^{\prime} must also be a model of P_{\times}^{M}. Consider first a rule of the form $C \leftarrow F^{*}, A_{1}, \ldots, A_{m}$. Since N is a model of P_{\times}^{M}, it is $N(C) \geq F^{*}$. By the definition of N^{\prime}, it is $N(C) \geq F^{*}$ and therefore N^{\prime} satisfies this rule. Consider now a rule of the form $C \leftarrow A_{1}, \ldots, A_{m}$ in P_{\times}^{M}. We show that N^{\prime} also satisfies this rule. We perform a case analysis:

Case 1: $N\left(A_{1}, \ldots, A_{m}\right)=F$. Then, $N^{\prime}\left(A_{1}, \ldots, A_{m}\right)=F$ and N^{\prime} trivially satisfies the rule.

Case 2: $N\left(A_{1}, \ldots, A_{m}\right)=F^{*}$. Then, $N^{\prime}\left(A_{1}, \ldots, A_{m}\right)=F^{*}$. Moreover, $N(C) \geq F^{*}$ because N is a model of P_{\times}^{M}. By the definition of N^{\prime}, it is $N^{\prime}(C) \geq F^{*}$, and therefore N^{\prime} satisfies the rule.

Case 3: $N\left(A_{1}, \ldots, A_{m}\right)=T^{*}$. Then, $N^{\prime}\left(A_{1}, \ldots, A_{m}\right)=F^{*}$. Moreover, $N(C) \geq T^{*}$ because N is a model of P_{\times}^{M}. By the definition of N^{\prime}, it is $N^{\prime}(C) \geq F^{*}$, and therefore N^{\prime} satisfies the rule.

Case 4: $N\left(A_{1}, \ldots, A_{m}\right)=T$. Then, $N^{\prime}\left(A_{1}, \ldots, A_{m}\right)=T$. Moreover, $N(C)=T$ because N is a model of P_{\times}^{M}. By the definition of N^{\prime}, it is $N^{\prime}(C)=T$, and therefore N^{\prime} satisfies the rule.
Therefore, N^{\prime} must also be a model of P_{\times}^{M}. Moreover, by definition, N^{\prime} is solid and $N^{\prime}<M$. This contradicts the fact that, by construction, M is the \leq-least model of P_{\times}^{M}. In conclusion, N can not be a model of P_{\times}^{M}.

We now show that N can not be a model of P. As we showed above, N is not a model of P_{\times}^{M}, and consequently there exists a rule in P_{\times}^{M} that is not satisfied by N. Such a rule in P_{\times}^{M} must have resulted due to a rule R of the following form in P :

$$
C_{1} \times \cdots \times C_{n} \leftarrow A_{1}, \ldots, A_{m}, \text { not } B_{1}, \ldots, \text { not } B_{k}
$$

According to the definition of P_{\times}^{M}, for all $i, 1 \leq i \leq k, M\left(\right.$ not $\left.B_{i}\right)=T$, and since $N \prec M$, it is also $N\left(\right.$ not $\left.B_{i}\right)=T$. Moreover, there exists some $r \leq n$ such that $M\left(C_{1}\right)=\cdots=$ $M\left(C_{r-1}\right)=F^{*}$ and either $r=n$ or $M\left(C_{r}\right) \neq F^{*}$. Since $N \prec M$, it is $N\left(C_{i}\right) \leq F^{*}$ for all $i, 1 \leq i \leq r-1$. Consider now the rule that is not satisfied by N in P_{\times}^{M}. If it
is of the form $C_{i} \leftarrow F^{*}, A_{1}, \ldots, A_{m}, i, 1 \leq i \leq r-1$, then $N\left(A_{1}, \ldots, A_{m}\right)>F$ and $N\left(C_{i}\right)=F$. This implies that $N\left(C_{1} \times \cdots \times C_{n}\right)=F$ and therefore N does not satisfy the rule R. If the rule that is not satisfied by N in P_{\times}^{M} is of the form $C_{r} \leftarrow A_{1}, \ldots, A_{m}$, then $N\left(C_{r}\right)<N\left(A_{1}, \ldots, A_{m}\right)$ and therefore, since $N\left(C_{i}\right) \leq F^{*}$ for all $i, 1 \leq i \leq r-1$, it is:

$$
N\left(C_{1} \times \cdots \times C_{n}\right)<N\left(A_{1}, \ldots, A_{m}, \text { not } B_{1}, \ldots, \text { not } B_{k}\right)
$$

Thus, N is not a model of P.

Lemma B. 2

Let P be an LPOD program and let M be a \preceq-minimal model of P and M is solid. Then, M is an answer set of P.

Proof

First observe that, by Lemma $3, M$ is also a model of P_{\times}^{M}. We demonstrate that M is actually the \leq-least model of P_{\times}^{M}. Assume, for the sake of contradiction, that N is the \leq-least model of P_{\times}^{M}. Then, N will differ from M in some atoms A such that $N(A)<M(A)$. We distinguish two cases. In the first case all the atoms A such that $N(A)<M(A)$ have $M(A) \leq F^{*}$. In the second case there exist at least one atom A such that $M(A)>F^{*}$.

In the first case it is easy to see that $N \prec M$. We demonstrate that N is also model of P leading to contradiction since M is \preceq-minimal. Assume that N is not a model of P. Then, there exists in P a rule R of the form:

$$
C_{1} \times \cdots \times C_{n} \leftarrow A_{1}, \ldots, A_{m}, \text { not } B_{1}, \ldots, \text { not } B_{k}
$$

such that $N\left(C_{1} \times \cdots \times C_{n}\right)<N^{\prime}\left(A_{1}, \ldots, A_{m}\right.$, not B_{1}, \ldots, not $\left.B_{k}\right)$. Notice that this implies that $N\left(\right.$ not B_{1}, \ldots, not $\left.B_{k}\right)=M\left(\right.$ not B_{1}, \ldots, not $\left.B_{k}\right)=T$. Therefore, $N\left(C_{1} \times \cdots \times C_{n}\right)<$ $N\left(A_{1}, \ldots, A_{m}\right)$. We distinguish cases based on the value of $N\left(A_{1}, \ldots, A_{m}\right)$:
Case 1: $N\left(A_{1}, \ldots, A_{m}\right)=F$. This case leads immediately to contradiction because N trivially satisfies R.
Case 2: $N\left(A_{1}, \ldots, A_{m}\right)>F$. Then, $N\left(A_{1}, \ldots, A_{m}\right)=M\left(A_{1}, \ldots, A_{m}\right)$. Since M is a model of P, it is $M\left(C_{1} \times \cdots \times C_{n}\right) \geq M\left(A_{1}, \ldots, A_{m}\right)>F$. This implies that there exists some $r, 1 \leq r \leq n$, such that $M\left(C_{1}\right)=\cdots=M\left(C_{r-1}\right)=F^{*}$ and $M\left(C_{r}\right) \geq F^{*}$. By the definition of the reduct, the rule $C_{r} \leftarrow A_{1}, \ldots, A_{m}$ exists in P_{\times}^{M}. Since N is a model of P_{\times}^{M}, we get that $N\left(C_{r}\right)>F$. Moreover, N should also satisfy the rules $C_{i} \leftarrow F^{*}, A_{1}, \ldots, A_{m}$ for $1 \leq i \leq r-1$. Since $N\left(C_{i}\right) \leq M\left(C_{i}\right)$ and $N\left(C_{r}\right)=M\left(C_{r}\right)$ we get $N\left(C_{1}\right)=\cdots=N\left(C_{r-1}\right)=F^{*}$ and $N\left(C_{r}\right)=M\left(C_{r}\right)$. Therefore $N\left(C_{1} \times \cdots C_{n}\right)=$ $M\left(C_{1} \times \cdots C_{n}\right)$ and $N\left(C_{1} \times \cdots C_{n}\right) \geq N\left(A_{1}, \ldots, A_{m}\right)$ (contradiction).

In the second case we construct the following interpretation N^{\prime} :

$$
N^{\prime}(A)= \begin{cases}T^{*}, & \text { if } M(A)=T \text { and } N(A) \in\left\{F, F^{*}\right\} \\ F^{*}, & \text { if } M(A)=F^{*} \\ N(A), & \text { otherwise }\end{cases}
$$

It is easy to see that $N^{\prime} \prec M$. We demonstrate that N^{\prime} is a model of P, which will lead to a contradiction (since we have assumed that M is \preceq-minimal).

Assume N^{\prime} is not a model of P. Then, there exists in P a rule R of the form:

$$
C_{1} \times \cdots \times C_{n} \leftarrow A_{1}, \ldots, A_{m}, \text { not } B_{1}, \ldots, \text { not } B_{k}
$$

such that $N^{\prime}\left(C_{1} \times \cdots \times C_{n}\right)<N^{\prime}\left(A_{1}, \ldots, A_{m}\right.$, not B_{1}, \ldots, not $\left.B_{k}\right)$. Notice that this implies
that $N^{\prime}\left(\operatorname{not} B_{1}, \ldots, \operatorname{not} B_{k}\right)=N\left(\right.$ not B_{1}, \ldots, not $\left.B_{k}\right)=M\left(\operatorname{not} B_{1}, \ldots, n o t B_{k}\right)=T$. Therefore, $N^{\prime}\left(C_{1} \times \cdots \times C_{n}\right)<N^{\prime}\left(A_{1}, \ldots, A_{m}\right)$. We distinguish cases based on the value of $N^{\prime}\left(A_{1}, \ldots, A_{m}\right)$: Case 1: $N^{\prime}\left(A_{1}, \ldots, A_{m}\right)=F$. This case leads immediately to contradiction because N^{\prime} trivially satisfies R.
Case 2: $N^{\prime}\left(A_{1}, \ldots, A_{m}\right)=F^{*}$. Then, by the definition of $N^{\prime}, M\left(A_{1}, \ldots, A_{m}\right)=F^{*}$. Since M is a model of P, it is $M\left(C_{1} \times \cdots \times C_{n}\right) \geq F^{*}$. This implies that either $M\left(C_{1}\right)=$ $\cdots=M\left(C_{n}\right)=F^{*}$ or there exists $r \leq n$ such that $M\left(C_{1}\right)=\cdots=M\left(C_{r-1}\right)=F^{*}$ and $M\left(C_{r}\right)=T$. By the definition of N^{\prime}, we get in both cases $N^{\prime}\left(C_{1} \times \cdots \times C_{n}\right) \geq F^{*}$ (contradiction).

Case 3: $N^{\prime}\left(A_{1}, \ldots, A_{m}\right)=T^{*}$. Then, by the definition of $N^{\prime}, M\left(A_{1}, \ldots, A_{m}\right)=T$. Since M is a model of P, it is $M\left(C_{1} \times \cdots \times C_{n}\right)=T$. This implies that there exists some r, $1 \leq r \leq n$, such that $M\left(C_{1}\right)=\cdots=M\left(C_{r-1}\right)=F^{*}$ and $M\left(C_{r}\right)=T$. By the definition of N^{\prime}, we get that $N^{\prime}\left(C_{1} \times \cdots \times C_{n}\right) \geq T^{*}$ (contradiction).
Case 4: $N^{\prime}\left(A_{1}, \ldots, A_{m}\right)=T$. Then, by the definition of $N^{\prime}, N\left(A_{1}, \ldots, A_{m}\right)=T$ and $M\left(A_{1}, \ldots, A_{m}\right)=T$. Since M is a model of P, it is $M\left(C_{1} \times \cdots \times C_{n}\right)=T$. This implies that there exists some $r, 1 \leq r \leq n$, such that $M\left(C_{1}\right)=\cdots=M\left(C_{r-1}\right)=F^{*}$ and $M\left(C_{r}\right)=T$. By the definition of the reduct, the rule $C_{r} \leftarrow A_{1}, \ldots, A_{m}$ exists in P_{\times}^{M}. Since N is a model of P_{\times}^{M}, we get that $N\left(C_{r}\right)=T$. Thus, $N^{\prime}\left(C_{1}\right)=\cdots=N^{\prime}\left(C_{r-1}\right)=F^{*}$ and $N^{\prime}\left(C_{r}\right)=T$, and therefore $N^{\prime}\left(C_{1} \times \cdots \times C_{n}\right)=T$ (contradiction).

Theorem 1

Let P be an LPOD. Then, M is a three-valued answer set of P iff M is a consistent \preceq-minimal model of P and M is solid.

Proof

Immediate from Lemma B. 1 and Lemma B.2.

C Proofs of Section 7

Lemma 7

Let P be a consistent disjunctive extended logic program. Then, the answer sets of P according to Definition 20, coincide with the standard answer sets of P.

Proof

By taking $n=1$ in Definition 19, we get the standard definition of reduct for consistent disjunctive extended logic programs.

Lemma 8

Let P be a DLPOD program and let M be an answer set of P. Then, M is a model of P.

Proof

Consider any rule R in P of the form:

$$
\mathcal{C}_{1} \times \cdots \times \mathcal{C}_{n} \leftarrow A_{1}, \ldots, A_{m}, \text { not } B_{1}, \ldots, \text { not } B_{k}
$$

If $R_{\times}^{M}=\emptyset$, then $M\left(B_{i}\right)=T$ for some $i, 1 \leq i \leq k$. But then, the body of the rule R
evaluates to F under M, and therefore M satisfies R. Consider now the case where R_{\times}^{M} is nonempty and consists of the following rules:

$$
\begin{array}{lll}
\mathcal{C}_{1} & \leftarrow & F^{*}, A_{1}, \ldots, A_{m} \\
& \ldots & \\
\mathcal{C}_{r-1} & \leftarrow F^{*}, A_{1}, \ldots, A_{m} \\
\mathcal{C}_{r} & \leftarrow A_{1}, \ldots, A_{m}
\end{array}
$$

We distinguish cases based on the value of $M\left(A_{1}, \ldots, A_{m}\right)$:
Case 1: $M\left(A_{1}, \ldots, A_{m}\right)=F$. Then, for some $i, M\left(A_{i}\right)=F$. Then, rule R is trivially satisfied by M.

Case 2: $M\left(A_{1}, \ldots, A_{m}\right)=F^{*}$. This implies that $M\left(\mathcal{C}_{r}\right) \geq F^{*}$. We distinguish two subcases. If $r=n$ then $M\left(\mathcal{C}_{1} \times \cdots \times \mathcal{C}_{n}\right)=M\left(\mathcal{C}_{1} \times \cdots \times \mathcal{C}_{r}\right) \geq F^{*}$ because, by the definition of P_{\times}^{M} it is $M\left(\mathcal{C}_{1}\right)=\cdots=M\left(\mathcal{C}_{r-1}\right)=F^{*}$ and we also know that $M\left(\mathcal{C}_{r}\right) \geq F^{*}$. Thus, in this subcase M satisfies R. If $r<n$, then by the definition of $P_{\times}^{M}, M\left(\mathcal{C}_{r}\right) \neq F^{*}$; however, we know that $M\left(\mathcal{C}_{r}\right) \geq F^{*}$, and thus $M\left(\mathcal{C}_{r}\right)=T$. Thus, in this subcase M also satisfies R.
Case 3: $M\left(A_{1}, \ldots, A_{m}\right)=T$. Then, for all $i, M\left(A_{i}\right)=T$. Since M is a model of P_{\times}^{M}, we have $M\left(\mathcal{C}_{r}\right)=T$. Moreover, by the definition of $P_{\times}^{M}, M\left(\mathcal{C}_{1}\right)=\cdots=M\left(\mathcal{C}_{r-1}\right)=F^{*}$. This implies that $M\left(\mathcal{C}_{1} \times \cdots \times \mathcal{C}_{n}\right)=T$.

Lemma 9

Let M be a model of a DLPOD P. Then, M is a model of P_{\times}^{M}.

Proof

Consider any rule R in P of the form:

$$
\mathcal{C}_{1} \times \cdots \times \mathcal{C}_{n} \leftarrow A_{1}, \ldots, A_{m}, \text { not } B_{1}, \ldots, \text { not } B_{k}
$$

and assume M satisfies R. If $M\left(B_{i}\right)=T$ for some $i, 1 \leq i \leq k$, then no rule is created in P_{\times}^{M} for R. Assume therefore that $M\left(\right.$ not B_{1}, \ldots, not $\left.B_{k}\right)=T$. By the definition of P_{\times}^{M} the following rules have been added to P_{\times}^{M} :

$$
\begin{array}{lll}
\mathcal{C}_{1} & \leftarrow & F^{*}, A_{1}, \ldots, A_{m} \\
& \ldots & \\
\mathcal{C}_{r-1} & \leftarrow & F^{*}, A_{1}, \ldots, A_{m} \\
\mathcal{C}_{r} & \leftarrow & A_{1}, \ldots, A_{m}
\end{array}
$$

where r is the least index such that $M\left(\mathcal{C}_{1}\right)=\cdots=M\left(\mathcal{C}_{r-1}\right)=F^{*}$ and either $r=n$ or $M\left(\mathcal{C}_{r}\right) \neq F^{*}$. Obviously, the first $r-1$ rules above are satisfied by M. For the rule $\mathcal{C}_{r} \leftarrow A_{1}, \ldots, A_{m}$ we distinguish two cases based on the value of $M\left(A_{1}, \ldots, A_{m}\right)$. If $M\left(A_{1}, \ldots, A_{m}\right)=F$, then, the rule is trivially satisfied. If $M\left(A_{1}, \ldots, A_{m}\right)>F$, then, since rule R is satisfied by M and $M\left(\mathcal{C}_{r}\right) \neq F^{*}$, it has to be $M\left(\mathcal{C}_{r}\right)=T$. Therefore, the rule $\mathcal{C}_{r} \leftarrow A_{1}, \ldots, A_{m}$ is satisfied by M.

Lemma 10

Every answer set M of a DLPOD P, is a \preceq-minimal model of P.

Proof

Assume there exists a model N of P with $N \preceq M$. We will show that N is also a model of P_{\times}^{M}. Since $N \preceq M$, we also have $N \leq M$. Since M is the \leq-least model of P_{\times}^{M}, we will conclude that $N=M$.

Consider any rule R in P of the form:

$$
\mathcal{C}_{1} \times \cdots \times \mathcal{C}_{n} \leftarrow A_{1}, \ldots, A_{m}, \text { not } B_{1}, \ldots, \text { not } B_{k}
$$

Assume that R_{\times}^{M} is nonempty. This means that there exists some $r, 1 \leq r \leq n$, such that $M\left(\mathcal{C}_{1}\right)=\cdots=M\left(\mathcal{C}_{r-1}\right)=F^{*}$ and either $r=n$ or $M\left(\mathcal{C}_{r}\right) \neq F^{*}$. Then, R_{\times}^{M} consists of the following rules:

$$
\begin{array}{lll}
\mathcal{C}_{1} & \leftarrow & F^{*}, A_{1}, \ldots, A_{m} \\
& \ldots & \\
\mathcal{C}_{r-1} & \leftarrow & F^{*}, A_{1}, \ldots, A_{m} \\
\mathcal{C}_{r} & \leftarrow & A_{1}, \ldots, A_{m}
\end{array}
$$

We show that N satisfies the above rules. We distinguish cases based on the value of $M\left(A_{1}, \ldots, A_{m}\right)$:
Case 1: $M\left(A_{1}, \ldots, A_{m}\right)=F$. Then, $N\left(A_{1}, \ldots, A_{m}\right)=F$ and the above rules are trivially satisfied by N.

Case 2: $M\left(A_{1}, \ldots, A_{m}\right)=F^{*}$. Then, since $N \preceq M$, it is $N\left(A_{1}, \ldots, A_{m}\right) \leq F^{*}$. If $N\left(A_{1}, \ldots, A_{m}\right)=F$ then N trivially satisfies all the above rules. Assume therefore that $N\left(A_{1}, \ldots, A_{m}\right)=F^{*}$. Recall now that $M\left(\mathcal{C}_{i}\right)=F^{*}$ for all $i, 1 \leq i \leq r-1$. Moreover, it has to be $M\left(\mathcal{C}_{r}\right) \geq F^{*}$, because otherwise M would not satisfy the rule R. Since $N \preceq M$, it can only be $N\left(\mathcal{C}_{i}\right)=F^{*}$ for all $i, 1 \leq i \leq r-1$ and $N\left(\mathcal{C}_{r}\right) \geq F^{*}$, because otherwise N would not be a model of P. Therefore, N satisfies the given rules of P_{\times}^{M}.
Case 3: $M\left(A_{1}, \ldots, A_{m}\right)=T$. Then, since $N \preceq M$, it is either $N\left(A_{1}, \ldots, A_{m}\right)=F$ or $N\left(A_{1}, \ldots, A_{m}\right)=T$. If $N\left(A_{1}, \ldots, A_{m}\right)=F$ then N trivially satisfies all the above rules. Assume therefore that $N\left(A_{1}, \ldots, A_{m}\right)=T$. Recall now that $M\left(\mathcal{C}_{i}\right)=F^{*}$ for all $i, 1 \leq i \leq r-1$. Moreover, it has to be $M\left(\mathcal{C}_{r}\right)=T$, because otherwise M would not satisfy the rule R. Since $N \preceq M$, it can only be $N\left(\mathcal{C}_{i}\right)=F^{*}$ for all $i, 1 \leq i \leq r-1$ and $N\left(\mathcal{C}_{r}\right)=T$, because otherwise N would not be a model of P. Therefore, N satisfies the given rules of P_{\times}^{M}.

Theorem 2

Let P be a DLPOD. Then, M is an answer set of P iff M is a consistent \preceq-minimal model of P and M is solid.

The proof of the above theorem follows directly by the following two lemmas.

Lemma C. 1

Let P be an DLPOD and let M be an answer set of P. Then, M is a consistent \preceq-minimal model of P and M is solid.

Proof

Since M is an answer set of P, then, by Lemma $8, M$ is a model of P. Moreover, M is solid because our definition of answer sets does not involve the value T^{*}. It remains to show that it is minimal with respect to the \preceq ordering. Assume, for the sake of contradiction, that there exists a model N of P with $N \prec M$. By Lemma $10, M$ is (three-valued) \preceq-minimal. Therefore, N can not be solid. We first show that N can not be a model
of the reduct P_{\times}^{M}. Assume for the sake of contradiction that N is a model of P_{\times}^{M}. We construct the following interpretation N^{\prime} :

$$
N^{\prime}(A)= \begin{cases}F^{*}, & \text { if } N(A)=T^{*} \\ N(A), & \text { otherwise }\end{cases}
$$

We claim that N^{\prime} must also be a model of P_{\times}^{M}. Consider first a rule of the form $\mathcal{C} \leftarrow F^{*}, A_{1}, \ldots, A_{m}$. Since N is a model of P_{\times}^{M}, it is $N(\mathcal{C}) \geq F^{*}$. By the definition of N^{\prime}, it is $N(\mathcal{C}) \geq F^{*}$ and therefore N^{\prime} satisfies this rule. Consider now a rule of the form $\mathcal{C} \leftarrow A_{1}, \ldots, A_{m}$ in P_{\times}^{M}. We show that N^{\prime} also satisfies this rule. We perform a case analysis:

Case 1: $N\left(A_{1}, \ldots, A_{m}\right)=F$. Then, $N^{\prime}\left(A_{1}, \ldots, A_{m}\right)=F$ and N^{\prime} trivially satisfies the rule.

Case 2: $N\left(A_{1}, \ldots, A_{m}\right)=F^{*}$. Then, $N^{\prime}\left(A_{1}, \ldots, A_{m}\right)=F^{*}$. Moreover, $N(\mathcal{C}) \geq F^{*}$ because N is a model of P_{\times}^{M}. By the definition of N^{\prime}, it is $N^{\prime}(\mathcal{C}) \geq F^{*}$, and therefore N^{\prime} satisfies the rule.

Case 3: $N\left(A_{1}, \ldots, A_{m}\right)=T^{*}$. Then, $N^{\prime}\left(A_{1}, \ldots, A_{m}\right)=F^{*}$. Moreover, $N(\mathcal{C}) \geq T^{*}$ because N is a model of P_{\times}^{M}. By the definition of N^{\prime}, it is $N^{\prime}(\mathcal{C}) \geq F^{*}$, and therefore N^{\prime} satisfies the rule.

Case 4: $N\left(A_{1}, \ldots, A_{m}\right)=T$. Then, $N^{\prime}\left(A_{1}, \ldots, A_{m}\right)=T$. Moreover, $N(\mathcal{C})=T$ because N is a model of P_{\times}^{M}. By the definition of N^{\prime}, it is $N^{\prime}(\mathcal{C})=T$, and therefore N^{\prime} satisfies the rule.
Therefore, N^{\prime} must also be a model of P_{\times}^{M}. Moreover, by definition, N^{\prime} is solid and $N^{\prime}<M$. This contradicts the fact that, by construction, M is the \leq-least model of P_{\times}^{M}. In conclusion, N can not be a model of P_{\times}^{M}.

We now show that N can not be a model of P. As we showed above, N is not a model of P_{\times}^{M}, and consequently there exists a rule in P_{\times}^{M} that is not satisfied by N. Such a rule in P_{\times}^{M} must have resulted due to a rule R of the following form in P :

$$
\mathcal{C}_{1} \times \cdots \times \mathcal{C}_{n} \leftarrow A_{1}, \ldots, A_{m}, \text { not } B_{1}, \ldots, \text { not } B_{k}
$$

According to the definition of P_{\times}^{M}, for all $i, 1 \leq i \leq k, M\left(\right.$ not $\left.B_{i}\right)=T$, and since $N \prec M$, it is also $N\left(\right.$ not $\left.B_{i}\right)=T$. Moreover, there exists some $r \leq n$ such that $M\left(\mathcal{C}_{1}\right)=\cdots=$ $M\left(\mathcal{C}_{r-1}\right)=F^{*}$ and either $r=n$ or $M\left(\mathcal{C}_{r}\right) \neq F^{*}$. Since $N \prec M$, it is $N\left(\mathcal{C}_{i}\right) \leq F^{*}$ for all $i, 1 \leq i \leq r-1$. Consider now the rule that is not satisfied by N in P_{\times}^{M}. If it is of the form $\mathcal{C}_{i} \leftarrow F^{*}, A_{1}, \ldots, A_{m}, i, 1 \leq i \leq r-1$, then $N\left(A_{1}, \ldots, A_{m}\right)>F$ and $N\left(\mathcal{C}_{i}\right)=F$. This implies that $N\left(\mathcal{C}_{1} \times \cdots \times \mathcal{C}_{n}\right)=F$ and therefore N does not satisfy the rule R. If the rule that is not satisfied by N in P_{\times}^{M} is of the form $\mathcal{C}_{r} \leftarrow A_{1}, \ldots, A_{m}$, then $N\left(\mathcal{C}_{r}\right)<N\left(A_{1}, \ldots, A_{m}\right)$ and therefore, since $N\left(\mathcal{C}_{i}\right) \leq F^{*}$ for all $i, 1 \leq i \leq r-1$, it is:

$$
N\left(\mathcal{C}_{1} \times \cdots \times \mathcal{C}_{n}\right)<N\left(A_{1}, \ldots, A_{m}, \text { not } B_{1}, \ldots, \text { not } B_{k}\right)
$$

Thus, N is not a model of P.

Lemma C. 2

Let P be an DLPOD and let M be a consistent \preceq-minimal model of P and M is solid. Then, M is an answer set of P.

Proof

First observe that, by Lemma $9, M$ is also a model of P_{\times}^{M}. We demonstrate that M is actually the \leq-least model of P_{\times}^{M}. Assume, for the sake of contradiction, that N is the \leq-least model of P_{\times}^{M}. Then, N will differ from M in some atoms A such that $N(A)<M(A)$. We distinguish two cases. In the first case all the atoms A such that $N(A)<M(A)$ have $M(A) \leq F^{*}$. In the second case there exist at least one atom A such that $M(A)>F^{*}$.

In the first case it is easy to see that $N \prec M$. We demonstrate that N is also model of P leading to contradiction since M is \preceq-minimal. Assume that N is not a model of P. Then, there exists in P a rule R of the form:

$$
\mathcal{C}_{1} \times \cdots \times \mathcal{C}_{n} \leftarrow A_{1}, \ldots, A_{m}, \text { not } B_{1}, \ldots, \text { not } B_{k}
$$

such that $N\left(\mathcal{C}_{1} \times \cdots \times \mathcal{C}_{n}\right)<N^{\prime}\left(A_{1}, \ldots, A_{m}\right.$, not B_{1}, \ldots, not $\left.B_{k}\right)$. Notice that this implies that $N\left(\right.$ not B_{1}, \ldots, not $\left.B_{k}\right)=M\left(\right.$ not B_{1}, \ldots, not $\left.B_{k}\right)=T$. Therefore, $N\left(\mathcal{C}_{1} \times \cdots \times \mathcal{C}_{n}\right)<$ $N\left(A_{1}, \ldots, A_{m}\right)$. We distinguish cases based on the value of $N\left(A_{1}, \ldots, A_{m}\right)$:
Case 1: $N\left(A_{1}, \ldots, A_{m}\right)=F$. This case leads immediately to contradiction because N trivially satisfies R.
Case 2: $N\left(A_{1}, \ldots, A_{m}\right)>F$. Then, $N\left(A_{1}, \ldots, A_{m}\right)=M\left(A_{1}, \ldots, A_{m}\right)$. Since M is a model of P, it is $M\left(\mathcal{C}_{1} \times \cdots \times \mathcal{C}_{n}\right) \geq M\left(A_{1}, \ldots, A_{m}\right)>F$. This implies that there exists some $r, 1 \leq r \leq n$, such that $M\left(\mathcal{C}_{1}\right)=\cdots=M\left(\mathcal{C}_{r-1}\right)=F^{*}$ and $M\left(\mathcal{C}_{r}\right) \geq F^{*}$. By the definition of the reduct, the rule $\mathcal{C}_{r} \leftarrow A_{1}, \ldots, A_{m}$ exists in P_{\times}^{M}. Since N is a model of P_{\times}^{M}, we get that $N\left(\mathcal{C}_{r}\right)>F$. Moreover, N should also satisfy the rules $\mathcal{C}_{i} \leftarrow F^{*}, A_{1}, \ldots, A_{m}$ for $1 \leq i \leq r-1$. Since $N\left(\mathcal{C}_{i}\right) \leq M\left(\mathcal{C}_{i}\right)$ and $N\left(\mathcal{C}_{r}\right)=M\left(\mathcal{C}_{r}\right)$ we get $N\left(\mathcal{C}_{1}\right)=\cdots=$ $N\left(\mathcal{C}_{r-1}\right)=F^{*}$ and $N\left(\mathcal{C}_{r}\right)=M\left(\mathcal{C}_{r}\right)$. Therefore $N\left(\mathcal{C}_{1} \times \cdots \mathcal{C}_{n}\right)=M\left(\mathcal{C}_{1} \times \cdots \mathcal{C}_{n}\right)$ and $N\left(\mathcal{C}_{1} \times \cdots \mathcal{C}_{n}\right) \geq N\left(A_{1}, \ldots, A_{m}\right)$ (contradiction).

In the second case we construct the following interpretation N^{\prime} :

$$
N^{\prime}(A)= \begin{cases}T^{*}, & \text { if } M(A)=T \text { and } N(A) \in\left\{F, F^{*}\right\} \\ F^{*}, & \text { if } M(A)=F^{*} \\ N(A), & \text { otherwise }\end{cases}
$$

It is easy to see that $N^{\prime} \prec M$. We demonstrate that N^{\prime} is a model of P, which will lead to a contradiction (since we have assumed that M is \preceq-minimal).

Assume N^{\prime} is not a model of P. Then, there exists in P a rule R of the form:

$$
\mathcal{C}_{1} \times \cdots \times \mathcal{C}_{n} \leftarrow A_{1}, \ldots, A_{m}, \text { not } B_{1}, \ldots, \text { not } B_{k}
$$

such that $N^{\prime}\left(\mathcal{C}_{1} \times \cdots \times \mathcal{C}_{n}\right)<N^{\prime}\left(A_{1}, \ldots, A_{m}\right.$, not B_{1}, \ldots, not $\left.B_{k}\right)$. Notice that this implies that $N^{\prime}\left(\right.$ not B_{1}, \ldots, not $\left.B_{k}\right)=N\left(\right.$ not B_{1}, \ldots, not $\left.B_{k}\right)=M\left(\right.$ not $\left.B_{1}, \ldots, n o t B_{k}\right)=T$. Therefore, $N^{\prime}\left(\mathcal{C}_{1} \times \cdots \times \mathcal{C}_{n}\right)<N^{\prime}\left(A_{1}, \ldots, A_{m}\right)$. We distinguish cases based on the value of $N^{\prime}\left(A_{1}, \ldots, A_{m}\right)$:

Case 1: $N^{\prime}\left(A_{1}, \ldots, A_{m}\right)=F$. This case leads immediately to contradiction because N^{\prime} trivially satisfies R.
Case 2: $N^{\prime}\left(A_{1}, \ldots, A_{m}\right)=F^{*}$. Then, by the definition of $N^{\prime}, M\left(A_{1}, \ldots, A_{m}\right)=F^{*}$. Since M is a model of P, it is $M\left(\mathcal{C}_{1} \times \cdots \times \mathcal{C}_{n}\right) \geq F^{*}$. This implies that either $M\left(\mathcal{C}_{1}\right)=$ $\cdots=M\left(\mathcal{C}_{n}\right)=F^{*}$ or there exists $r \leq n$ such that $M\left(\mathcal{C}_{1}\right)=\cdots=M\left(\mathcal{C}_{r-1}\right)=F^{*}$ and $M\left(\mathcal{C}_{r}\right)=T$. By the definition of N^{\prime}, we get in both cases $N^{\prime}\left(\mathcal{C}_{1} \times \cdots \times \mathcal{C}_{n}\right) \geq F^{*}$ (contradiction).
Case 3: $N^{\prime}\left(A_{1}, \ldots, A_{m}\right)=T^{*}$. Then, by the definition of $N^{\prime}, M\left(A_{1}, \ldots, A_{m}\right)=T$. Since
M is a model of P, it is $M\left(\mathcal{C}_{1} \times \cdots \times \mathcal{C}_{n}\right)=T$. This implies that there exists some r, $1 \leq r \leq n$, such that $M\left(\mathcal{C}_{1}\right)=\cdots=M\left(\mathcal{C}_{r-1}\right)=F^{*}$ and $M\left(\mathcal{C}_{r}\right)=T$. By the definition of N^{\prime}, we get that $N^{\prime}\left(\mathcal{C}_{1} \times \cdots \times \mathcal{C}_{n}\right) \geq T^{*}$ (contradiction).
Case 4: $N^{\prime}\left(A_{1}, \ldots, A_{m}\right)=T$. Then, by the definition of $N^{\prime}, N\left(A_{1}, \ldots, A_{m}\right)=T$ and $M\left(A_{1}, \ldots, A_{m}\right)=T$. Since M is a model of P, it is $M\left(\mathcal{C}_{1} \times \cdots \times \mathcal{C}_{n}\right)=T$. This implies that there exists some $r, 1 \leq r \leq n$, such that $M\left(\mathcal{C}_{1}\right)=\cdots=M\left(\mathcal{C}_{r-1}\right)=F^{*}$ and $M\left(\mathcal{C}_{r}\right)=T$. By the definition of the reduct, the rule $\mathcal{C}_{r} \leftarrow A_{1}, \ldots, A_{m}$ exists in P_{\times}^{M}. Since N is a model of P_{\times}^{M}, we get that $N\left(\mathcal{C}_{r}\right)=T$. Thus, $N^{\prime}\left(\mathcal{C}_{1}\right)=\cdots=N^{\prime}\left(\mathcal{C}_{r-1}\right)=F^{*}$ and $N^{\prime}\left(\mathcal{C}_{r}\right)=T$, and therefore $N^{\prime}\left(\mathcal{C}_{1} \times \cdots \times \mathcal{C}_{n}\right)=T$ (contradiction).

References

Brewka, G., Niemelä, I., and Syrjänen, T. 2004. Logic programs with ordered disjunction. Comput. Intell. 20, 2, 335-357.

