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A Proofs of Section 5

Lemma 1
Let P be a consistent extended logic program. Then the three-valued answer sets of P
coincide with the standard answer sets of P .

Proof
By taking n = 1 in Definition 10, we get the standard definition of reduct for consistent
extended logic programs.

Lemma 2
Let P be an LPOD and let M be an answer set of P . Then, M is a model of P .

Proof
Consider any rule R in P of the form:

C1 × · · · × Cn ← A1, . . . , Am,not B1, . . . ,not Bk

If RM
× = ∅, then M(Bi) = T for some i, 1 ≤ i ≤ k. But then, the body of the rule R

evaluates to F under M , and therefore M satisfies R. Consider now the case where RM
×

is nonempty and consists of the following rules:

C1 ← F ∗, A1, . . . , Am

· · ·
Cr−1 ← F ∗, A1, . . . , Am

Cr ← A1, . . . , Am

We distinguish cases based on the value of M(A1, . . . , Am):

Case 1: M(A1, . . . , Am) = F . Then, for some i, M(Ai) = F . Then, rule R is trivially
satisfied by M .

Case 2: M(A1, . . . , Am) = F ∗. This implies that M(Cr) ≥ F ∗. We distinguish two
subcases. If r = n then M(C1 × · · · × Cn) = M(C1 × · · · × Cr) ≥ F ∗ because, by the
definition of PM

× it is M(C1) = · · · = M(Cr−1) = F ∗ and we also know that M(Cr) ≥ F ∗.
Thus, in this subcase M satisfies R. If r < n, then by the definition of PM

× , M(Cr) 6= F ∗;
however, we know that M(Cr) ≥ F ∗, and thus M(Cr) = T . Thus, in this subcase M also
satisfies R.

Case 3: M(A1, . . . , Am) = T . Then, for all i, M(Ai) = T . Since M is a model of PM
× , we

have M(Cr) = T . Moreover, by the definition of PM
× , M(C1) = · · · = M(Cr−1) = F ∗.

This implies that M(C1 × · · · × Cn) = T .
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Lemma 3
Let M be a model of an LPOD P . Then, M is a model of PM

× .

Proof
Consider any rule R in P of the form:

C1 × · · · × Cn ← A1, . . . , Am,not B1, . . . ,not Bk

and assume M satisfies R. If M(Bi) = T for some i, 1 ≤ i ≤ k, then no rule is created in
PM
× for R. Assume therefore that M(not B1, . . . ,not Bk) = T . By the definition of PM

×
the following rules have been added to PM

× :

C1 ← F ∗, A1, . . . , Am

· · ·
Cr−1 ← F ∗, A1, . . . , Am

Cr ← A1, . . . , Am

where r is the least index such that M(C1) = · · · = M(Cr−1) = F ∗ and either r = n
or M(Cr) 6= F ∗. Obviously, the first r − 1 rules above are satisfied by M . For the rule
Cr ← A1, . . . , Am we distinguish two cases based on the value of M(A1, . . . , Am). If
M(A1, . . . , Am) = F , then, the rule is trivially satisfied. If M(A1, . . . , Am) > F , then,
since rule R is satisfied by M and M(Cr) 6= F ∗, it has to be M(Cr) = T . Therefore, the
rule Cr ← A1, . . . , Am is satisfied by M .

Lemma 4
Every (three-valued) answer set M of an LPOD P , is a �-minimal model of P .

Proof
Assume there exists a model N of P with N �M . We will show that N is also a model
of PM

× . Since N � M , we also have N ≤ M . Since M is the ≤-least model of PM
× , we

will conclude that N = M .
Consider any rule R in P of the form:

C1 × · · · × Cn ← A1, . . . , Am,not B1, . . . ,not Bk

Assume that RM
× is nonempty. This means that there exists some r, 1 ≤ r ≤ n, such that

M(C1) = · · · = M(Cr−1) = F ∗ and either r = n or M(Cr) 6= F ∗. Then, RM
× consists of

the following rules:

C1 ← F ∗, A1, . . . , Am

· · ·
Cr−1 ← F ∗, A1, . . . , Am

Cr ← A1, . . . , Am

We show that N satisfies the above rules. We distinguish cases based on the value of
M(A1, . . . , Am):

Case 1: M(A1, . . . , Am) = F . Then, N(A1, . . . , Am) = F and the above rules are trivially
satisfied by N .

Case 2: M(A1, . . . , Am) = F ∗. Then, since N � M , it is N(A1, . . . , Am) ≤ F ∗. If
N(A1, . . . , Am) = F then N trivially satisfies all the above rules. Assume therefore that
N(A1, . . . , Am) = F ∗. Recall now that M(Ci) = F ∗ for all i, 1 ≤ i ≤ r − 1. Moreover, it
has to be M(Cr) ≥ F ∗, because otherwise M would not satisfy the rule R. Since N �M ,
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it can only be N(Ci) = F ∗ for all i, 1 ≤ i ≤ r− 1 and N(Cr) ≥ F ∗, because otherwise N
would not be a model of P . Therefore, N satisfies the given rules of PM

× .

Case 3: M(A1, . . . , Am) = T . Then, since N � M , it is either N(A1, . . . , Am) = F
or N(A1, . . . , Am) = T . If N(A1, . . . , Am) = F then N trivially satisfies all the above
rules. Assume therefore that N(A1, . . . , Am) = T . Recall now that M(Ci) = F ∗ for all
i, 1 ≤ i ≤ r − 1. Moreover, it has to be M(Cr) = T , because otherwise M would not
satisfy the rule R. Since N �M , it can only be N(Ci) = F ∗ for all i, 1 ≤ i ≤ r − 1 and
N(Cr) = T , because otherwise N would not be a model of P . Therefore, N satisfies the
given rules of PM

× .

In the proofs that follow, we will use the term Brewka-model to refer to that of
Definition 2 and Brewka-reduct to refer to that of Definition 3 (although, to be precise,
this definition of reduct was initially introduced in the paper by Brewka et al. (2004)).

In order to establish Lemmas 5 and 6 we first show the following three propositions.

Proposition A.1

Let P be an LPOD and let M be a three-valued model of P . Then, N = collapse(M) is
a Brewka-model of P .

Proof

Consider any rule R of P of the form

C1 × · · · × Cn ← A1, . . . , Am,not B1, . . . ,not Bk

If there exists Ai 6∈ N or there exists Bj ∈ N then then N trivially satisfies R. Assume
that {A1, . . . , Am} ⊆ N and {B1, . . . , Bk} ∩ N = ∅. By Definition 15 it follows that
M(A1, . . . , Am,not B1, . . . ,not Bk) = T . Since M is a three-valued model of P , it must
satisfy R and therefore M(C1 × · · · × Cn) = T . Then, there exists r ≤ n such that
M(Cr) = T and by Definition 15 we get that Cr ∈ N . Therefore, N satisfies rule R.

Proposition A.2

Let P be an LPOD and M be a Brewka-model of P . Then, M is also a model of the
Brewka-reduct PM

× .

Proof

Consider any rule R in P of the form:

C1 × · · · × Cn ← A1, . . . , Am,not B1, . . . ,not Bk

and assume M satisfies R. If there exists Bi ∈ M for some 1 ≤ i ≤ k, then no rule is
created in the Brewka-reduct for R. Moreover, if for all i ≤ n, Ci 6∈M then also no rule
is created in the Brewka-reduct. Assume therefore that {B1, . . . , Bk} ∩M = ∅ and there
exists r ≤ n such that Cr ∈ M and {C1, . . . , Cr−1} ∩M = ∅. By the definition of PM

×
the only rule added to PM

× because of R is Cr ← A1, . . . , Am. Since Cr ∈M the rule is
satisfied by M .

Proposition A.3

Let P be an LPOD and let M1,M2 be three-valued answer sets of P such that collapse(M1) =
collapse(M2). Then, M1 = M2.
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Proof
Assume, for the sake of contradiction, that M1 6= M2. We define:

M(A) =

{
M1(A) if M1(A) = M2(A)
F otherwise

It is M ≺ M1 and M ≺ M2. We claim that M is a model of P . This will lead to
contradiction because, by Lemma 4, M1 and M2 are �-minimal models of P .

Consider any rule R in P of the form:

C1 × · · · × Cn ← A1, . . . , Am,not B1, . . . ,not Bk

If M(Bi) = T for some i, 1 ≤ i ≤ k, then M satisfies the rule. Assume therefore that
M(Bi) 6= T for all i, 1 ≤ i ≤ k. We distinguish cases:

Case 1: M(A1, . . . , Am) = F . Then, obviously, M satisfies R.

Case 2: M(A1, . . . , Am) = F ∗. Then, M1(A1, . . . , Am) = F ∗ and M2(A1, . . . , Am) = F ∗.
Since, by Lemma 2, M1 and M2 are models of P it follows that M1(C1 × · · · ×Cn) ≥ F ∗

and M2(C1 × · · · × Cn) ≥ F ∗. First assume that M1(C1 × · · · × Cn) = T . This implies
that there exists 1 ≤ r ≤ n such that M1(Cr) = T and M1(Ci) = F ∗ for all 1 ≤ i < r.
Since, by assumption collapse(M1) = collapse(M2) it follows that M2(Cr) = T and
therefore M(Cr) = T . Moreover, it must be M2(Ci) = F ∗ for all i < r because we
have already established that M2(C1 × · · · × Cn) ≥ F ∗. Therefore, M(Ci) = F ∗ and
M(C1×· · ·×Cn) = T and M satisfies the rule. Now assume that M1(C1×· · ·×Cn) = F ∗.
It is easy to see that the only case is M1(Ci) = F ∗ for all 1 ≤ i ≤ n. Since M2 has the
same collapse with M1 it follows that M2(Ci) ≤ F ∗ and because M2(C1× · · ·×Cn) ≥ F ∗

it also follows that M2(Ci) = F ∗. By definition of M , M(Ci) = F ∗ for all 1 ≤ i ≤ n and
M(C1 × · · · × Cn) = F ∗.

Case 3: M(A1, . . . , Am) = T . Then, M1(A1, . . . , Am) = T and M2(A1, . . . , Am) = T
and therefore M1(C1 × · · · × Cn) = T and M2(C1 × · · · × Cn) = T . This implies that
there exists r such that M1(C1) = M2(C1) = F ∗, . . . ,M1(Cr−1) = M2(Cr−1) = F ∗, and
M1(Cr) = M2(Cr) = T . Therefore, M(C1) = · · · = M(Cr−1) = F ∗ and M(Cr) = T ,
which implies that M(C1 × · · · × Cn) = T , and therefore M satisfies R.

Lemma 5
Let P be an LPOD and M be a three-valued answer set of P . Then, collapse(M) is an
answer set of P according to Definition 4.

Proof
Since M is an answer set of P , then by Lemma 2, M is also a model of P . Moreover,
by Proposition A.1, N = collapse(M ) is a Brewka-model of P . It also follows from
Proposition A.2 that N is a model of the Brewka-reduct PN . It suffices to show that N
is also the minimum model of PN . Assume there exists N ′ that is a model of PN and
N ′ ⊂ N . We define M ′ as

M ′(A) =

{
F ∗ A ∈ N and A 6∈ N ′

M(A) otherwise

It is easy to see that M ′ < M . We will show that M ′ is also model of PM
× leading

to contradiction because we assume that M is the minimum model of PM
× . Consider

first a rule of the form Ci ← F ∗, A1, . . . , Am. Since M is an answer set of P it must be
M(Ci) = F ∗. By the definition of M ′ it follows that M ′(Ci) ≥ F ∗ and M ′ satisfies the
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rule. Now consider a rule of the form Cr ← A1, . . . , Am. We distinguish cases based on
the value of M(A1, . . . , Am).

Case 1: M(A1, . . . , Am) = F . Then, since M ′ < M it is M ′(A1, . . . , Am) = F and the
rule is trivially satisfied.

Case 2: M(A1, . . . , Am) = F ∗. Then, M(Ai) ≥ F ∗ and there exists Ai such that M(Ai) =
F ∗. It follows that Ai 6∈ N and therefore M ′(Ai) = M(Ai) = F ∗. Moreover, by the
construction of M ′, for all Ai we have M ′(Ai) ≥ F ∗ and therefore M ′(A1, . . . , Am) = F ∗.
Since M is a model of PM

× , M(Cr) ≥ F ∗. Again, by the construction of M ′ we have
M ′(Cr) ≥ F ∗ and the rule is satisfied.

Case 3: M(A1, . . . , Am) = T . By the construction of PM
× the rule Cr ← A1, . . . , Am is a

result of a rule in P of the form

C1 × · · · × Cr × · · · × Cn ← A1, . . . , Am,not B1, . . . ,not Bk

and it must be M(Ci) = F ∗ for all i ≤ r − 1 and M(Bj) ≤ F ∗ for all 1 ≤ j ≤ k. It
follows that {C1, . . . , Cr−1} ∩N = ∅ and {B1, . . . , Bk} ∩N = ∅. Moreover, since M is a
model of PM

× we get that M(Cr) = T and it follows that Cr ∈ N . By the construction
of the Brewka-reduct, there exists a rule Cr ← A1, . . . , Am in PN . We distinguish two
cases. If {A1, . . . , Am} ⊆ N ′ then Cr ∈ N ′ because N ′ is a model of PN . It follows by the
construction of M ′ that M ′(Cr) = M(Cr) = T and M ′ satisfies the rule. Otherwise, there
exists l, 1 ≤ l ≤ m such that Al 6∈ N ′. Notice also that {A1, . . . , Am} ⊆ N , so Al ∈ N .
Therefore, M ′(Al) = F ∗ and M ′(A1, . . . , Am) ≤ F ∗. Moreover, since Cr ∈ N , we have
M ′(Cr) ≥ F ∗ that satisfies the rule.

Lemma 6
Let N be an answer set of P according to Definition 4. There exists a unique three-valued
interpretation M such that N = collapse(M) and M is a three-valued answer set of P .

Proof
We construct iteratively a set of literals that must have the value F ∗ in M . Let Fn be
the sequence:

F0 = ∅
Fn+1 = {Cj |(C1 × · · · × Cn ← A1, . . . , Am,not B1, . . .not Bk) ∈ P

and {B1, . . . , Bk} ∩N = ∅
and {C1, . . . , Cj} ∩N = ∅
and {A1, . . . , Am} ⊆ N ∪ Fn}

Fω = ∪n<ωFn

We construct M as

M(A) =


F A 6∈ N and A 6∈ Fω

F ∗ A 6∈ N and A ∈ Fω

T A ∈ N

First we prove that M is a model of PM
× . Consider first any rule of the form Ci ←

F ∗, A1, . . . , Am. By the construction of PM
× , such a rule exists because M(Ci) = F ∗;

therefore M satisfies this rule. Now consider any rule of the form Cr ← A1, . . . , Am. Such
a rule was produced by a rule R in P of the form

C1 × · · · × Cr × · · · × Cn ← A1, . . . , An, . . . ,not B1, . . . ,not Bk.
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By the construction of PM
× it follows that M(Ci) = F ∗ for all i < r. Therefore Ci 6∈ N

and also Ci ∈ Fω for all i < r. Moreover, it must be M(Bj) ≤ F ∗ for all 1 ≤ j ≤ k, so
{B1, . . . , Bk} ∩N = ∅. We distinguish cases based on the value of M(A1, . . . , Am).

Case 1: If M(A1, . . . , Am) = F then the rule is trivially satisfied by M .

Case 2: If M(A1, . . . , Am) = F ∗ then for some Ai, M(Ai) = F ∗. By the construction of
M , it follows that Ai ∈ Fω. It follows by the definition of Fω that Cr ∈ Fω and therefore
M(Cr) ≥ F ∗.

Case 3: If M(A1, . . . , Am) = T then {A1, . . . , Am} ⊆ N and since N is an answer set
according to Definition 4 it follows that N is a model of P . It follows that there exists
a least j ≤ n such that Cj ∈ N . Since we have already established that for all i < r,
Ci 6∈ N it must be r ≤ j ≤ n. But, if r < j then Cr 6∈ N and by the construction of M it
must be M(Cr) = F ∗. If M(Cr) = F ∗, then, by the construction of PM

× , the rule for Cr

should be of the form Cr ← F ∗, A1, . . . , Am. So, it must j = r and Cr ∈ N . Therefore,
M(Cr) = T and M satisfies the rule.

Therefore, we have established that M is a model of PM
× . It remains to show that M is

the ≤-least model of PM
× . Assume now that there exists M ′ that is a model of PM

× and
M ′ < M . Let N ′ = collapse(M ′). We distinguish two cases.

Case 1: N ′ = N and thus M ′ differs from M only on some atoms Cr such that M ′(Cr) = F
and M(Cr) = F ∗. First, by the construction of M , if M(Cr) = F ∗ then Cr ∈ Fω. We
show by induction on n that for every Cr ∈ Fn, M ′(Cr) ≥ F ∗. This leads to contradiction
and therefore M is minimal.

Induction base: n = 0: the statement is satisfied vacuously.

Induction step: n = n0 + 1: Every atom Cr ∈ Fn0+1 must occur in a head of a rule in P .
such that {C1, . . . , Cr−1} ∩N = ∅ and therefore {C1, . . . , Cr} ⊆ Fn0+1. It follows then
that M(Ci) = F ∗ for 1 ≤ i ≤ r. By the construction of PM

× , for every atom Cr ∈ Fn0+1

there must be a rule in PM
× either of the form Cr ← F ∗, A1, . . . , Am or of the form

Cr ← A1, . . . , Am. Moreover, since Cr ∈ Fn0+1 it follows that {A1, . . . , Am} ⊆ N ∪ Fn0 .
Therefore, by the induction hypothesis, M(A1, . . . , Am) = M ′(A1, . . . , Am) ≥ F ∗. Since
M ′ is also a model of PM

× it must satisfy those rules thus M ′(Cr) ≥ F ∗.

Case 2: N ′ ⊂ N . We show that N ′ is a model of PN leading to contradiction because, by
definition, N is the minimum model of PN . Consider a rule R of the form Cr ← A1, . . . , Am

in PN . The rule R has been produced by a rule in P of the form:

C1 × · · · × Cr × · · · × Cn ← A1, . . . , Am,not B1, . . . ,not Bk

such that {C1, . . . , Cr−1} ∩N = ∅ and Cr ∈ N .

If there exists Ai 6∈ N then also Ai 6∈ N ′ and the rule is trivially satisfied by N ′.
Assume, on the other hand, that {A1, . . . , An} ⊆ N . It follows, by the definition of
M , that M(A1, . . . , Am) = T , M(Ci) = F ∗ for i < r and M(Cr) = T . Therefore,
there exist a rule in PM

× of the form Cr ← A1, . . . , Am. If M ′(A1, . . . , Am) = F or
M ′(A1, . . . , Am) = F ∗ then there exists Ai 6∈ N ′ and N ′ again satisfies the rule. If
M ′(A1, . . . , Am) = T then since M ′ is a model of PM

× it follows that M ′(Cr) = T . Since
N ′ is the collapse of M ′ it is {A1, . . . , Am} ⊆ N ′ and Cr ∈ N ′. Therefore, N ′ satisfies the
rule R in PN .

The uniqueness of M follows directly from Proposition A.3.
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B Proofs of Section 6

In order to establish Theorem 1, we show two lemmas (which essentially establish the
left-to-right and the right-to-left directions of the theorem, respectively).

Lemma B.1
Let P be an LPOD program and let M be an answer set of P . Then, M is a �-minimal
model of P and M is solid.

Proof
Since M is an answer set of P , then, by Lemma 2, M is a model of P . Moreover, M is solid
because our definition of answer sets does not involve the value T ∗. It remains to show that
it is minimal with respect to the � ordering. Assume, for the sake of contradiction, that
there exists a model N of P with N ≺M . By Lemma 4, M is (three-valued) �-minimal.
Therefore, N can not be solid. We first show that N can not be a model of the reduct
PM
× . Assume for the sake of contradiction that N is a model of PM

× . We construct the
following interpretation N ′:

N ′(A) =

{
F ∗, if N(A) = T ∗

N(A), otherwise

We claim that N ′ must also be a model of PM
× . Consider first a rule of the form

C ← F ∗, A1, . . . , Am. Since N is a model of PM
× , it is N(C) ≥ F ∗. By the definition of

N ′, it is N(C) ≥ F ∗ and therefore N ′ satisfies this rule. Consider now a rule of the form
C ← A1, . . . , Am in PM

× . We show that N ′ also satisfies this rule. We perform a case
analysis:

Case 1: N(A1, . . . , Am) = F . Then, N ′(A1, . . . , Am) = F and N ′ trivially satisfies the
rule.

Case 2: N(A1, . . . , Am) = F ∗. Then, N ′(A1, . . . , Am) = F ∗. Moreover, N(C) ≥ F ∗

because N is a model of PM
× . By the definition of N ′, it is N ′(C) ≥ F ∗, and therefore N ′

satisfies the rule.

Case 3: N(A1, . . . , Am) = T ∗. Then, N ′(A1, . . . , Am) = F ∗. Moreover, N(C) ≥ T ∗

because N is a model of PM
× . By the definition of N ′, it is N ′(C) ≥ F ∗, and therefore N ′

satisfies the rule.

Case 4: N(A1, . . . , Am) = T . Then, N ′(A1, . . . , Am) = T . Moreover, N(C) = T because
N is a model of PM

× . By the definition of N ′, it is N ′(C) = T , and therefore N ′ satisfies
the rule.

Therefore, N ′ must also be a model of PM
× . Moreover, by definition, N ′ is solid and

N ′ < M . This contradicts the fact that, by construction, M is the ≤-least model of PM
× .

In conclusion, N can not be a model of PM
× .

We now show that N can not be a model of P . As we showed above, N is not a model
of PM

× , and consequently there exists a rule in PM
× that is not satisfied by N . Such a rule

in PM
× must have resulted due to a rule R of the following form in P :

C1 × · · · × Cn ← A1, . . . , Am,not B1, . . . ,not Bk

According to the definition of PM
× , for all i, 1 ≤ i ≤ k, M(not Bi) = T , and since N ≺M ,

it is also N(not Bi) = T . Moreover, there exists some r ≤ n such that M(C1) = · · · =
M(Cr−1) = F ∗ and either r = n or M(Cr) 6= F ∗. Since N ≺ M , it is N(Ci) ≤ F ∗

for all i, 1 ≤ i ≤ r − 1. Consider now the rule that is not satisfied by N in PM
× . If it
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is of the form Ci ← F ∗, A1, . . . , Am, i, 1 ≤ i ≤ r − 1, then N(A1, . . . , Am) > F and
N(Ci) = F . This implies that N(C1× · · ·×Cn) = F and therefore N does not satisfy the
rule R. If the rule that is not satisfied by N in PM

× is of the form Cr ← A1, . . . , Am, then
N(Cr) < N(A1, . . . , Am) and therefore, since N(Ci) ≤ F ∗ for all i, 1 ≤ i ≤ r − 1, it is:

N(C1 × · · · × Cn) < N(A1, . . . , Am,not B1, . . . ,not Bk)

Thus, N is not a model of P .

Lemma B.2
Let P be an LPOD program and let M be a �-minimal model of P and M is solid. Then,
M is an answer set of P .

Proof
First observe that, by Lemma 3, M is also a model of PM

× . We demonstrate that M
is actually the ≤-least model of PM

× . Assume, for the sake of contradiction, that N
is the ≤-least model of PM

× . Then, N will differ from M in some atoms A such that
N(A) < M(A). We distinguish two cases. In the first case all the atoms A such that
N(A) < M(A) have M(A) ≤ F ∗. In the second case there exist at least one atom A such
that M(A) > F ∗.

In the first case it is easy to see that N ≺M . We demonstrate that N is also model of
P leading to contradiction since M is �-minimal. Assume that N is not a model of P .
Then, there exists in P a rule R of the form:

C1 × · · · × Cn ← A1, . . . , Am,not B1, . . . ,not Bk

such that N(C1×· · ·×Cn) < N ′(A1, . . . , Am,not B1, . . . ,not Bk). Notice that this implies
that N(not B1, . . . ,not Bk) = M(not B1, . . . ,not Bk) = T . Therefore, N(C1 × · · · × Cn) <
N(A1, . . . , Am). We distinguish cases based on the value of N(A1, . . . , Am):

Case 1: N(A1, . . . , Am) = F . This case leads immediately to contradiction because N
trivially satisfies R.

Case 2: N(A1, . . . , Am) > F . Then, N(A1, . . . , Am) = M(A1, . . . , Am). Since M is a
model of P , it is M(C1 × · · · × Cn) ≥ M(A1, . . . , Am) > F . This implies that there
exists some r, 1 ≤ r ≤ n, such that M(C1) = · · · = M(Cr−1) = F ∗ and M(Cr) ≥ F ∗.
By the definition of the reduct, the rule Cr ← A1, . . . , Am exists in PM

× . Since N is
a model of PM

× , we get that N(Cr) > F . Moreover, N should also satisfy the rules
Ci ← F ∗, A1, . . . , Am for 1 ≤ i ≤ r − 1. Since N(Ci) ≤ M(Ci) and N(Cr) = M(Cr) we
get N(C1) = · · · = N(Cr−1) = F ∗ and N(Cr) = M(Cr). Therefore N(C1 × · · ·Cn) =
M(C1 × · · ·Cn) and N(C1 × · · ·Cn) ≥ N(A1, . . . , Am) (contradiction).

In the second case we construct the following interpretation N ′:

N ′(A) =


T ∗, if M(A) = T and N(A) ∈ {F, F ∗}
F ∗, if M(A) = F ∗

N(A), otherwise

It is easy to see that N ′ ≺M . We demonstrate that N ′ is a model of P , which will lead
to a contradiction (since we have assumed that M is �-minimal).

Assume N ′ is not a model of P . Then, there exists in P a rule R of the form:

C1 × · · · × Cn ← A1, . . . , Am,not B1, . . . ,not Bk

such that N ′(C1×· · ·×Cn) < N ′(A1, . . . , Am,not B1, . . . ,not Bk). Notice that this implies
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that N ′(not B1, . . . ,not Bk) = N(not B1, . . . ,not Bk) = M(not B1, . . . ,not Bk) = T .
Therefore, N ′(C1 × · · · × Cn) < N ′(A1, . . . , Am). We distinguish cases based on the
value of N ′(A1, . . . , Am): Case 1: N ′(A1, . . . , Am) = F . This case leads immediately to

contradiction because N ′ trivially satisfies R.

Case 2: N ′(A1, . . . , Am) = F ∗. Then, by the definition of N ′, M(A1, . . . , Am) = F ∗. Since
M is a model of P , it is M(C1 × · · · × Cn) ≥ F ∗. This implies that either M(C1) =
· · · = M(Cn) = F ∗ or there exists r ≤ n such that M(C1) = · · · = M(Cr−1) = F ∗

and M(Cr) = T . By the definition of N ′, we get in both cases N ′(C1 × · · · × Cn) ≥ F ∗

(contradiction).

Case 3: N ′(A1, . . . , Am) = T ∗. Then, by the definition of N ′, M(A1, . . . , Am) = T . Since
M is a model of P , it is M(C1 × · · · × Cn) = T . This implies that there exists some r,
1 ≤ r ≤ n, such that M(C1) = · · · = M(Cr−1) = F ∗ and M(Cr) = T . By the definition
of N ′, we get that N ′(C1 × · · · × Cn) ≥ T ∗ (contradiction).

Case 4: N ′(A1, . . . , Am) = T . Then, by the definition of N ′, N(A1, . . . , Am) = T and
M(A1, . . . , Am) = T . Since M is a model of P , it is M(C1 × · · · × Cn) = T . This implies
that there exists some r, 1 ≤ r ≤ n, such that M(C1) = · · · = M(Cr−1) = F ∗ and
M(Cr) = T . By the definition of the reduct, the rule Cr ← A1, . . . , Am exists in PM

× .
Since N is a model of PM

× , we get that N(Cr) = T . Thus, N ′(C1) = · · · = N ′(Cr−1) = F ∗

and N ′(Cr) = T , and therefore N ′(C1 × · · · × Cn) = T (contradiction).

Theorem 1

Let P be an LPOD. Then, M is a three-valued answer set of P iff M is a consistent
�-minimal model of P and M is solid.

Proof

Immediate from Lemma B.1 and Lemma B.2.

C Proofs of Section 7

Lemma 7

Let P be a consistent disjunctive extended logic program. Then, the answer sets of P
according to Definition 20, coincide with the standard answer sets of P .

Proof

By taking n = 1 in Definition 19, we get the standard definition of reduct for consistent
disjunctive extended logic programs.

Lemma 8

Let P be a DLPOD program and let M be an answer set of P . Then, M is a model of P .

Proof

Consider any rule R in P of the form:

C1 × · · · × Cn ← A1, . . . , Am,not B1, . . . ,not Bk

If RM
× = ∅, then M(Bi) = T for some i, 1 ≤ i ≤ k. But then, the body of the rule R



10 A. Charalambidis, P. Rondogiannis and A. Troumpoukis

evaluates to F under M , and therefore M satisfies R. Consider now the case where RM
×

is nonempty and consists of the following rules:

C1 ← F ∗, A1, . . . , Am

· · ·
Cr−1 ← F ∗, A1, . . . , Am

Cr ← A1, . . . , Am

We distinguish cases based on the value of M(A1, . . . , Am):

Case 1: M(A1, . . . , Am) = F . Then, for some i, M(Ai) = F . Then, rule R is trivially
satisfied by M .

Case 2:M(A1, . . . , Am) = F ∗. This implies that M(Cr) ≥ F ∗. We distinguish two subcases.
If r = n then M(C1×· · ·×Cn) = M(C1×· · ·×Cr) ≥ F ∗ because, by the definition of PM

×
it is M(C1) = · · · = M(Cr−1) = F ∗ and we also know that M(Cr) ≥ F ∗. Thus, in this
subcase M satisfies R. If r < n, then by the definition of PM

× , M(Cr) 6= F ∗; however, we
know that M(Cr) ≥ F ∗, and thus M(Cr) = T . Thus, in this subcase M also satisfies R.

Case 3: M(A1, . . . , Am) = T . Then, for all i, M(Ai) = T . Since M is a model of PM
× , we

have M(Cr) = T . Moreover, by the definition of PM
× , M(C1) = · · · = M(Cr−1) = F ∗. This

implies that M(C1 × · · · × Cn) = T .

Lemma 9

Let M be a model of a DLPOD P . Then, M is a model of PM
× .

Proof

Consider any rule R in P of the form:

C1 × · · · × Cn ← A1, . . . , Am,not B1, . . . ,not Bk

and assume M satisfies R. If M(Bi) = T for some i, 1 ≤ i ≤ k, then no rule is created in
PM
× for R. Assume therefore that M(not B1, . . . ,not Bk) = T . By the definition of PM

×
the following rules have been added to PM

× :

C1 ← F ∗, A1, . . . , Am

· · ·
Cr−1 ← F ∗, A1, . . . , Am

Cr ← A1, . . . , Am

where r is the least index such that M(C1) = · · · = M(Cr−1) = F ∗ and either r = n
or M(Cr) 6= F ∗. Obviously, the first r − 1 rules above are satisfied by M . For the rule
Cr ← A1, . . . , Am we distinguish two cases based on the value of M(A1, . . . , Am). If
M(A1, . . . , Am) = F , then, the rule is trivially satisfied. If M(A1, . . . , Am) > F , then,
since rule R is satisfied by M and M(Cr) 6= F ∗, it has to be M(Cr) = T . Therefore, the
rule Cr ← A1, . . . , Am is satisfied by M .

Lemma 10

Every answer set M of a DLPOD P , is a �-minimal model of P .
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Proof
Assume there exists a model N of P with N �M . We will show that N is also a model
of PM

× . Since N � M , we also have N ≤ M . Since M is the ≤-least model of PM
× , we

will conclude that N = M .
Consider any rule R in P of the form:

C1 × · · · × Cn ← A1, . . . , Am,not B1, . . . ,not Bk

Assume that RM
× is nonempty. This means that there exists some r, 1 ≤ r ≤ n, such that

M(C1) = · · · = M(Cr−1) = F ∗ and either r = n or M(Cr) 6= F ∗. Then, RM
× consists of

the following rules:

C1 ← F ∗, A1, . . . , Am

· · ·
Cr−1 ← F ∗, A1, . . . , Am

Cr ← A1, . . . , Am

We show that N satisfies the above rules. We distinguish cases based on the value of
M(A1, . . . , Am):

Case 1: M(A1, . . . , Am) = F . Then, N(A1, . . . , Am) = F and the above rules are trivially
satisfied by N .

Case 2: M(A1, . . . , Am) = F ∗. Then, since N � M , it is N(A1, . . . , Am) ≤ F ∗. If
N(A1, . . . , Am) = F then N trivially satisfies all the above rules. Assume therefore that
N(A1, . . . , Am) = F ∗. Recall now that M(Ci) = F ∗ for all i, 1 ≤ i ≤ r − 1. Moreover, it
has to be M(Cr) ≥ F ∗, because otherwise M would not satisfy the rule R. Since N �M ,
it can only be N(Ci) = F ∗ for all i, 1 ≤ i ≤ r − 1 and N(Cr) ≥ F ∗, because otherwise N
would not be a model of P . Therefore, N satisfies the given rules of PM

× .

Case 3: M(A1, . . . , Am) = T . Then, since N � M , it is either N(A1, . . . , Am) = F
or N(A1, . . . , Am) = T . If N(A1, . . . , Am) = F then N trivially satisfies all the above
rules. Assume therefore that N(A1, . . . , Am) = T . Recall now that M(Ci) = F ∗ for all
i, 1 ≤ i ≤ r − 1. Moreover, it has to be M(Cr) = T , because otherwise M would not
satisfy the rule R. Since N �M , it can only be N(Ci) = F ∗ for all i, 1 ≤ i ≤ r − 1 and
N(Cr) = T , because otherwise N would not be a model of P . Therefore, N satisfies the
given rules of PM

× .

Theorem 2
Let P be a DLPOD. Then, M is an answer set of P iff M is a consistent �-minimal
model of P and M is solid.

The proof of the above theorem follows directly by the following two lemmas.

Lemma C.1
Let P be an DLPOD and let M be an answer set of P . Then, M is a consistent �-minimal
model of P and M is solid.

Proof
Since M is an answer set of P , then, by Lemma 8, M is a model of P . Moreover, M is solid
because our definition of answer sets does not involve the value T ∗. It remains to show
that it is minimal with respect to the � ordering. Assume, for the sake of contradiction,
that there exists a model N of P with N ≺ M . By Lemma 10, M is (three-valued)
�-minimal. Therefore, N can not be solid. We first show that N can not be a model
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of the reduct PM
× . Assume for the sake of contradiction that N is a model of PM

× . We
construct the following interpretation N ′:

N ′(A) =

{
F ∗, if N(A) = T ∗

N(A), otherwise

We claim that N ′ must also be a model of PM
× . Consider first a rule of the form

C ← F ∗, A1, . . . , Am. Since N is a model of PM
× , it is N(C) ≥ F ∗. By the definition of

N ′, it is N(C) ≥ F ∗ and therefore N ′ satisfies this rule. Consider now a rule of the form
C ← A1, . . . , Am in PM

× . We show that N ′ also satisfies this rule. We perform a case
analysis:

Case 1: N(A1, . . . , Am) = F . Then, N ′(A1, . . . , Am) = F and N ′ trivially satisfies the
rule.

Case 2: N(A1, . . . , Am) = F ∗. Then, N ′(A1, . . . , Am) = F ∗. Moreover, N(C) ≥ F ∗

because N is a model of PM
× . By the definition of N ′, it is N ′(C) ≥ F ∗, and therefore N ′

satisfies the rule.

Case 3: N(A1, . . . , Am) = T ∗. Then, N ′(A1, . . . , Am) = F ∗. Moreover, N(C) ≥ T ∗ because
N is a model of PM

× . By the definition of N ′, it is N ′(C) ≥ F ∗, and therefore N ′ satisfies
the rule.

Case 4: N(A1, . . . , Am) = T . Then, N ′(A1, . . . , Am) = T . Moreover, N(C) = T because
N is a model of PM

× . By the definition of N ′, it is N ′(C) = T , and therefore N ′ satisfies
the rule.

Therefore, N ′ must also be a model of PM
× . Moreover, by definition, N ′ is solid and

N ′ < M . This contradicts the fact that, by construction, M is the ≤-least model of PM
× .

In conclusion, N can not be a model of PM
× .

We now show that N can not be a model of P . As we showed above, N is not a model
of PM

× , and consequently there exists a rule in PM
× that is not satisfied by N . Such a rule

in PM
× must have resulted due to a rule R of the following form in P :

C1 × · · · × Cn ← A1, . . . , Am,not B1, . . . ,not Bk

According to the definition of PM
× , for all i, 1 ≤ i ≤ k, M(not Bi) = T , and since N ≺M ,

it is also N(not Bi) = T . Moreover, there exists some r ≤ n such that M(C1) = · · · =
M(Cr−1) = F ∗ and either r = n or M(Cr) 6= F ∗. Since N ≺ M , it is N(Ci) ≤ F ∗

for all i, 1 ≤ i ≤ r − 1. Consider now the rule that is not satisfied by N in PM
× . If it

is of the form Ci ← F ∗, A1, . . . , Am, i, 1 ≤ i ≤ r − 1, then N(A1, . . . , Am) > F and
N(Ci) = F . This implies that N(C1 × · · · × Cn) = F and therefore N does not satisfy the
rule R. If the rule that is not satisfied by N in PM

× is of the form Cr ← A1, . . . , Am, then
N(Cr) < N(A1, . . . , Am) and therefore, since N(Ci) ≤ F ∗ for all i, 1 ≤ i ≤ r − 1, it is:

N(C1 × · · · × Cn) < N(A1, . . . , Am,not B1, . . . ,not Bk)

Thus, N is not a model of P .

Lemma C.2

Let P be an DLPOD and let M be a consistent �-minimal model of P and M is solid.
Then, M is an answer set of P .
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Proof
First observe that, by Lemma 9, M is also a model of PM

× . We demonstrate that M
is actually the ≤-least model of PM

× . Assume, for the sake of contradiction, that N
is the ≤-least model of PM

× . Then, N will differ from M in some atoms A such that
N(A) < M(A). We distinguish two cases. In the first case all the atoms A such that
N(A) < M(A) have M(A) ≤ F ∗. In the second case there exist at least one atom A such
that M(A) > F ∗.

In the first case it is easy to see that N ≺M . We demonstrate that N is also model of
P leading to contradiction since M is �-minimal. Assume that N is not a model of P .
Then, there exists in P a rule R of the form:

C1 × · · · × Cn ← A1, . . . , Am,not B1, . . . ,not Bk

such that N(C1×· · ·×Cn) < N ′(A1, . . . , Am,not B1, . . . ,not Bk). Notice that this implies
that N(not B1, . . . ,not Bk) = M(not B1, . . . ,not Bk) = T . Therefore, N(C1× · · ·×Cn) <
N(A1, . . . , Am). We distinguish cases based on the value of N(A1, . . . , Am):

Case 1: N(A1, . . . , Am) = F . This case leads immediately to contradiction because N
trivially satisfies R.

Case 2: N(A1, . . . , Am) > F . Then, N(A1, . . . , Am) = M(A1, . . . , Am). Since M is a
model of P , it is M(C1 × · · · × Cn) ≥M(A1, . . . , Am) > F . This implies that there exists
some r, 1 ≤ r ≤ n, such that M(C1) = · · · = M(Cr−1) = F ∗ and M(Cr) ≥ F ∗. By the
definition of the reduct, the rule Cr ← A1, . . . , Am exists in PM

× . Since N is a model of PM
× ,

we get that N(Cr) > F . Moreover, N should also satisfy the rules Ci ← F ∗, A1, . . . , Am

for 1 ≤ i ≤ r − 1. Since N(Ci) ≤ M(Ci) and N(Cr) = M(Cr) we get N(C1) = · · · =
N(Cr−1) = F ∗ and N(Cr) = M(Cr). Therefore N(C1 × · · · Cn) = M(C1 × · · · Cn) and
N(C1 × · · · Cn) ≥ N(A1, . . . , Am) (contradiction).

In the second case we construct the following interpretation N ′:

N ′(A) =


T ∗, if M(A) = T and N(A) ∈ {F, F ∗}
F ∗, if M(A) = F ∗

N(A), otherwise

It is easy to see that N ′ ≺M . We demonstrate that N ′ is a model of P , which will lead
to a contradiction (since we have assumed that M is �-minimal).

Assume N ′ is not a model of P . Then, there exists in P a rule R of the form:

C1 × · · · × Cn ← A1, . . . , Am,not B1, . . . ,not Bk

such that N ′(C1×· · ·×Cn) < N ′(A1, . . . , Am,not B1, . . . ,not Bk). Notice that this implies
that N ′(not B1, . . . ,not Bk) = N(not B1, . . . ,not Bk) = M(not B1, . . . ,not Bk) = T .
Therefore, N ′(C1 × · · · × Cn) < N ′(A1, . . . , Am). We distinguish cases based on the value
of N ′(A1, . . . , Am):

Case 1: N ′(A1, . . . , Am) = F . This case leads immediately to contradiction because N ′

trivially satisfies R.

Case 2: N ′(A1, . . . , Am) = F ∗. Then, by the definition of N ′, M(A1, . . . , Am) = F ∗. Since
M is a model of P , it is M(C1 × · · · × Cn) ≥ F ∗. This implies that either M(C1) =
· · · = M(Cn) = F ∗ or there exists r ≤ n such that M(C1) = · · · = M(Cr−1) = F ∗

and M(Cr) = T . By the definition of N ′, we get in both cases N ′(C1 × · · · × Cn) ≥ F ∗

(contradiction).

Case 3: N ′(A1, . . . , Am) = T ∗. Then, by the definition of N ′, M(A1, . . . , Am) = T . Since
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M is a model of P , it is M(C1 × · · · × Cn) = T . This implies that there exists some r,
1 ≤ r ≤ n, such that M(C1) = · · · = M(Cr−1) = F ∗ and M(Cr) = T . By the definition of
N ′, we get that N ′(C1 × · · · × Cn) ≥ T ∗ (contradiction).

Case 4: N ′(A1, . . . , Am) = T . Then, by the definition of N ′, N(A1, . . . , Am) = T and
M(A1, . . . , Am) = T . Since M is a model of P , it is M(C1 × · · · × Cn) = T . This implies
that there exists some r, 1 ≤ r ≤ n, such that M(C1) = · · · = M(Cr−1) = F ∗ and
M(Cr) = T . By the definition of the reduct, the rule Cr ← A1, . . . , Am exists in PM

× .
Since N is a model of PM

× , we get that N(Cr) = T . Thus, N ′(C1) = · · · = N ′(Cr−1) = F ∗

and N ′(Cr) = T , and therefore N ′(C1 × · · · × Cn) = T (contradiction).
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