Online appendix for the paper On Signings and the Well-Founded Semantics

published in Theory and Practice of Logic Programming

Michael J. Maher

Reasoning Research Institute Canberra, Australia (e-mail: michael.maher@reasoning.org.au)

submitted ; revised ; accepted

Re-proofs

This appendix contains proofs of minor variations of theorems in (Kunen 1989), (Dung 1992), and (Turner 1993). This is just a bonus; the results of this paper do not depend on these results. The statements of the theorems now allow a floor, which is not signed, and have other small variations.

The following theorem is a minor variation of a theorem (Theorem 3.3) that was stated in (Kunen 1989) without proof.

Theorem 8 (Kunen 1989)

Let P be a logic program, $\mathcal{P} \subseteq \Pi$ be a downward-closed set of predicates with floor \mathcal{F} , let \mathcal{Q} be $\mathcal{P} \setminus \mathcal{F}$, and s be a signing on \mathcal{Q} for P. Let I be a fixed two-valued semantics for \mathcal{F} and let A be a 3-valued model of Clark's completion P^* extending I. Then there is a two-valued model A' of P^* that extends A.

Specifically, A' can be defined as follows:

 $\begin{array}{ll} \text{If } s(p) = +1 \text{ then } p(\vec{a}) \in A' \text{ iff } not \ p(\vec{a}) \notin A \\ \text{If } s(p) = -1 \text{ then } not \ p(\vec{a}) \in A' \text{ iff } p(\vec{a}) \notin A \end{array}$

Proof

We need to establish that A' is a model of P^* , Clark's completion of P. Consider ground(P), where the rules of P are grounded by the elements of A, and the corresponding completion $ground(P)^*$, which might involve infinite disjunctions. We will refer to the elements of $ground(P)^*$ of the form $a \leftrightarrow \bigvee_{i \in I} B_i$ as defs.

For each ground atom a, consider all ground rules with a as head, and the corresponding def. If A(a) =**true** then the body of some rule evaluates to **true** in A. If A(a) =**false** then in each rule, some literal evaluates to **false** in A. In both cases, the def for a is also satisfied by A'.

If A(a) = unknown then no rule body evaluates to true and some rule body B evaluates to unknown (that is, no body literal evaluates to false and at least one literal evaluates to unknown) in A. Suppose s(a) = +1. Then A'(a) = true, from the definition of A'. If an atom $b \in B$ evaluates to unknown in A then, because s(b) = +1, A'(b) = true. If not $c \in B$ evaluates to unknown in A then, because s(c) = -1, A'(c) = false. As a result, A'(B) = true. Now suppose s(a) = -1. Then A'(a) = false. If an atom $b \in B$ evaluates to unknown in A then, because s(b) = -1, A'(b) = false. If not $c \in B$ evaluates to unknown in A then, because s(c) = +1, A'(c) =true. As a result, A'(B) = false. In both cases, the def for a is satisfied by A'. \Box

When I is not already a 2-valued model of P^* , we can get a second 2-valued model by using \bar{s} , instead of s. This is similar to Turner's extension of a well-founded model to a stable model, below, where \bar{s} provides a second stable model, provided the well-founded model is not stable itself.

To present Turner's theorem, we need to define stable models. Let P be a ground logic program and I be a 2-valued interpretation. Then the Gelfond-Lifschitz reduct of P wrt I, denoted by P^{I} , is obtained by deleting from P those rules with a negative literal that evaluates to false in I, and deleting those negative literals that evaluate to true in I from the remaining rules. A stable model is a 2-valued interpretation S such that the least model of P^{S} is S (Gelfond and Lifschitz 1988).

The proof of Theorem 2 of (Turner 1993) is very compact and in a notation I am not familiar with. The following proof of a variation of that theorem is also brief, and is more intuitive to me.

Theorem 9 (Turner 1993)

Let P be a logic program, $\mathcal{P} \subseteq \Pi$ be a downward-closed set of predicates with floor \mathcal{F} , let \mathcal{Q} be $\mathcal{P} \setminus \mathcal{F}$, and s be a signing on \mathcal{Q} for P. Let I be a fixed stable model for \mathcal{F} and let W be the well-founded model of P extending I. Then there is a stable model S of P that extends W. Specifically, S can be defined as follows:

If s(p) = +1 then $p(\vec{a}) \in S$ iff not $p(\vec{a}) \notin W$ If s(p) = -1 then not $p(\vec{a}) \in S$ iff $p(\vec{a}) \notin W$

Proof

We need to prove that S is a stable model. W is a 3-valued model of P^* (Van Gelder et al. 1991) so, by Theorem 8, S is a 2-valued model of P^* and, hence, also a model of P.

We use a characterization of stable models established in Theorem 2.5 of (Dung 1992). A model S of P is stable iff for all A, if A is unfounded wrt S then $A \cap S = \emptyset$.

We first prove by induction on the Kleene sequence that no atom $a \in W$ is in an unfounded set wrt S. If $a \in W \uparrow (\beta + 1)$ then there is a rule a := B in ground(P) such that B evaluates to true in $W \uparrow \beta$. By the induction hypothesis, every atom $b \in B$ is not in an unfounded set wrt S. Hence, a is not in an unfounded set wrt S, since B is neither false in S nor does B contain an atom from an unfounded set wrt S. If $a \in W \uparrow \alpha$, for limit ordinal α , then $a \in W \uparrow \beta$ for some $\beta < \alpha$ and, by the induction hypothesis, a is not in an unfounded set wrt S. Hence, if A is unfounded wrt S, then $A \subseteq S \setminus W$.

Let A be unfounded wrt S. Then, for any $a \in A$, $a \in S \setminus W$ and, by the definition of S, s(a) = +1. Furthermore, for any rule a := B for a, if $b \in B$ then s(b) = +1 and if not $b \in B$ then s(b) = -1. Thus, for any $a \in A$ and rule a := B, if B evaluates to false in S then, from the definition of S, B evaluates to false in W. (If $b \in B$ is false in S and s(b) = +1, then not $b \in W$; if not $b \in B$ is false in S s(b) = -1, then $b \in W$.) It follows that A is unfounded wrt W. Consequently, not $a \in W$, which contradicts $a \in S$. Hence, $A = \emptyset$.

Thus, by the characterization above, S is stable. \Box

As observed above, a second stable model can be obtained by using \bar{s} , if W is not stable. Along similar lines, but not using signings, (Gire 1992; Gire 1994) showed that, supposing P is order-consistent, if W is not stable then P has at least two stable models. (P is order-consistent (Fages 1994) if \leq_{\pm} is well-founded, where $p \leq_{\pm} q$ iff $p \leq_{\pm 1} q$ and $p \leq_{-1} q$.) Using the construction in the previous theorem, based on Dung's characterization of stable models (Dung 1992), we can give a shorter and more direct proof of a variant of Theorem 5.11 of (Dung 1992) than in that paper. The proof still uses the same idea as Dung. The statement of this theorem uses a signing, rather than strictness in (Dung 1992), but these two concepts are very closely related (see Section 2.1 of the paper).

The *sceptical stable semantics* extending an interpretation I is the set of all literals true in every stable model extending I.

Theorem 10 (Dung 1992)

Let P be a logic program, $\mathcal{P} \subseteq \Pi$ be a downward-closed set of predicates with floor \mathcal{F} , and let \mathcal{Q} be $\Pi \setminus \mathcal{F}$. Let I be a fixed stable model for \mathcal{F} . Let W be the well-founded model of P extending I, and T be the sceptical stable semantics of P extending I.

If \mathcal{Q} has a signing for P then T = W.

Proof

Every stable model extends the well-founded model, so $W \subseteq T$. Suppose, to obtain a contradiction, Q has a signing s for P and there is a literal L in $T \setminus W$. Let the predicate of L be p. Since the semantics of \mathcal{F} is common to T and W, $p \notin \mathcal{F}$.

By Theorem 9, there is a stable model S extending I of P corresponding to s, and another S' corresponding to \bar{s} . Since $L \notin W$, by the construction in that theorem either $L \notin S$ or $L \notin S'$. But this contradicts the original supposition that L appears in every stable model. Thus, there is no such L and, hence, T = W. \Box

References

- DUNG, P. M. 1992. On the relations between stable and well-founded semantics of logic programs. *Theor. Comput. Sci.* 105, 1, 7–25.
- FAGES, F. 1994. Consistency of Clark's completion and existence of stable models. *Meth. of Logic in* CS 1, 1, 51–60.
- GELFOND, M. AND LIFSCHITZ, V. 1988. The stable model semantics for logic programming. In *Proc. JICSLP*. 1070–1080.
- GIRE, F. 1992. Well founded semantics and stable semantics of semi-strict programs. In *Database Theory* - *ICDT'92, 4th International Conference, Berlin, Germany, October 14-16, 1992, Proceedings*, J. Biskup and R. Hull, Eds. Lecture Notes in Computer Science, vol. 646. Springer, 261–275.
- GIRE, F. 1994. Equivalence of well-founded and stable semantics. J. Log. Program. 21, 2, 95-111.
- KUNEN, K. 1989. Signed data dependencies in logic programs. J. Log. Program. 7, 3, 231-245.
- TURNER, H. 1993. A monotonicity theorem for extended logic programs. In Proc. of the Tenth Int. Conf. on Logic Programming. 567–585.
- VAN GELDER, A., ROSS, K. A., AND SCHLIPF, J. S. 1991. The well-founded semantics for general logic programs. J. ACM 38, 3, 620–650.