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Re-proofs

This appendix contains proofs of minor variations of theorems in (Kunen 1989), (Dung 1992),
and (Turner 1993). This is just a bonus; the results of this paper do not depend on these results.
The statements of the theorems now allow a floor, which is not signed, and have other small
variations.

The following theorem is a minor variation of a theorem (Theorem 3.3) that was stated in
(Kunen 1989) without proof.

Theorem 8 (Kunen 1989)
Let P be a logic program, P ⊆ Π be a downward-closed set of predicates with floor F , let Q be
P\F , and s be a signing onQ for P . Let I be a fixed two-valued semantics for F and let A be a
3-valued model of Clark’s completion P ∗ extending I . Then there is a two-valued model A′ of
P ∗ that extends A.
Specifically, A′ can be defined as follows:

If s(p) = +1 then p(~a) ∈ A′ iff not p(~a) /∈ A
If s(p) = −1 then not p(~a) ∈ A′ iff p(~a) /∈ A

Proof
We need to establish that A′ is a model of P ∗, Clark’s completion of P . Consider ground(P ),
where the rules of P are grounded by the elements of A, and the corresponding completion
ground(P )∗, which might involve infinite disjunctions. We will refer to the elements of ground(P )∗

of the form a↔ ∨i∈IBi as defs.
For each ground atom a, consider all ground rules with a as head, and the corresponding def.

If A(a) = true then the body of some rule evaluates to true in A. If A(a) = false then in each
rule, some literal evaluates to false in A. In both cases, the def for a is also satisfied by A′.

If A(a) = unknown then no rule body evaluates to true and some rule body B evaluates
to unknown (that is, no body literal evaluates to false and at least one literal evaluates to
unknown) in A. Suppose s(a) = +1. Then A′(a) = true, from the definition of A′. If
an atom b ∈ B evaluates to unknown in A then, because s(b) = +1, A′(b) = true. If
not c ∈ B evaluates to unknown in A then, because s(c) = −1, A′(c) = false. As a result,
A′(B) = true. Now suppose s(a) = −1. Then A′(a) = false. If an atom b ∈ B evaluates to
unknown in A then, because s(b) = −1, A′(b) = false. If not c ∈ B evaluates to unknown
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in A then, because s(c) = +1, A′(c) = true. As a result, A′(B) = false. In both cases, the def
for a is satisfied by A′.

When I is not already a 2-valued model of P ∗, we can get a second 2-valued model by using
s̄, instead of s. This is similar to Turner’s extension of a well-founded model to a stable model,
below, where s̄ provides a second stable model, provided the well-founded model is not stable
itself.

To present Turner’s theorem, we need to define stable models. Let P be a ground logic program
and I be a 2-valued interpretation. Then the Gelfond-Lifschitz reduct of P wrt I , denoted by P I ,
is obtained by deleting from P those rules with a negative literal that evaluates to false in I ,
and deleting those negative literals that evaluate to true in I from the remaining rules. A stable
model is a 2-valued interpretation S such that the least model of PS is S (Gelfond and Lifschitz
1988).

The proof of Theorem 2 of (Turner 1993) is very compact and in a notation I am not familiar
with. The following proof of a variation of that theorem is also brief, and is more intuitive to me.

Theorem 9 (Turner 1993)
Let P be a logic program, P ⊆ Π be a downward-closed set of predicates with floor F , let Q
be P\F , and s be a signing on Q for P . Let I be a fixed stable model for F and let W be the
well-founded model of P extending I . Then there is a stable model S of P that extends W .
Specifically, S can be defined as follows:

If s(p) = +1 then p(~a) ∈ S iff not p(~a) /∈W
If s(p) = −1 then not p(~a) ∈ S iff p(~a) /∈W

Proof
We need to prove that S is a stable model. W is a 3-valued model of P ∗ (Van Gelder et al. 1991)
so, by Theorem 8, S is a 2-valued model of P ∗ and, hence, also a model of P .

We use a characterization of stable models established in Theorem 2.5 of (Dung 1992). A
model S of P is stable iff for all A, if A is unfounded wrt S then A ∩ S = ∅.

We first prove by induction on the Kleene sequence that no atom a ∈ W is in an unfounded
set wrt S. If a ∈ W ↑ (β + 1) then there is a rule a :- B in ground(P ) such that B evaluates to
true inW ↑ β. By the induction hypothesis, every atom b ∈ B is not in an unfounded set wrt
S. Hence, a is not in an unfounded set wrt S, since B is neither false in S nor does B contain
an atom from an unfounded set wrt S. If a ∈ W ↑ α, for limit ordinal α, then a ∈ W ↑ β for
some β < α and, by the induction hypothesis, a is not in an unfounded set wrt S. Hence, if A is
unfounded wrt S, then A ⊆ S\W .

Let A be unfounded wrt S. Then, for any a ∈ A, a ∈ S\W and, by the definition of S,
s(a) = +1. Furthermore, for any rule a :- B for a, if b ∈ B then s(b) = +1 and if not b ∈ B
then s(b) = −1. Thus, for any a ∈ A and rule a :- B, if B evaluates to false in S then, from
the definition of S, B evaluates to false in W . (If b ∈ B is false in S and s(b) = +1, then
not b ∈ W ; if not b ∈ B is false in S s(b) = −1, then b ∈ W .) It follows that A is unfounded
wrt W . Consequently, not a ∈W , which contradicts a ∈ S. Hence, A = ∅.

Thus, by the characterization above, S is stable.

As observed above, a second stable model can be obtained by using s̄, if W is not stable.
Along similar lines, but not using signings, (Gire 1992; Gire 1994) showed that, supposing P is
order-consistent, if W is not stable then P has at least two stable models. (P is order-consistent
(Fages 1994) if ≤± is well-founded, where p ≤± q iff p ≤+1 q and p ≤−1 q.)
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Using the construction in the previous theorem, based on Dung’s characterization of stable
models (Dung 1992), we can give a shorter and more direct proof of a variant of Theorem 5.11
of (Dung 1992) than in that paper. The proof still uses the same idea as Dung. The statement
of this theorem uses a signing, rather than strictness in (Dung 1992), but these two concepts are
very closely related (see Section 2.1 of the paper).

The sceptical stable semantics extending an interpretation I is the set of all literals true in
every stable model extending I .

Theorem 10 (Dung 1992)
Let P be a logic program, P ⊆ Π be a downward-closed set of predicates with floor F , and letQ
be Π\F . Let I be a fixed stable model for F . Let W be the well-founded model of P extending
I , and T be the sceptical stable semantics of P extending I .

If Q has a signing for P then T = W .

Proof
Every stable model extends the well-founded model, so W ⊆ T . Suppose, to obtain a contradic-
tion, Q has a signing s for P and there is a literal L in T\W . Let the predicate of L be p. Since
the semantics of F is common to T and W , p /∈ F .

By Theorem 9, there is a stable model S extending I of P corresponding to s, and another S′

corresponding to s̄. Since L /∈ W , by the construction in that theorem either L /∈ S or L /∈ S′.
But this contradicts the original supposition that L appears in every stable model. Thus, there is
no such L and, hence, T = W .
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