
1

Supplementary Material for the Paper

Probabilistic QoS-aware Placement
of VNF chains at the Edge

published in Theory and Practice of Logic Programming

STEFANO FORTI, FEDERICA PAGANELLI, ANTONIO BROGI
Department of Computer Science, University of Pisa

stefano.forti@di.unipi.it, {antonio.brogi, federica.paganelli }@unipi.it

Appendix A

1 EdgeUsher Prototype Implementation

The complete code (72 sloc) of EdgeUsher, as presented in the article, follows.

1 placement(Chain , Placement , ServiceRoutes) :-
2 chain(Chain , Services),
3 servicePlacement(Services , Placement , []),
4 flowPlacement(Placement , ServiceRoutes).
5

6 servicePlacement ([], [], _).
7 servicePlacement ([S|Ss], [on(S,N)|P], AllocatedHW) :-
8 service(S, _, HW_Reqs , Thing_Reqs , Sec_Reqs),
9 node(N, HW_Caps , Thing_Caps , Sec_Caps),

10 HW_Reqs =< HW_Caps ,
11 thingReqsOK(Thing_Reqs , Thing_Caps),
12 secReqsOK(Sec_Reqs , Sec_Caps),
13 hwReqsOK(HW_Reqs , HW_Caps , N, AllocatedHW , NewAllocatedHW),
14 servicePlacement(Ss, P, NewAllocatedHW).
15

16 thingReqsOK(T_Reqs , T_Caps) :- subset(T_Reqs , T_Caps).
17

18 secReqsOK ([],_).
19 secReqsOK ([SR|SRs], Sec_Caps) :- subset ([SR|SRs], Sec_Caps).
20 secReqsOK(and(P1,P2), Sec_Caps) :- secReqsOK(P1, Sec_Caps), secReqsOK(P2,

Sec_Caps).
21 secReqsOK(or(P1,P2), Sec_Caps) :- secReqsOK(P1, Sec_Caps); secReqsOK(P2,

Sec_Caps).
22 secReqsOK(P, Sec_Caps) :- atom(P), member(P, Sec_Caps).
23

24 hwReqsOK(HW_Reqs , _, N, [], [(N,HW_Reqs)]).
25 hwReqsOK(HW_Reqs , HW_Caps , N, [(N,A)|As], [(N,NewA)|As]) :-
26 HW_Reqs + A =< HW_Caps , NewA is A + HW_Reqs.
27 hwReqsOK(HW_Reqs , HW_Caps , N, [(N1,A1)|As], [(N1,A1)|NewAs]) :-
28 N \== N1, hwReqsOK(HW_Reqs , HW_Caps , N, As, NewAs).
29

30 flowPlacement(Placement , ServiceRoutes) :-
31 findall(flow(S1, S2, Br), flow(S1, S2, Br), ServiceFlows),
32 flowPlacement(ServiceFlows , Placement , [], ServiceRoutes , [], S2S_latencies

),
33 maxLatency(LChain , RequiredLatency), %hp: only one maxLatency def
34 latencyOK(LChain , RequiredLatency , S2S_latencies).
35

36 flowPlacement ([], _, SRs , SRs , Lats , Lats).
37 flowPlacement ([flow(S1, S2, _)|SFs], P, SRs , NewSRs , Lats , NewLats) :-

2 S. Forti et al.

38 subset ([on(S1,N), on(S2,N)], P),
39 flowPlacement(SFs , P, SRs , NewSRs , [(S1,S2 ,0)|Lats], NewLats).
40 flowPlacement ([flow(S1, S2, Br)|SFs], P, SRs , NewSRs , Lats , NewLats) :-
41 subset ([on(S1,N1), on(S2,N2)], P),
42 N1 \== N2,
43 path(N1, N2, 2, [], Path , 0, Lat),
44 update(Path , Br, S1, S2, SRs , SR2s),
45 flowPlacement(SFs , P, SR2s , NewSRs , [(S1,S2,Lat)|Lats], NewLats).
46

47 path(N1, N2, Radius , Path , [(N1, N2, Bf)|Path], Lat , NewLat) :-
48 Radius > 0,
49 link(N1, N2, Lf, Bf),
50 NewLat is Lat + Lf.
51

52 path(N1, N2, Radius , Path , NewPath , Lat , NewLat) :-
53 Radius > 0,
54 link(N1, N12 , Lf, Bf), N12 \== N2, \+ member ((N12 ,_,_,_), Path),
55 NewRadius is Radius -1,
56 Lat2 is Lat + Lf,
57 path(N12 , N2, NewRadius , [(N1, N12 , Bf)|Path], NewPath , Lat2 , NewLat).
58

59 update ([],_,_,_,SRs ,SRs).
60 update ([(N1, N2, Bf)|Path], Br, S1, S2, SRs , NewSRs) :-
61 updateOne ((N1, N2, Bf), Br, S1, S2, SRs , SR2s),
62 update(Path , Br, S1, S2, SR2s , NewSRs).
63

64 updateOne ((N1, N2, Bf), Br, S1, S2, [], [(N1, N2, Br, [(S1,S2)])]) :-
65 Br =< Bf.
66 updateOne ((N1, N2, Bf), Br, S1, S2, [(N1, N2, Bass , S2Ss)|SR], [(N1, N2, NewBa ,

[(S1,S2)|S2Ss])|SR]) :-
67 Br =< Bf-Bass , NewBa is Br+Bass.
68 updateOne ((N1, N2, Bf), Br, S1, S2, [(X, Y, Bass , S2Ss)|SR], [(X, Y, Bass , S2Ss

)|NewSR]) :-
69 (N1 \== X; N2 \== Y),
70 updateOne ((N1, N2, Bf), Br, S1, S2, SR, NewSR).
71

72 latencyOK(LChain , RequiredLatency , S2S_latencies) :-
73 chainLatency(LChain , S2S_latencies , 0, ChainLatency),
74 ChainLatency =< RequiredLatency.
75

76 chainLatency ([S], _, Latency , NewLatency) :-
77 service(S, S_Service_Time , _, _, _),
78 NewLatency is Latency + S_Service_Time.
79 chainLatency ([S1,S2|LChain], S2S_latencies , Latency , NewLatency) :-
80 member ((S1,S2,Lf), S2S_latencies),
81 service(S1, S1_Service_Time , _, _, _),
82 Latency2 is Latency+S1_Service_Time+Lf,
83 chainLatency ([S2|LChain], S2S_latencies , Latency2 , NewLatency).

2 Proof of Correctness and Termination of EdgeUsher

We include here a sketch of the proofs of termination and correctness of EdgeUsher.

Proposition 1. The query placement(Chain,Placement,ServiceRoutes) always terminates.

Proof. It is easy to prove that the query placement(Chain,Placement,ServiceRoutes) always
terminates since it:
• calls chain/2, which is matched against a set of facts and terminates immediately,
• calls servicePlacement/2 and f lowPlacement/2, which both terminate.

The call servicePlacement(Services,Placement) terminates since:
• predicate servicePlacement/2 just calls servicePlacement/3,

Logic Programs Simply Rock - Supplementary Material 3

• servicePlacement/3 performs tail-recursion by reducing the size of its first term (a list), so
that if the size of the first term in the first call to servicePlacement/3 is n then servicePlace−
ment/3 performs n tail-recursive calls and terminates,

• before tail-recurring, servicePlacement/3
— calls service/5 and node/4, which are both matched against a set of facts and terminate

immediately,
— calls thingReqsOK/2, which scans m times its second term (a list), where m is the size

of its first term (a list, too), and terminates,
— calls secReqsOK/2, which terminates

– either after scanning m times its second term (a list), where m is the size of its first
term (if it is a list)

– or after recurring m times by reducing the size of its first term (if it is an and-or
term of depth m) and after scanning m times its second term (a list),

— calls hwReqsOK/5, which performs tail-recursion by reducing the size of its fourth
term (a list), and terminates.

The call f lowPlacement(Placement,ServiceRoutes) terminates since it:
• calls f indall/3, whose inner goal is matched against a set of facts and terminates,
• calls f lowPlacement/6, which performs tail-recursion by reducing the size of its first term

(a list), and terminates; before tail-recurring, f lowPlacement/6
— calls subset/2, which scans twice its second term (a list),
— calls path/7, which performs tail-recursion by reducing the size of its third term (a

natural number), and terminates,
— calls update/6, which performs tail-recursion by reducing the size of its first term (a

list), and terminates,
— before tail-recurring, update/6 calls updateOne/6, which performs tail-recursion by

reducing the size of its fifth term (a list), and terminates
• calls maxLatency/2, which is matched against a set of facts and terminates immediately,
• calls latencyOK/3, which just calls chainLatency/4

— chainLatency/4 performs tail-recursion by reducing the size of its first term (a list), and
terminates

— before tail-recurring, chainLatency/4 calls service/5 (which is matched against a set of
facts and terminates immediately) and scans once its second term (a list). �

Proposition 2. If servicePlacement([s1, . . . ,sk],P) is proved with computed answer substitution
P = [on(s1,n1), . . . ,on(sk,nh)], then the service placement defined by P satisfies all the IoT, se-
curity and hardware requirements of [s1, . . . ,sk].

Proof. We first prove —by induction on the size of the first term of servicePlacement([s1, . . . ,sk],

P) — that:
(*) if servicePlacement([s1, . . . ,sk],P)→∗

servicePlacement([], [on(s1,n1), . . . ,on(sk,nh)], [(n1,hw1), . . . ,(nh,hwh)])→
true

then ∀ j ∈ [1,h] : hw j = ∑on(si,n j) hw reqs(si)≤ hw caps(n j)

(Base case) Trivial since if servicePlacement([s1],Placement)→∗
servicePlacement([], [on(s1,n1)], [(n1,hw1)])→ true
then hw1 = hw reqs(s1)≤ hw caps(n1), by lines 13 and 24 of the code in the previous section.
(Inductive case)
If servicePlacement([s1, . . . ,sk,sk+1],Placement)

4 S. Forti et al.

→∗ servicePlacement([sk+1], [on(s1,n1), . . . ,on(sk,nh)], [(n1,hw1), . . . ,(nh,hwh)])

→∗ servicePlacement([], [on(s1,n1), . . . ,on(sk,nh),on(sk+1,nh+1)], [(n1,hw1), . . . ,(nh,hwh),

(nh+1,hwh+1)])

→ true
where nh+1 6∈ {n1, . . . ,nh} then
∀ j ∈ [1,h] : hw j = ∑on(si,n j) hw reqs(si)≤ hw caps(n j) by inductive hypothesis,
and hwh+1 = hw reqs(sk+1)≤ hw caps(nh+1) by lines 13 and 24, 27, 28 of the code in the pre-

vious section.
If servicePlacement([s1, . . . ,sk,sk+1],Placement)
→∗ servicePlacement([sk+1], [on(s1,n1), . . . ,on(sk,nh)], [(n1,hw1), . . . ,(nh,hwh)])

→∗ servicePlacement([], [on(s1,n1), . . . ,on(sk,nh),on(sk+1,n)], [(n1,hw′1), . . . ,(nh,hw′h)])→ true
where n ∈ {n1, . . . ,nh} then
∀ j ∈ [1,h]: n j 6= n ⇒ hw′j = hw j = ∑on(si,n j) hw reqs(si)≤ hw caps(n j) by inductive hypothe-

sis, and
n j = n ⇒ hw′j = ∑on(si,n j) hw reqs(si)≤ hw caps(n j)

by inductive hypothesis and by lines 24—26 of the code in the previous section.

We now prove that if servicePlacement([s1, . . . ,sk],P)→∗ true with computed answer substitu-
tion P = [on(s1,n1), . . . ,on(sk,nh)] then the service placement defined by P satisfies all the IoT,
security and hardware requirements of [s1, . . . ,sk].
The proof is by induction on the size of the first term of servicePlacement([s1, . . . ,sk],P).
(Base case) If servicePlacement([s1],P)→∗ true with computed answer substitution P = [on(s1,

n1)] then P satisfies the IoT, security and hardware requirements of [s1] by lines 16 and 19—22
of the code in the previous section, and by (*) respectively.
(Inductive case) If servicePlacement([s1, . . . ,sk],P)→∗ true with computed answer substitution
P = [on(s1,n1), . . . ,on(sk,nh)] then P satisfies all the IoT, security and hardware requirements of
[s1, . . . ,sk] by inductive hypothesis and by lines 16 and 19—22 of the code in the previous section
and by (*), respectively. �

