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The numbering of definitions, propositions, lemmas and theorems corresponds to the same state-
ment numbering as in the main paper. Additional statements appearing only in this supplementary
material are labelled with letters. We assume we are given a program P and a set of facts F.

Proposition A
For a ground logic program G and A € AS(G), A C Heads(G).

Proposition B
For a ground logic program G and A € AS(G), Facts(G) C A.

The following Proposition re-adapts Theorem 6.22 (Leone et al. 1997).

Proposition C

For a given answer set A € AS(PUF), we can assign to each atom a € A an integer value
stage(a) = i so that stage encodes a strict well-founded partial order over all atoms in A, in
such a way that there exists a rule r € grnd(P) UF structured s.t. a € H(r), A |= B(r) and for any
atom b € BY(r), stage(b) < stage(a).

Proposition D

For a given tailored embedding E for PUF, let us consider the superset Facts(E) of F. We can
assign to each atom a € Facts(E) an integer value stage’ (a) = i so that srage’ represents a strict
well-founded partial order over all atoms in Facts(E), in such a way that hom(a) is structured as
follows: {a} = H(hom(a)), Vb € Bt (hom(a)),b € Facts(E) and stage'(a) < stage' (b).

Lemma E
For a tailored embedding E of PUF and an answer set A € AS(PUF), Facts(E) C A.

Proof

The proof is given by induction on the function stage’ applied to Facts(E) as given by Propo-
sition D. W.L.o.g. we assign stage’(a) = 1 to each atom a € Facts(E) N Facts(P UF). These
atoms clearly belong to A. We assume then that for each a € Facts(E) with stage'(a) < j we
know that a € A, and show that this implies that for all a € Facts(E) for which stage’(a) = j,
a € A as well. By Proposition D and the inductive hypothesis, we have that hom(a) is such that
each b € B (hom(a)) belongs to A, and thus A = B™ (hom(a)). Finally, the Lemma is proven by
observing that B~ (hom(a)) =0. [
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Lemma F
Given a tailored embedding E of PUF and an answer set A € AS(PUF). Then, for each a € A
there exists arule r, € E s.t. hom(r,) € (grnd(P)UF); thus, A C Heads(E).

Proof

By Proposition C, each a € A is associated to an integer value stage(a) and there exists a rule
ry € grnd(P)UF, with a € H(r,). Note that r, € (grnd(P) U F)" since A |= B(r). We now show
that r, € hom(E) by induction on the stage associated to a € A. W.1.o.g. we can assign stage(a) =
1, whenever r, is such that H(r,) = {a}, B* (r) = 0 and for all b s.t. not b € B~ (r) we have that
b ¢ A. When stage(a) = 1, since E is a tailored embedding for PUF, it is easy to check that
Et,ry and thus r, € E.

Now, (inductive hypothesis) assume that for stage(a) < j, r, € hom(E). We show that for
stage(a) = j, ro, € hom(E). Given the above, r, is such that for each b € B* (r,), stage(b) < j, and
hence there exists a rule r, € E with b € H(r,). Hence E + r,. Since E is a tailored embedding
for PUF, and thus E |F r,, we have that at least one of cases in Definition 4.2 apply. In particular:

e If the case 1 applies, E -, r, implies r, € E;

e If the case 2 applies, there is clearly a rule 7/, € E for which hom(r},) = hom(r,);

o If the case 3 applies, it must be that for some not b € B~ (r,), b € Facts(E). But on the
other hand A = B(r) and thus b ¢ A. However, by Lemma E, b € A, which leads to a
contradiction.

We conclude that either the case 1 or the case 2, i.e., a € Heads(E). [

Proposition 4.1
An embedding E for PUF is a tailored embedding for PUF.

Proof
The proof is given in the main text. [

Theorem 4.1
[Equivalence]. Given a tailored embedding program E for PUF, then AS(grnd(P)UF) = AS(E).

Proof
We show that a given set of atoms A is in AS(grnd(P) UF) iff A is in AS(E). We split the proof
in two parts.

[AS(grnd(P) UF) C AS(E)]. Let A € AS(grnd(P)UF). We show that A is a minimal model of
EA. First we show that A is model for E4. Indeed, let us assume that there is a simplified rule
r € E* such that A j r. This can happen only if A = B(r) but A |[= H(r). However, A |= hom(r),
which implies that either:

e A [~ B(hom(r)). This implies that 3/ € B(hom(r)) such that A |~ I. We have an immediate
contradiction if / € B(r). Contradiction arises also if / ¢ B(r): indeed, since E is a tailored
embedding, / does not appear in B(r) only if the case 2 of Definition 4.2 has been applied,
which means that a simplification of type 3 has been applied. By Lemma E, we have a
contradiction, since Facts(E) C A implies that / must appear in A.
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e A= B(hom(r)) and thus A |= H (hom(r)). Note that A = H (hom(r)) implies that A = H (r)
since H(r) = H(hom(r)).

We then show that there is no smaller model for E4. Let us assume that there exist a set A’,
A’ C A, which is a model for E4 and thus A is not a minimal model of E“. Note that A is a minimal
model of (grnd(P)UF)* and thus there must exist € (grnd(P) UF)* for which A’ j r.

Such a rule can be either such that:

(a) Thereisno s € E s.t. r = hom(s);
(b) Thereis s € E s.t. r = hom(s) and s & E*;
(c) There exists s € EA s.t. r = hom(s).

We show that r cannot fall in the cases (a) and (b), while the case (c) implies that A’ cannot be
a model for EA.

Case (a). Since r € (grnd(P)UF) it is the case that A |= H(r) and A |= B(r). However, by
Lemma F, we know that A C Heads(E). Also, we know that E I r, but there is no s € E for which
r = hom(s). This means that r should be tailored either by the case 1 or 3 of Definition 4.2.

If the case 1 applies, then it must be that E ¥, r or E I, r. On the one hand, Lemma F forces us
to conclude that E |, r; thus it should be the case that E -, r, which contradicts the assumption
that r has no s € E for which r = hom(s). If the case 3 applies, there exists not a € B~ (r) s.t.
a € Facts(E). But by Lemma E, Facts(E) C A, which contradicts A = B(r).

Case (b). In this case, there is s € E s.t. r = hom(s) and s ¢ E*; Again, note that A = H(r) and
A E B(r), which in turn implies that A = B(s) and A |= H(s). Thus this case cannot apply, since
it turns out that s € E4.

Case (c). Since the two cases above cannot apply, r must fall in this latter case. Since A’ }£ r,
it must be the case that A’ j= H(r) and A’ = B(r). Note that B(s) C B(r) and H(s) = H(r). Thus,
A" = H(s) and A’ |= B(s), which implies A’ [~ s. We conclude that A’ cannot be a model for E4.

[AS(E) C AS(grnd(P) UF)]. Let A € AS(E). We first show that A |= (grnd(P) UF). We split
all the rules of (grnd(P)UF)* in two disjoint sets: hom(E*) and (grnd(P) UF )\ hom(E*).

For a rule r € hom(E*), let s be such that » = hom(s). We have that A = B(s) and A = H(s).
Since H(r) = H(s), this latter implies that A = H(r). Let us examine each literal € B*(s), which
has been eliminated by the case 2 of Definition 4.2. We have that [ € Facts(E) , and thus A =1
by Proposition B. We can thus conclude that A |= B(r) and, consequently A = r.

Let us now consider a rule r € (grnd(P) UF) \ hom(E*). We show that A |= r. Let us assume,
by contradiction that A [~ r, i.e., A |= B(r) but A = H(r). We distinguish two subcases: either
r € hom(E), or r & hom(E).

If r € hom(E), we let s be such that r = hom(s). Since r ¢ hom(E*), we have that s ¢ E4,
i.e., A [~ B(s) which implies A = B(r), which contradicts the assumption that A [~ r. If r ¢
hom(E), we however know that E I r. This can be either because of the case 1 or the case 3 of
Definition 4.2.

If r falls in the case 1, we have that hom(r) = r and either E ¥j, r or E b, r. Since r ¢ hom(E),
it must then be that E ¥, r, i.e., there exists at least one a € BY(r) s.t. it does not exist a rule
¥ € E for which E t, r'. Then, a ¢ A by proposition A and thus A [~ B(r).

If r falls in the case 3, we have that there exist a literal not a € B~ (r) for which a € Facts(E).
Clearly, by proposition B, a € A, and thus A [~ B(r).

Thus A |= (grnd(P) UF)A. We know show that A is a minimal model for (grnd(P) UF)*. Let
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us consider a set A’ C A and assume that A’ |= (grnd(P) U F)*. However, we know that A is a
minimal model of E# and thus A’ [= EA. We can show that this implies that A’ [~ (grnd (P) UF)A.
Indeed if A’ = E4, then there exists a rule r € E# for which A’ }= r. This, as we will show implies
that A’ /= hom(r) (note that it can be easily shown that hom(r) belongs to (grnd(P) UF)*).

Indeed, we know that A’ = B(r) and A’ £ H(r). Also it is the case that A’ = B(r),B*(r). In
fact if we assume, by contradiction, that A’ i~ B(r),B*(r) there should exist a literal / € B*(r)
for which A’ }£ . [ cannot be negative since A |=1 and A’ C A. If [ is positive, the case 2 of
Definition 4.2 tells us that [ € Facts(E), i.e., Facts(E) ¢ A’, which in turn implies that A’ cannot
be a model for (grnd(P)UF)A. This concludes the proof. [J

Proposition 4.2
[Intersection]. Given two tailored embeddings Ej and E, for PUF, E| M Ej; is a tailored embed-
ding for PUF.

Proof

Let E = E| ME,, and let us consider a rule r € (grnd(P) UF). We show that E |- r. Preliminarily,
we observe two facts which hold by definition of simplified intersection and by the fact that both
E| and E; are tailored embeddings. We are given a literal ¢ and one of E; or E; (w.l.0.g., we
choose E):

(a) a € Facts(E;) implies that a € Facts(E).
(b) a ¢ Heads(E) implies that a ¢ Heads(E);

By contradiction, let us assume that E |f* r, and we split the proof in two parts, depending on
whether r € hom(E) or whether r ¢ hom(E).

(r € hom(E)). This implies that there are rules s € E|, g € E» and 7 € E such that r = hom(s) =
hom(q) = hom(t). Note that, for each (positive) literal € B*(¢), the case 2 of Definition 4.2 can
be applied i.e., [ € Facts(E)) or [ € Facts(E,) which implies [ € Facts(E) (Fact (a) above);

(r ¢ hom(E)). In this case we have that either r ¢ hom(E)) or r ¢ hom(E,). W.l.o.g. we assume
r ¢ hom(E;). By Definition 4.2, this can be the case if either

1. E; ¥y, r because there exists a € B (r) and a ¢ Heads(E) ). Note that Fact (b) implies that
a ¢ Heads(E), hence E I r.

2. Ey ¥y r; this implies that E ¥, r hence E |- r;

3. E; ¥, r because there exists not a € B~ (r), and a € Facts(E) ). Note that Fact (a) implies
that a € Facts(E), hence E |- r.

O

Theorem 4.2
Let TE be the set of tailored embeddings of PUF; let & = Inst™(P,F)UF. Then,

Simpl=(&) =[] T.
TeTE

Proof

Let .7 = [|yerg T- By Proposition 2 we notice that & = [|;.gg E. The single argument oper-
ator Simpl is both deflationary and monotone when restricted over the complete lattice (L,C),
where L = {T € TE|T C &}: thus, the iterative sequence E° = supc (L) = &, E'™"! = Simpl(E")
converges to the least fixpoint infz ({T € L|Simpl(T) C T}) = .7 = Simpl(7). [



Incremental maintenance of overgrounded logic programs with tailored simplifications 5

Theorem 5.1
Let G| = INCRINST(P,0, F}). For each i s.t. 1 <i <n, let G; = INCRINST(P, G;_1, F;). Then for
eachis.t. 1 <i<n,AS(G;UF) =AS(PUF).

Proof

The proof is given by induction on the shot indices. Let AS; = AS(PUF;). In the base case (i = 1),
AS(G1UF;) = AS; since the DESIMPL step has no effect and the AINST step coincides with the
typical grounding procedure of (Faber et al. 2012). In the inductive case (i > 1), we assume that
G;UF; is a tailored embedding for PU F;, and we show that G U F4 is a tailored embedding
for PUF;;1. Let Gy = INCRINST(P, G;, Fi11). At the final iteration of the INCRINST algorithm,
we have that G;1.1 = DGUSimpl”(NR,DGUNRUF,;), where DG is a desimplified version of
G; and NR is an additional set of rules both obtained by repeated application of DESIMPL and
INCRINST steps.

Observe that DG U F; is such that G; U F; C DG; UF; and is a tailored embedding for P U F;;
then, let AG;;1 = Inst™(P,DGUF;y1). DGUAG; | UF;; is a tailored embedding for PUF; it
then follows that DG U Simpl”(AG;1) U F;4+ is a tailored embedding for PUF;1 ;. Let CGi4 =
{s € AG;y1 | Ir € DG s.t. hom(r) = hom(s)}. DG; UCG;,| UF;y is a tailored embedding for
PUF;;1. Then we show that CG;1| C NR. It follows that DGUNRUF; | = Giy1 UFj;| is a
tailored embedding for P U F; |, and that thus DG U Simpl”(NR,DGUNRU F;) is a tailored
embedding for PU F;1 1, which concludes the proof. []
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