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The numbering of definitions, propositions, lemmas and theorems corresponds to the same state-
ment numbering as in the main paper. Additional statements appearing only in this supplementary
material are labelled with letters. We assume we are given a program P and a set of facts F .

Proposition A
For a ground logic program G and A ∈ AS(G), A⊆ Heads(G).

Proposition B
For a ground logic program G and A ∈ AS(G), Facts(G)⊆ A.

The following Proposition re-adapts Theorem 6.22 (Leone et al. 1997).

Proposition C
For a given answer set A ∈ AS(P∪ F), we can assign to each atom a ∈ A an integer value
stage(a) = i so that stage encodes a strict well-founded partial order over all atoms in A, in
such a way that there exists a rule r ∈ grnd(P)∪F structured s.t. a ∈H(r), A |= B(r) and for any
atom b ∈ B+(r), stage(b)< stage(a).

Proposition D
For a given tailored embedding E for P∪F , let us consider the superset Facts(E) of F . We can
assign to each atom a ∈ Facts(E) an integer value stage′(a) = i so that stage′ represents a strict
well-founded partial order over all atoms in Facts(E), in such a way that hom(a) is structured as
follows: {a}= H(hom(a)), ∀b ∈ B+(hom(a)),b ∈ Facts(E) and stage′(a)< stage′(b).

Lemma E
For a tailored embedding E of P∪F and an answer set A ∈ AS(P∪F), Facts(E)⊆ A.

Proof
The proof is given by induction on the function stage′ applied to Facts(E) as given by Propo-
sition D. W.l.o.g. we assign stage′(a) = 1 to each atom a ∈ Facts(E)∩ Facts(P∪ F). These
atoms clearly belong to A. We assume then that for each a ∈ Facts(E) with stage′(a) < j we
know that a ∈ A, and show that this implies that for all a ∈ Facts(E) for which stage′(a) = j,
a ∈ A as well. By Proposition D and the inductive hypothesis, we have that hom(a) is such that
each b ∈ B+(hom(a)) belongs to A, and thus A |= B+(hom(a)). Finally, the Lemma is proven by
observing that B−(hom(a)) = /0.
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Lemma F
Given a tailored embedding E of P∪F and an answer set A ∈ AS(P∪F). Then, for each a ∈ A
there exists a rule ra ∈ E s.t. hom(ra) ∈ (grnd(P)∪F); thus, A⊆ Heads(E).

Proof
By Proposition C, each a ∈ A is associated to an integer value stage(a) and there exists a rule
ra ∈ grnd(P)∪F , with a ∈ H(ra). Note that ra ∈ (grnd(P)∪F)A since A |= B(r). We now show
that ra ∈ hom(E) by induction on the stage associated to a∈ A. W.l.o.g. we can assign stage(a) =
1, whenever ra is such that H(ra) = {a}, B+(r) = /0 and for all b s.t. not b ∈ B−(r) we have that
b /∈ A. When stage(a) = 1, since E is a tailored embedding for P∪F , it is easy to check that
E `b ra, and thus ra ∈ E.

Now, (inductive hypothesis) assume that for stage(a) < j, ra ∈ hom(E). We show that for
stage(a)= j, ra ∈ hom(E). Given the above, ra is such that for each b∈B+(ra), stage(b)< j, and
hence there exists a rule rb ∈ E with b ∈ H(rb). Hence E `b ra. Since E is a tailored embedding
for P∪F , and thus E 
 ra, we have that at least one of cases in Definition 4.2 apply. In particular:

• If the case 1 applies, E `b ra implies ra ∈ E;
• If the case 2 applies, there is clearly a rule r′a ∈ E for which hom(r′a) = hom(ra);
• If the case 3 applies, it must be that for some not b ∈ B−(ra), b ∈ Facts(E). But on the

other hand A |= B(r) and thus b /∈ A. However, by Lemma E, b ∈ A, which leads to a
contradiction.

We conclude that either the case 1 or the case 2, i.e., a ∈ Heads(E).

Proposition 4.1
An embedding E for P∪F is a tailored embedding for P∪F .

Proof
The proof is given in the main text.

Theorem 4.1
[Equivalence]. Given a tailored embedding program E for P∪F , then AS(grnd(P)∪F) = AS(E).

Proof
We show that a given set of atoms A is in AS(grnd(P)∪F) iff A is in AS(E). We split the proof
in two parts.

[AS(grnd(P)∪F)⊆ AS(E)]. Let A ∈ AS(grnd(P)∪F). We show that A is a minimal model of
EA. First we show that A is model for EA. Indeed, let us assume that there is a simplified rule
r ∈ EA such that A 6|= r. This can happen only if A |= B(r) but A 6|= H(r). However, A |= hom(r),
which implies that either:

• A 6|= B(hom(r)). This implies that ∃l ∈ B(hom(r)) such that A 6|= l. We have an immediate
contradiction if l ∈ B(r). Contradiction arises also if l 6∈ B(r): indeed, since E is a tailored
embedding, l does not appear in B(r) only if the case 2 of Definition 4.2 has been applied,
which means that a simplification of type 3 has been applied. By Lemma E, we have a
contradiction, since Facts(E)⊆ A implies that l must appear in A.



Incremental maintenance of overgrounded logic programs with tailored simplifications 3

• A |=B(hom(r)) and thus A |=H(hom(r)). Note that A |=H(hom(r)) implies that A |= H(r)
since H(r) = H(hom(r)).

We then show that there is no smaller model for EA. Let us assume that there exist a set A′,
A′⊂A, which is a model for EA and thus A is not a minimal model of EA. Note that A is a minimal
model of (grnd(P)∪F)A and thus there must exist r ∈ (grnd(P)∪F)A for which A′ 6|= r.

Such a rule can be either such that:

(a) There is no s ∈ E s.t. r = hom(s);
(b) There is s ∈ E s.t. r = hom(s) and s 6∈ EA;
(c) There exists s ∈ EA s.t. r = hom(s).

We show that r cannot fall in the cases (a) and (b), while the case (c) implies that A′ cannot be
a model for EA.

Case (a). Since r ∈ (grnd(P)∪F)A it is the case that A |= H(r) and A |= B(r). However, by
Lemma F, we know that A⊆Heads(E). Also, we know that E 
 r, but there is no s∈E for which
r = hom(s). This means that r should be tailored either by the case 1 or 3 of Definition 4.2.

If the case 1 applies, then it must be that E 0b r or E `h r. On the one hand, Lemma F forces us
to conclude that E `b r; thus it should be the case that E `h r, which contradicts the assumption
that r has no s ∈ E for which r = hom(s). If the case 3 applies, there exists not a ∈ B−(r) s.t.
a ∈ Facts(E). But by Lemma E, Facts(E)⊆ A, which contradicts A |= B(r).

Case (b). In this case, there is s ∈ E s.t. r = hom(s) and s 6∈ EA; Again, note that A |= H(r) and
A |= B(r), which in turn implies that A |= B(s) and A |= H(s). Thus this case cannot apply, since
it turns out that s ∈ EA.

Case (c). Since the two cases above cannot apply, r must fall in this latter case. Since A′ 6|= r,
it must be the case that A′ 6|= H(r) and A′ |= B(r). Note that B(s)⊆ B(r) and H(s) = H(r). Thus,
A′ 6|= H(s) and A′ |= B(s), which implies A′ 6|= s. We conclude that A′ cannot be a model for EA.

[AS(E)⊆ AS(grnd(P)∪F)]. Let A ∈ AS(E). We first show that A |= (grnd(P)∪F). We split
all the rules of (grnd(P)∪F)A in two disjoint sets: hom(EA) and (grnd(P)∪F)\hom(EA).

For a rule r ∈ hom(EA), let s be such that r = hom(s). We have that A |= B(s) and A |= H(s).
Since H(r) =H(s), this latter implies that A |=H(r). Let us examine each literal l ∈ B∗(s), which
has been eliminated by the case 2 of Definition 4.2. We have that l ∈ Facts(E) , and thus A |= l
by Proposition B. We can thus conclude that A |= B(r) and, consequently A |= r.

Let us now consider a rule r ∈ (grnd(P)∪F)\hom(EA). We show that A |= r. Let us assume,
by contradiction that A 6|= r, i.e., A |= B(r) but A 6|= H(r). We distinguish two subcases: either
r ∈ hom(E), or r 6∈ hom(E).

If r ∈ hom(E), we let s be such that r = hom(s). Since r /∈ hom(EA), we have that s /∈ EA,
i.e., A 6|= B(s) which implies A 6|= B(r), which contradicts the assumption that A 6|= r. If r /∈
hom(E), we however know that E 
 r. This can be either because of the case 1 or the case 3 of
Definition 4.2.

If r falls in the case 1, we have that hom(r) = r and either E 0b r or E `h r. Since r /∈ hom(E),
it must then be that E 0b r, i.e., there exists at least one a ∈ B+(r) s.t. it does not exist a rule
r′ ∈ E for which E `h r′. Then, a /∈ A by proposition A and thus A 6|= B(r).

If r falls in the case 3, we have that there exist a literal not a ∈ B−(r) for which a ∈ Facts(E).
Clearly, by proposition B, a ∈ A, and thus A 6|= B(r).

Thus A |= (grnd(P)∪F)A. We know show that A is a minimal model for (grnd(P)∪F)A. Let
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us consider a set A′ ⊂ A and assume that A′ |= (grnd(P)∪F)A. However, we know that A is a
minimal model of EA and thus A′ 6|= EA. We can show that this implies that A′ 6|= (grnd(P)∪F)A.
Indeed if A′ 6|= EA, then there exists a rule r ∈ EA for which A′ 6|= r. This, as we will show implies
that A′ 6|= hom(r) (note that it can be easily shown that hom(r) belongs to (grnd(P)∪F)A).

Indeed, we know that A′ |= B(r) and A′ 6|= H(r). Also it is the case that A′ |= B(r),B∗(r). In
fact if we assume, by contradiction, that A′ 6|= B(r),B∗(r) there should exist a literal l ∈ B∗(r)
for which A′ 6|= l. l cannot be negative since A |= l and A′ ⊂ A. If l is positive, the case 2 of
Definition 4.2 tells us that l ∈ Facts(E), i.e., Facts(E) 6⊂ A′, which in turn implies that A′ cannot
be a model for (grnd(P)∪F)A. This concludes the proof.

Proposition 4.2
[Intersection]. Given two tailored embeddings E1 and E2 for P∪F , E1uE2 is a tailored embed-
ding for P∪F .

Proof
Let E = E1uE2, and let us consider a rule r ∈ (grnd(P)∪F). We show that E 
 r. Preliminarily,
we observe two facts which hold by definition of simplified intersection and by the fact that both
E1 and E2 are tailored embeddings. We are given a literal a and one of E1 or E2 (w.l.o.g., we
choose E1):

(a) a ∈ Facts(E1) implies that a ∈ Facts(E).
(b) a /∈ Heads(E1) implies that a /∈ Heads(E);

By contradiction, let us assume that E 6
 r, and we split the proof in two parts, depending on
whether r ∈ hom(E) or whether r /∈ hom(E).

(r ∈ hom(E)). This implies that there are rules s∈ E1, q∈ E2 and t ∈ E such that r = hom(s) =
hom(q) = hom(t). Note that, for each (positive) literal l ∈ B∗(t), the case 2 of Definition 4.2 can
be applied i.e., l ∈ Facts(E1) or l ∈ Facts(E2) which implies l ∈ Facts(E) (Fact (a) above);

(r /∈ hom(E)). In this case we have that either r /∈ hom(E1) or r /∈ hom(E2). W.l.o.g. we assume
r /∈ hom(E1). By Definition 4.2, this can be the case if either

1. E1 0h r because there exists a ∈ B+(r) and a /∈ Heads(E1). Note that Fact (b) implies that
a /∈ Heads(E), hence E 
 r.

2. E1 0b r; this implies that E 0b r hence E 
 r;
3. E1 0h r because there exists not a ∈ B−(r), and a ∈ Facts(E1). Note that Fact (a) implies

that a ∈ Facts(E), hence E 
 r.

Theorem 4.2
Let TE be the set of tailored embeddings of P∪F ; let E = Inst∞(P,F)∪F . Then,

Simpl∞(E ) =
l

T∈TE

T.

Proof
Let T =

d
T∈TE T. By Proposition 2 we notice that E =

d
E∈ES E. The single argument oper-

ator Simpl is both deflationary and monotone when restricted over the complete lattice (L,v),
where L = {T ∈ TE|T v E }: thus, the iterative sequence E0 = supv(L) = E , E i+1 = Simpl(E i)

converges to the least fixpoint in fv({T∈ L|Simpl(T)v T}) = T = Simpl(T ).
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Theorem 5.1
Let G1 = INCRINST(P, /0,F1). For each i s.t. 1 < i≤ n, let Gi = INCRINST(P,Gi−1,Fi). Then for
each i s.t. 1≤ i≤ n, AS(Gi∪Fi) = AS(P∪Fi).

Proof
The proof is given by induction on the shot indices. Let ASi = AS(P∪Fi). In the base case (i= 1),
AS(G1∪F1) = AS1 since the DESIMPL step has no effect and the ∆INST step coincides with the
typical grounding procedure of (Faber et al. 2012). In the inductive case (i > 1), we assume that
Gi∪Fi is a tailored embedding for P∪Fi, and we show that Gi+1∪Fi+1 is a tailored embedding
for P∪Fi+1. Let Gi+1 = INCRINST(P,Gi,Fi+1). At the final iteration of the INCRINST algorithm,
we have that Gi+1 = DG∪Simpl∞(NR,DG∪NR∪Fi+1), where DG is a desimplified version of
Gi and NR is an additional set of rules both obtained by repeated application of DESIMPL and
INCRINST steps.

Observe that DG∪Fi is such that Gi ∪Fi v DGi ∪Fi and is a tailored embedding for P∪Fi;
then, let AGi+1 = Inst∞(P,DG∪Fi+1). DG∪AGi+1∪Fi+1 is a tailored embedding for P∪Fi+1; it
then follows that DG∪Simpl∞(AGi+1)∪Fi+1 is a tailored embedding for P∪Fi+1. Let CGi+1 =

{s ∈ AGi+1 | @r ∈ DG s.t. hom(r) = hom(s)}. DGi ∪CGi+1 ∪Fi+1 is a tailored embedding for
P∪Fi+1. Then we show that CGi+1 v NR. It follows that DG∪NR∪Fi+1 = Gi+1 ∪Fi+1 is a
tailored embedding for P∪Fi+1, and that thus DG∪ Simpl∞(NR,DG∪NR∪Fi+1) is a tailored
embedding for P∪Fi+1, which concludes the proof.
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