
APPENDIX 17

Appendix A Proofs and additional details

In the following, we give proofs of the theorems and propositions of the paper. Furthermore,
some more detailed explanations are included.

Theorems and Propositions have the same numbering as in the original document. Auxiliary
Theorems etc. are numbered with roman numerals.

Expressing unweighted formulas over semirings If we have a semiring R = (R,⊕,⊗,e⊕,e⊗),
where the addition ⊕ is invertible, then we can translate any formula φ without weights into one
with weights τ(φ) that does not use the boolean connectives and such that

Jτ(φ)Kσ

R(Iw) = e⊗ if Iw |= φ and Jτ(φ)Kσ

R(Iw) = e⊕ if Iw 6|= φ . (A1)

We define τ(φ) inductively as follows:

• if φ = p(~x), then τ(φ) = p(~x)
• if φ = φ1∧φ2, then τ(φ) = τ(φ1)∗ τ(φ2)

• if φ = φ1∨φ2, then τ(φ) = e⊗+++−−−(e⊗+++−−−τ(φ1))∗ (e⊗+++−−−τ(φ2))

• if φ = φ1→ φ2, then τ(φ) = τ(φ1)→ τ(φ2)

• if φ = ∀yφ1(y), then τ(φ) = Πyτ(φ1(y))
• if φ = ∃yφ1(y), then τ(φ) = e⊗+++−−−Πy(e⊗+++−−−τ(φ1(y))

We can show by induction that Jτ(φ)KR(Iw)∈{e⊕,e⊗} and thus that the product Πy is always
defined. Therefore, this encoding even includes the quantifiers. Furthermore, it is easy to see that
the formula τ(φ) is constructible in linear time from φ , and that hence the size of τ(φ) is linear
in the size φ . It is thus possible to eliminate unweighted formulas with polynomial overhead if
addition ⊕ is invertible.

We note that while addition over the natural numbers N is not invertible, we can use the
encoding τ(φ) by moving from N to the integers Z and exploiting the fact that every natural
number can be written as the sum of the squares of four integers (known as Lagrange’s Four-
Square Theorem); we then can add for global variables x over N the algebraic constraint x≥Z 0
and use for local variables y in constraint formulas over N the expression y2

1 + y2
2 + y2

3 + y2
4 over

four local variables y1, . . . ,y4 over Z.
A similar translation is possible if the addition⊕ is idempotent, i.e., k⊕k = k (as in the Boolean

semiring), where the value of Σyα(y) over Iw is naturally defined as k whenever a non-empty
support supp⊕(α(x),Iw) leads to the single value k, i.e., for every ξ ∈ supp⊕(α(x),Iw) we have
Jα(ξ)Kσ

R(Iw) = k, since supp⊕(τ(φ),Iw) leads to the single value e⊗.

3 ASP(A C)

Proposition 6 (Generalisation). Let φ be a σ -sentence and Iw be a pointed σ -HT-interpretation.
Then, for the weighted σ -sentence α over the Boolean semiring B, obtained from φ by replacing
⊥,∨,∧,→,∃,∀ with 0,+++,∗,→B,Σ,Π, respectively, we have JαKσ

B(Iw) = 1 iff Iw |=σ φ .

Proof. The claim can be easily verified by comparing the weighted semantics for R = B and
the unweighted semantics. We consider the case φ = ψ → θ in more detail. Then α = β →B θ ,

18 APPENDIX

where β and γ correspond to the rewritten versions of ψ and θ .

Iw |=σ φ ⇐⇒ Iw′ 6|=σ ψ or Iw′ |=σ θ for w′ ≥ w

⇐⇒ Jβ Kσ
B(Iw) 6= 1 or JγKσ

B(Iw) = 1 for w′ ≥ w

⇐⇒ Jβ Kσ
B(Iw) = 0 or JγKσ

B(Iw) 6= 0 for w′ ≥ w

⇐⇒ JαKσ
B(Iw) = 1

The proof for→R works over any semiring and not just the Boolean semiring. Therefore, we
can drop the subscript R.

Proposition 8 (Persistence). For any σ -sentence φ and σ -HT-interpretation (I H ,I T), it holds
that IH |=σ φ implies IT |=σ φ .

Proof. It is know that the proposition holds for formulas φ without algebraic constraints (Pearce
and Valverde 2006). We can use the same proof by structural induction, given that we can prove
that the claim holds for the additional base case φ = k ∼R α .

In this case however, the definition of satisfaction tells us that

Iw |=σ k ∼R α ⇐⇒ k ∼ JαKσ

R(Iw′), for all w′ ≥ w.

So, since T ≥ H from IH |=σ k ∼R α follows IT |=σ k ∼R α .

4 Constructs in ASP(A C) and in other formalisms

Conditionals We consider in more detail, how the conditional semantics vc and df of (Cabalar
et al. 2020) can be modelled in our formalism. Since we do not capture arbitrary constraints as
Cabalar et al. do, we assume instead that conditionals in weighted formulas are allowed and show
that it is unnecessary to allow them explicitly. We start with vc.

Let r(s) = H(r(s))← B(r(s)) be some rule containing a conditional s = (s′|s′′ : φ) which is
supposed to be evaluated under vc semantics. This means that

Iw |= r(s) ⇐⇒


Iw |= r(s′) if Iw |= φ

Iw |= r(s′′) if Iw |= ¬φ

IT |= r(s) otherwise.
.

Now if we simply replace s by φ ∗ s′+++¬φ ∗ s′′ we get

Iw |= r(φ ∗ s′+++¬φ ∗ s′′) ⇐⇒


Iw |= r(s′) if Iw |= φ

Iw |= r(s′′) if Iw |= ¬φ

IT |= r(s) and Iw |= r(e⊕) otherwise.
.

This is obviously different, however if we use instead the rule

r′(s) = H(r(s))← B(r(s)),1 =B φ +++¬φ

APPENDIX 19

we obtain

Iw |= r′(φ ∗ s′+++¬φ ∗ s′′)

⇐⇒


Iw |= r′(s′) if Iw |= φ

Iw |= r′(s′′) if Iw |= ¬φ

IT |= r′(s) and Iw |= H(r(e⊕))← B(r(e⊕)),1 =B φ +++¬φ otherwise.

⇐⇒


Iw |= r(s′) if Iw |= φ

Iw |= r(s′′) if Iw |= ¬φ

IT |= r(s) and Iw |= H(r(e⊕))← B(r(e⊕)),1 =B 0 otherwise.

⇐⇒


Iw |= r(s′) if Iw |= φ

Iw |= r(s′′) if Iw |= ¬φ

IT |= r(s) otherwise.

as desired.
In order to model df, we further need that the addition⊕ of the semiring R = (R,⊕,⊗,e⊕,e⊗)

is invertible, i.e. that we can use the connective−−−. Assume this is the case and let s = (s′ | s′′ : φ)

be a conditional over the semiring R that we want to evaluate under df. Then its semantics is

d fIw(s) =
{

s′, if Iw |=σ φ ,

s′′, otherwise.

We can simply use the weighted formula φ ∗ s′+++(e⊗+++−−−φ)∗ s′′:

Jφ ∗ s′+++(e⊗+++−−−φ)∗ s′′KR(Iw) = Jφ ∗ s′KR(Iw)⊕J(e⊗+++−−−φ)∗ s′′KR(Iw)

=

{
e⊗⊗Js′KR(Iw)⊕(e⊗⊕− e⊗)⊗Js′′KR(Iw) Iw |= φ

e⊕⊗Js′KR(Iw)⊕(e⊗⊕− e⊕)⊗Js′′KR(Iw) otherwise

=

{
s′⊕e⊕⊗s′′ Iw |= φ

e⊗⊗s′′ otherwise

=

{
s′ Iw |= φ

s′′ otherwise

Constraints in the heads of rules

Proposition 13 (Algebraic Choice Semantics). Let r = k ∼c
R α ← B(r) be a rule with global

variables x1, . . . ,xn and (I H ,I T) be a σ -HT-interpretation. Then IH |=σ k ∼c
R α ← B(r) iff

(i) IH |=σ k ∼R α ← B(r) and
(ii) for all ξ1 ∈ r(s(x1)), . . . ,ξn ∈ r(s(xn)) it holds that if IH |=σ (B∧(r)(ξ1, . . . ,ξn)

σ , then
J(α(ξ1, . . . ,ξn))

ΣKσ

R(IT) = J(α(ξ1, . . . ,ξn))
ΣKσ

R(IH)

Proof. According to our definition

IH |=σ k ∼c
R α ← B(r)

⇐⇒IH |=σ k ∼R α ← B(r) and IH |=σ X =R α ← X =R α
¬¬,B(r)

⇐⇒IH |=σ k ∼R α ← B(r) and IH |=σ ∀x1, . . . ,xn ∀X X =R α
¬¬,B(r)→ X =R α

20 APPENDIX

By the definition of α¬¬ we know that Jα¬¬KR(IH) is equal to JαKR(IT). Therefore, we only
need to consider the grounding of the rule where X is replaced by JαKR(IT). Then

IH |= r

⇐⇒IH |=σ k ∼R α ← B(r) and IH |=σ ∀x1, . . . ,xn B(r)→ JαKR(IT) =R α

5 Provenance

For provenance we define a translation of a positive datalog program Π= {r1, . . . ,rm} as follows.
First, we discuss terminology. For each predicate q in Π we introduce the following predicates.

• pq(~Y ,V,L, i,~Z), which stores the value V of the provenance of q(~Y) using any derivation
that uses exactly L leaf nodes, uses the rule ri last and the global variables in ri that do not
occur in the head of ri had the value ~Z.
• pq(~Y ,V,L, i), which stores the value V of the provenance of q(~Y) using any derivation that

uses exactly L leaf nodes, uses the rule ri last and the global variables in ri that do not
occur in the head of ri took any value.
• pq(~Y ,V,L), which stores the value V of the provenance of q(~Y) using any derivation that

uses exactly L leaf nodes and uses any rule ri last.
• pq(~Y ,V), which stores the value V of the provenance of q(~Y).
• dq(~Y ,L, i,~Z), which asserts that there is a derivation of q(~Y) using exactly L leaf nodes that

uses the rule ri last and the global variables in ri that do not occur in the head of ri had the
value ~Z.

• dq(~Y ,L, i), which asserts that there is a derivation of q(~Y) using exactly L leaf nodes that
uses the rule ri last and the global variables in ri that do not occur in the head of ri took
any value.

• dq(~Y ,L), which asserts that there is a derivation of q(~Y) using exactly L leaf nodes that
uses any rule ri.

Let

ri = r(~Y)← q1(~X1), . . . ,qn(~Xn)

be some rule with index i, where w.l.o.g. n > 1 (we can always add a new extensional atom e()
with provenance e⊗. We add the following rules to our translation T (Π):

pr(~Y ,V,L, i,~Z)← pq1(
~X1,V1,L1), . . . , pqn(~Xn,Vn,Ln),L =N L1 +++ . . .+++Ln,V =R V1 ∗ . . .∗Vn

(E1)

dr(~Y ,L, i,~Z)← pq1(
~X1,V1,L1), . . . , pqn(~Xn,Vn,Ln),L =N L1 +++ . . .+++Ln (E2)

pr(~Y ,V,L, i)← dr(~Y ,L, i,~Z),V =R pr(~Y ,V ∗,L, i, ~Z∗)∗V ∗ (E3)

dr(~Y ,L, i)← dr(~Y ,L, i,~Z) (E4)

Here ~Z =
⋃n

i=1
~Xi \~Y , i.e. the global variables of ri that do not occur in its head.

APPENDIX 21

Further, for every predicate q in Π we add the rules

pr(~Y ,V,L)← dr(~Y ,L, I),V =R pr(~Y ,V ∗,L, I∗)∗V ∗ (E5)

dr(~Y ,L)← dr(~Y ,L, I) (E6)

pr(~Y ,V)← dr(~Y ,L),V =R pr(~Y ,V ∗,L∗)∗V ∗ (E7)

This translation works as follows. The last rule sums up the value of each derivation tree to
obtain the final provenance, whereas the previous rules calculate the provenance of less and less
restricted derivation trees. Therefore, there is at least one answer set I such that pr(~Y ,V) ∈I

iff the provenance of r(~Y) is V . On the other hand, since these rules are also all positive, there is
exactly one answer set. The following results shows the correctness of the translation.

Theorem 14 (Provenance Encoding). Given a positive datalog program Π the A C -program
T (Π) computes the provenance semantics over the ω-continuous semiring R in the following
sense. Let D be an edb and r(~x) a query result of D∪Π with semiring provenance v. Then the
unique equilibrium model I of T (Π)∪{pe(~x,v,1)←| (e(~x),v) ∈D} contains pr(~x,v′) iff v′ = v.

Proof. Let I be the unique equilibrium model of T (Π)∪ {pe(~x,v,1)←| (e(~x),v) ∈ D}. We
proceed by induction on the number L of leaf nodes that are used in the derivation tree, to show
that our construction is correct and the predicates indeed behave as they should according to their
description, which among other things implies that v is the provenance of the query result r(~x)
iff the unique equilibrium model I of T (Π)∪{pe(~x,v,1)←| (e(~x),v) ∈ D} contains pr(~x,v).
In the proof we only consider the predicates for the values of the provenance in detail. The
correctness of the derivability predicates dr(~Y ,L[, i,~Z]) follows analogous reasoning since the
rules for derivability are just simplified versions of the rules for the provenance values.

The case L = 0 is impossible, since we always use at least one leaf node in each derivation.
The case L = 1 occurs exactly when r(~Y) is a leaf node. Since edb predicates do not occur in

heads of rules in Π, the only rules we have to consider are of the form pe(~x,v,1)←. Here, the
claim holds.

Assume the claim holds for all L′ < L.
Consider the rule (E1). For the body to be satisfied,we need that pq1(

~X1,V1,L1), . . . ,

pqn(~Xn,Vn,Ln) are contained in I . Since Li > 0, L= L1+ · · ·+Ln and n> 1, we know that Li < L
and therefore the claim holds for pq1(

~X1,V1,L1), . . . , pqn(~Xn,Vn,Ln). Therefore, pqi(~xi,vi, li)∈I

iff vi is the provenance of qi(~xi) using any derivation that uses exactly li leaf nodes. Let us denote
by dtree`(qi(~xi)) the set of all derivation trees τ for qi(~xi) that use exactly ` leaf nodes, and by
leaves(τ) the set of leaf nodes in the tree τ . Then

vi =
⊕

τ∈dtreeli (qi(~xi))

⊗
t∈leaves(τ)

R(t). (E8)

Then for v= v1⊗·· ·⊗vn, and l = l1+ · · ·+ ln we have that pr(~y,v, l, i,~z) is in I iff for i= 1, . . . ,n
the atoms pqi(~xi,vi, li) are in I . This however means that for i = 1, . . . ,n the equation (E8) holds.
Therefore v is the value

v = v1⊗ . . .⊗vn =
⊕

τ∈dtreel1 (q1(~x1))

⊗
t∈leaves(τ)

R(t) ⊗ ·· · ⊗
⊕

τ∈dtreeln (qn(~xn))

⊗
t∈leaves(τ)

R(t).

We use that for every combination of derivations τ1, . . . ,τn respectively for q1(~x1), . . . ,qn(~xn)

there is a derivation of r(~y) using the rule ri last, where the global variables that do not occur in

22 APPENDIX

the head of ri have the value~z. According to the distributive law, assuming that last(τ) denotes
the last rule in derivation tree τ and that gvar(ri) denotes the value of the global variables in rule
ri that do not occur in the head of ri, we obtain that

v = v1⊗ . . .⊗vn =
⊕

τ∈dtreel(r(~y)),ri=last(τ),gvar(ri)=~z

⊗
t∈leaves(τ)

R(t).

It follows that rule (E1) ensures that the predicates of the form pr(~Y ,V,L, i,~Z) satisfy our claim
(for L).

Next for rule (E3). Here, we simply aggregate over the global variables in ri that do not occur
in the head of ri.

The head atom pr(~Y ,V,L, i) should describe the value V of the provenance of r(~Y) using any
derivation that uses exactly L leaf nodes and uses rule ri last. This value is given by⊕

τ∈dtreeL(r(~x)),ri=last(τ)

⊗
t∈leaves(τ)

R(t) =
⊕
~z

⊕
τ∈dtreel(r(~x)),ri=last(τ),gvar(ri)=~z

⊗
t∈leaves(τ)

R(t).

We know that according to the previous rule (E1), the predicate pr(~Y ,V,L, i,~Z) encodes exactly
the inner sum. Since rule (E3) performs the outer sum, it follows that rule (E3) ensures that the
predicates of the form pr(~Y ,V,L, i) satisfy our claim (for L).

Next, the rule (E5) aggregates over the different rules that were used last to derive r(~x) using l
leaf nodes. The argumentation is analogous to the one for the last rule (E3), where we aggregated
over~z instead of the rule index i like here.

Overall, the inductive proof of the correctness of the rules specifying the predicates
pr(~Y ,V,L[, i,~Z]) succeeds, since all the predicates are correctly defined for L given that predi-
cates are well defined for L′ < L.

Last but not least we consider the last rule (E7) which should produce the final result. Accord-
ing to the definition of provenance for datalog programs in (Green et al. 2007), the label v of the
query result r(~x) is

v =
⊕

τ∈dtree(r(~x))

⊗
t∈leaves(τ)

R(t),

where dtree(r(~x)) is the set of all derivation trees for r(~x) and R(t) is the provenance of the leaf
t. We reformulate this equation as follows:

v =
⊕

τ∈dtree(r(~x))

⊗
t∈leaves(τ)

R(t) =
⊕
l≥0

⊕
τ∈dtreel(r(~x))

⊗
t∈leaves(τ)

R(t);

since pr(~x,v′, l) ∈I iff v′ =
⊕

τ∈dtreel(r(~x))
⊗

t∈leaves(τ) R(t), we obtain

v =
⊕
l≥0

⊕
pr(~x,v′,l)∈I

v′.

As due to rule (E7), we have pr(~x,v) ∈I iff

v =
⊕
l≥0

⊕
pr(~x,v′,l)∈I

v′,

we obtain that pr(~x,v) ∈I . This concludes the proof.

APPENDIX 23

6 Language Aspects

6.1 Safety

Theorem I (Support Independence). Let σ1,σ2 be semiring signatures, Iw be a pointed σi-HT-
interpretation (i = 1,2) and α be a weighted σi-formula (i = 1,2) that is syntactically domain
independent w.r.t. variable x. Then

{ξ ∈ r1(s(x)) | Jα(ξ)Kσ1
R (Iw) 6= e⊕}= {ξ ∈ r2(s(x)) | Jα(ξ)Kσ2

R (Iw) 6= e⊕}.

Proof. We give a proof using structural induction on the syntactically domain independent for-
mula α . In the following let Iw some pointed HT-interpretation and σ1,σ2 semiring signatures
that contain all the constants of α and Iw

• Case α = k:
This formula contains no local variables, therefore the equality is trivially fulfilled.

• Case α = φ(~x):
The given formulas are all range restricted. For range restricted formulas it is known, that they
are domain independent (see for example (Demolombe 1992)), which implies that when they
are seen as weighted formulas, their support does not depend on the signature.

• Case α = ¬⊕β (x):
The semantics of¬⊕β is the inverse of the semantics of β w.r.t.⊕, which is e⊕ iff the semantics
of β is e⊕. Therefore we have

{ξ ∈ r1(s(x)) | J¬⊕β (ξ)Kσ1
R (Iw) 6= e⊕}

={ξ ∈ r1(s(x)) | Jβ (ξ)Kσ1
R (Iw) 6= e⊕}

={ξ ∈ r2(s(x)) | Jβ (ξ)Kσ2
R (Iw) 6= e⊕}

={ξ ∈ r2(s(x)) | J¬⊕β (ξ)Kσ2
R (Iw) 6= e⊕}.

• Case α = ¬⊗β (x):
The semantics of ¬⊗β is the inverse of the semantics of β w.r.t. ⊗ or e⊕ if the semantics of β

is e⊕. Therefore we have on the one hand that

Jβ (ξ)Kσi
R(I) = e⊕⇒ J¬⊗β (ξ)Kσi

R(I) = e⊕.

Furthermore, we have for the other direction that

J¬⊗β (ξ)Kσi
R(I) = e⊕⇒ Jβ (ξ)Kσi

R(I) = e⊕∨ Jβ (ξ)Kσi
R(I)⊗ e⊕ = e⊗

The second disjunct implies that e⊕ = e⊗ since e⊕ annihilates R. Therefore since ∀r ∈ R :
e⊗⊗ r = r holds we have that ∀r ∈ R : e⊕⊗ r = e⊕ = r, meaning our semiring has exactly one
element, namely e⊕. Therefore we have

J¬⊗β (ξ)Kσi
R(I) = e⊕⇒ Jβ (ξ)Kσi

R(I) = e⊕

So we know that the semantics of ¬⊗β is e⊕ iff the semantics of β is e⊕ and as in the previous
case we obtain

{ξ ∈ r1(s(x)) | J¬⊗β (ξ)Kσ1
R (Iw) 6= e⊕}

={ξ ∈ r1(s(x)) | Jβ (ξ)Kσ1
R (Iw) 6= e⊕}

={ξ ∈ r2(s(x)) | Jβ (ξ)Kσ2
R (Iw) 6= e⊕}

={ξ ∈ r2(s(x)) | J¬⊗β (ξ)Kσ2
R (Iw) 6= e⊕}.

24 APPENDIX

• Case α = ¬¬α1(x):
We know that {ξ ∈ r1(s(x)) | J¬¬α1(ξ)K

σ1
R (Iw) 6= e⊕} is equal to

{ξ ∈ r1(s(x)) | Jα1(ξ)K
σ1
R (Iw) 6= e⊕}. Therefore this case follows immediately from the in-

ductive hypothesis for α1(x).
• Case α = α1(x)+++α2(x):

Assume that there is

ξ ∈ r2(s(x))\ r1(s(x)) s.t. Jα1(ξ)+++α2(ξ)K
σ2
R (Iw) 6= e⊕},

then we know that

Jα1(ξ)KR(I) 6= e⊕ or Jα2(ξ)KR(I) 6= e⊕

and further that ξ 6∈D2, since σ1,σ2 are semiring signatures. Then it however holds that

ξ ∈ {ξ ∈ r2(s(x)) | Jα1(ξ)K
σ2
R (Iw) 6= e⊕}\{ξ ∈ r1(s(x)) | Jα1(ξ)K

σ1
R (Iw) 6= e⊕}

or

ξ ∈ {ξ ∈ r2(s(x)) | Jα2(ξ)K
σ2
R (Iw) 6= e⊕}\{ξ ∈ r1(s(x)) | Jα2(ξ)K

σ1
R (Iw) 6= e⊕}.

This is impossible due to the induction hypothesis for α1(x) and α2(x). Analogously we can
show that

{ξ ∈ r1(s(x)) | Jα1(ξ)+++α2(ξ)K
σ1
R (Iw) 6= e⊕}\{ξ ∈ r2(s(x)) | Jα1(ξ)+++α2(ξ)K

σ2
R (Iw) 6= e⊕}

is empty, and therefore that

{ξ ∈ r2(s(x)) | Jα1(ξ)+++α2(ξ)K
σ2
R (Iw) 6= e⊕}

={ξ ∈ r1(s(x)) | Jα1(ξ)+++α2(ξ)K
σ1
R (Iw) 6= e⊕}.

• Case α = α1(x)∗α2:
First note that:

{ξ ∈ r1(s(x)) | Jα1(ξ)∗α2K
σ1
R (Iw) 6= e⊕} ⊆ {ξ ∈ r1(s(x)) | Jα1(ξ)K

σ1
R (Iw) 6= e⊕}

We use the induction hypothesis on α1(x) to obtain the equality:

{ξ ∈ r1(s(x)) | Jα1(ξ)∗α2K
σ1
R (Iw) 6= e⊕}

={ξ ∈ {ξ ∈ r1(s(x)) | Jα1(ξ)K
σ1
R (Iw) 6= e⊕} | Jα1(ξ)∗α2K

σ1
R (Iw) 6= e⊕}

={ξ ∈ {ξ ∈ r2(s(x)) | Jα1(ξ)K
σ2
R (Iw) 6= e⊕} | Jα1(ξ)∗α2K

σ2
R (Iw) 6= e⊕}

={ξ ∈ r2(s(x)) | Jα1(ξ)∗α2K
σ2
R (Iw) 6= e⊕}

• Case α = α1 ∗α2(x):
works analogously to the one above.

• Case α = α1(x)∗φ(~X ′), where ~X ′ ⊆ {x}:
works analogously to the one above.

The proof for more than one local variable works analogously.

Theorem 16 is a corollary of Theorem I:

Theorem 16 (Domain Independence). If a formula is syntactically domain independent, then it
is also domain independent.

APPENDIX 25

Proof. When we evaluate α(~X) we take the sum over supp⊕(α(~X),Iw). Due to the previous
lemma we know that the support is invariant under changing the domain. Further, we know that
for a given assignment of the local variables the semantics is independent of the domain. There-
fore, the semantics is invariant under changing the domain for syntactically domain independent
formulas.

Theorem 18 (Program Domain Independence). If a program Π is safe, then it is domain inde-
pendent.

Proof (sketch). Let σi = 〈Di,P,X ,S ,ri〉, i = 1,2 be semiring signatures s.t. Π is a σi-formula
for i = 1,2 and let Iw = (I H ,I H ,w) be a pointed σi-HT-interpretation for i = 1,2.

Let r ∈ Π. If r does not contain global variables, the claim is evident. Otherwise assume
r = ∀x1, . . . ,xn α(x1, . . . ,xn). For ξi ∈ r1(s(xi))∩ r2(s(xi)) the semantics of α(ξ1, . . . ,ξn) does
not depend on σi. Otherwise, assume for some j it holds that ξ j ∈ r1(s(x j)) \ r2(s(x j)). Then
Iw |=σi α(ξ1, . . . ,ξn) for i = 1,2 since x j satisfies condition (ii.1) and therefore there exists an
atom in the body that is not satisfied by Iw.

6.2 Program Equivalence

Theorem 20. For any Π1,Π2 programs, we have that Π1 ≡s Π2 iff Π1 has the same HT-models
as Π2.

Proof (sketch). The direction⇐ is clear. For⇒ we can generalise the proof in (Lifschitz et al.
2001), by constructing Π′, which asserts a subset of the interpretation I T that is ensured to be
stable (I H), and a subset that if partly present is ensured to be fully present (I T \I H).

Let Π1 and Π2 have different HT-models. W.l.o.g. there must be at least one HT-interpretation
(I H ,I T) that is an HT-model of Π1 but not of Π2. As in (Lifschitz et al. 2001) we simply
define

Π
′ = {p(~x)←| p(~x) ∈I H}∪{p(~x)← q(~y) | p(~x),q(~y) ∈I T \I H}

Then I T is an equilibrium model of Π2 ∪Π′, but not of Π1 ∪Π′ and therefore Π1 and Π2 are
not strongly equivalent.

The above proof relies on the fact that our semantics is defined for program with infinite sets
of rules. If we want to avoid this, there are multiple options. In (Lifschitz et al. 2007) the strong
equivalence of arbitrary first-order formulas was considered and characterised as equivalence in
HT Logic. The proof however uses the fact that the strong equivalence considered in their work is
for any first-order sentence and not only for programs, which are a syntactic fragment. A straight
forward way to reproduce their proof strategy in our setting seems not to be apparent.

Nevertheless, it is possible to prove the statement when programs are finite sets of rules in
our setting, provided that auxiliary predicate symbols are available not occurring in the program
(which trivially holds if we have infinitely many predicates of each arity in the underlying pred-
icate signature P).

Proof (sketch). We have two directions to prove. Based on the idea of (Lifschitz et al. 2001).
(⇒) We prove this direction using contraposition, that is we assume that we have two programs
Π1,Π2 s.t. for some HT-interpretation (I H ,I T) it holds that (w.l.o.g.) (I H ,I T ,H) |= Π1 and
(I H ,I T ,H) 6|= Π2. Next we show that there exists a program ∆ s.t. Π1 ∪∆ and Π2 ∪∆ have
different answer sets.

26 APPENDIX

The program ∆ consists of the following rules, where G is the set of predicates that occur in
Π1∪Π2:

repairp(X1, . . . ,Xn)←>=B ¬¬repairp(X1, . . . ,Xn), (F1)

for p ∈ G with arity n.

p(X1, . . . ,Xn)← repairp(X1, . . . ,Xn), (F2)

for p ∈ G with arity n.

fillp,q(X1, . . . ,Xn,Y1, . . . ,Ym)←>=B ¬¬fillp,q(X1, . . . ,Xn,Y1, . . . ,Ym), (F3)

for p,q ∈ G with arities n,m.

p(X1, . . . ,Xn)← q(Y1, . . . ,Ym),fillp,q(X1, . . . ,Xn,Y1, . . . ,Ym), (F4)

for p,q ∈ G with arities n,m.

Intuitively repairp(X1, . . . ,Xn) guesses some tuple (X1, . . . ,Xn) for predicate p such that the
atom p(X1, . . . ,Xn) should definitely be satisfied. Similarly, fillp,q(X1, . . . ,Xn,Y1, . . . ,Ym)

guesses some values (X1, . . . ,Xn) and (Y1, . . . ,Ym) for the predicates p and q, respectively, such
that if p(X1, . . . ,Xn) is satisfied then also q(Y1, . . . ,Yn) should be satisfied.

Consider now the interpretation

I ∗ = I T ∪{repairp(x1, . . . ,xn) | p(x1, . . . ,xn) ∈I H} (F5)

∪{fillp,q(x1, . . . ,xn,y1, . . . ,ym) | p(x1, . . . ,xn),q(y1, . . . ,yn) ∈I T \I H}. (F6)

Then we have that (I H ,I ∗,H) |= Π1∪∆, therefore I ∗ is not an equilibrium model of Π1∪∆.
However for Π2 we have that (I ∗,I ∗,H) |= Π2 ∪∆. Furthermore, consider now some inter-
pretation I ′ ⊆ I ∗ s.t. (I ′,I ∗,H) |= Π2 ∪∆. Due to the included repairs, we know that at
least I H ⊆ I ′. Moreover, we know that this inclusion is strict even when we consider only
the predicates occurring in Π1 ∪Π2, since (I H ,I T ,H) 6|= Π2. Therefore, due to the fills we
have to include all the predicates from I T . It follows that I ′ = I ∗ and therefore that I ∗ is an
equilibrium model of Π2∪∆.
(⇐) Assume that Π1 has the same HT-models as Π2 and consider for an arbitrary program ∆ the
HT-models of Π1∪∆ and Π2∪∆. Those are exactly the HT-models (I H ,I T) s.t.

(I H ,I T ,H) |= Π1 and (I H ,I T ,H) |= ∆,

which is however equivalent to

(I H ,I T ,H) |= Π2 and (I H ,I T ,H) |= ∆

since Π1 and Π2 have the same HT-models. Since the HT-models of Π1 ∪∆ and Π2 ∪∆ are the
same, we also know that the equilibrium models I are the same, since it follows that

(I ,I ,H) |= Π1∪∆ and ∀I ′ (I : (I ′,I ,H) 6|= Π1∪∆

⇐⇒ (I ,I ,H) |= Π2∪∆ and ∀I ′ (I : (I ′,I ,H) 6|= Π2∪∆.

7 Complexity

Theorem II (Complexity of evaluation). Let R = (R,⊕,⊗,e⊕,e⊗) some semiring and e : R→N
some encoding function s.t. R is efficiently encoded by e.

APPENDIX 27

Then for a quantifier-free weighted formula over R and pointed HT-interpretation Iw, we can
calculate e(JαKR(Iw)) in polynomial time.

Proof. The proof is by structural induction on the formula α , with induction invariant that t(α)

the time needed is in O(Nn), where N is the size of the input, n ∈ N is a constant not depending
on the input. Further, s(α) the size of the representation of the obtained value, i.e. ‖JαKR(Iw)‖,
is in O(N).‘

• Base Cases:

— α = e(k): Then one can evaluate the expression by simply returning e(k). This is fea-
sible in polynomial time. The size of the output is linear in the size of the input.

— α = φ : We simply check if Iw |= φ and return e⊕ or e⊗ accordingly. This is possible
in polynomial time since φ is quantifier-free and the size of the output is also bounded
by a constant.

We have shown the invariant for all formulae up to a certain structural complexity.

• Induction Step:

— α = β1→ β2: We know that for βi the invariant holds, therefore we can check in time
bounded polynomially in the size of the formula, whether JβiKR(Iw) = e⊕ and output
e⊕ or e⊗ accordingly. The size of the output is again bounded by a constant.

— α = β1+++β2: We know that the invariant holds for β1,β2. Further t(α)= t(β1)+t(β2)+

x, where x is the time needed for addition of the results for β1 and β2. We know that x
is polynomial in s(β1)+ s(β2), which we know to be in O(N). Therefore x ∈ O(Nl),
where l is the degree of the polynomial bounding the time needed to add two numbers.
It follows that t(α) ∈ O(Nn). For s(α) we can see that

s(α) = ‖JαKR(Iw)‖
≤ ‖Jβ1KR(Iw)‖+‖Jβ2KR(Iw)‖+C

And therefore s(α) ∈ O(N).
— α = β1 ∗β2: The proof works analogously to the proof for the case α = β1 +++β2.
— α = −−−β : We know that the invariant holds for β . Further t(α) = t(β)+ x, where x

is the time needed for inversion of the result for β . We know that x is polynomial in
s(β), which we know to be in O(N). Therefore x ∈O(Nl), where l is the degree of the
polynomial bounding the time needed to invert a number. It follows that t(α)∈O(Nn).
For s(α) we can see that

s(α) = ‖JαKR(Iw)‖
≤ ‖Jβ KR(Iw)‖+C

And therefore s(α) ∈ O(N).
— α = β−−−111: The proof works analogously to the proof for the case α =−−−β .

Theorem 22 (Ground Complexity). Let Π be a variable-free program s.t. each semiring in Π is
efficiently encoded. Then

• MC is co-NP-complete.
• (propositional) SE is co-NP-complete.

28 APPENDIX

• SAT is σ
p
2 -complete.

Proof (sketch). The hardness parts are inherited from the complexity of the respective problems
for disjunctive logic programs (Dantsin et al. 2001; Lin 2002): The disjunctive logic program-
ming rule

a1∨·· ·∨an← b1, . . . ,bm,¬c1, . . . ,¬ck

is strongly equivalent to the A C -rule

1 =B a1 +++ . . .+++an← b1, . . . ,bm,¬c1, . . . ,¬ck.

The memberships follow from the possibility of applying guess and check algorithms. We only
need that given (I H ,I T) and algebraic constraint k ∼R α , we can decide in polynomial time
whether IH |= k ∼R α . This is possible since we know that R is efficiently encoded: We only
need to perform polynomially many additions, multiplications and inversions which each take
polynomial time as Theorem II says.

Theorem 23 (Non-gound Complexity). Let Π be a safe program such that each semiring in Π

is efficiently encoded. Then
(i) MC is in EXPTIME, and co-NPNPPP

-hard (thus also co-NPPP-hard and NPPP-hard).
(ii) SAT is undecidable.
(iii) SE is undecidable.

Proof (sketch). (i) Given the interpretation I (as set of ground atoms), we can iterate over all
I ′ (I and check (I ,I ,H) |= r′, as well as (I ′,I ,H) |= r′ for each ground instance r′ of
a rule r ∈ Π in exponential time. The iteration and considering one ground instance r′ at a time
is feasible in polynomial space; the evaluation of algebraic constraints k ∼R α is feasible in ex-
ponential time, since if α is of the form Σy1, . . . ,ynα ′(y1, . . . ,yn) where α ′ is quantifier-free, by
safety of the program each yi must occur in some atom p(~x). That is, to evaluate α , we only need
to consider values ξ (yi) for yi, i = 1, . . . ,n that occur in the interpretation I . There are expo-
nentially many such ξ ; for each of them, the value of α ′(ξ (y1), . . . ,ξ (yn)) can be computed in
polynomial time given that R is efficiently encoded, yielding a value rξ such that e(rξ) occupies
polynomially many bits. The aggregation Σξ rξ over all ξ is then feasible in exponential time by
the assertion that ‖r1⊕ r2‖ ≤ ‖r1‖+ ‖r2‖+ c and that e(r1⊕ r2) is computable in polynomial
time given e(r1),e(r2).

We note that the value of Σξ rξ may under the assertions occupy exponentially many bits;
under stronger assumptions on the encoding e(r), a smaller upper bound may be derived. E.g.,
we obtain membership in PSPACE if it is ensured that for the addition, we have the stronger
condition ‖r1⊕ r2⊕·· ·⊕ rn‖ ≤ (1+ logn)maxi ‖ri‖+ c, for every n ≥ 2 where c is a constant.
For example, the canonical semiring N of the natural numbers satisfies this property.

The co-NPNPPP
-hardness is due to a reduction from AE-MAJSAT, which asks whether for a

Boolean formula φ(x1, . . . ,xn) for all assignments to x1, . . . ,xm a partial assignment to xm+1, . . . ,xk

APPENDIX 29

exists s.t. more than 2n−k−1 of the assignments to xk+1, . . . ,xn satisfy φ(~x). Then the program

e(0)←
e(1)←

1 =B a1(0)+++a1(1)←
. . .

1 =B am(0)+++am(1)←
1 =B a1(0)∗a1(1)← a1(X1), . . . ,am(Xm),e(Xm+1), . . . ,e(Xk),

2n−k−1 <N e(Xk+1)∗ . . .∗ e(Xn)∗φ(~X)

. . .

1 =B am(0)∗am(1)← a1(X1), . . . ,am(Xm),e(Xm+1), . . . ,e(Xk),

2n−k−1 <N e(Xk+1)∗ . . .∗ e(Xn)∗φ(~X)

has an equilibrium model I = {a1(0),a1(1), . . . ,am(0),am(1),e(0),e(1)} iff the answer for AE-
MAJSAT is yes.

Assume the answer for AE-MAJSAT is yes. Then for every subset I ′ ⊆ I we have
(I ′,I ,H) 6|=Π. If we remove e(i) or both ai(0) and ai(1) for some i, this is clear. Otherwise, we
know that for each i some ai(ji) holds. Then for these values there exist values jm+1, . . . , jk s.t.
φ(j1, . . . , jk,Xk+1, . . . ,Xn) is a yes instance for MAJSAT. Therefore the body

a1(j1), . . . ,am(jm),e(X j+1), . . . ,e(jk),2n−k−1 <N e(Xk+1)∗ . . .∗ e(Xn)∗φ(~X)

is satisfied and if (I ′,I ,H) |= Π we know that I ′ = I .
On the other hand if the answer for AE-MAJSAT is no, due to the partial assignment j1, . . . , jm

to the variables x1, . . . ,xm, for I ′ = {a1(j1), . . . ,am(jm),e(0),e(1)} we have (I ′,I ,H) |= Π,
and therefore I is not an equilibrium model.

(ii) The undecidable Mortal Matrix Problem asks whether any product of matrices in X =

{X1, . . . ,Xn} ⊂ Zd×d evaluates to the zero matrix 0d (Cassaigne et al. 2014). (Zd×d ,+, ·,0d ,1d)

is efficiently encodable. The program

p(Xi)← (i = 1, . . . ,n)

⊥←¬p(0d)

p(Y)← p(Z1), p(Z2),Y =Zd×d Z1 ∗Z2

has a stable model iff the answer to the mortal matrix problem for X is yes, since p(0d) needs to
be supported.

(iii) Let Π be the program from above. Then the answer to the mortal matrix problem for X is
yes iff Π is strongly equivalent to Π′ = Π\{⊥←¬p(0)d)}. This can be seen as follows.

As Π′ has no negation, its HT-models are the interpretations (I ′,I) where both I ′ and I are
closed under the rules of Π′, sets S such that p(X1), . . . , p(Xn) ∈ S and whenever p(Y), p(Z) ∈ S
then also p(Y ∗Z) ∈ S. Similarly, the HT-models of Π are the interpretations (I ′,I) where I ′

and I are closed under the rules of Π′ and in addition p(0d) ∈I ′.
Therefore, Π ≡s and Π′ iff p(0d) ∈ L, where L is the least set closed under the rules of Π′,

which holds iff the answer for the mortal matrix problem on X is yes.

Corollary III. When the program Π is over the semiring N of the natural numbers, we have
co-NPNPPP

-completeness for MC.

30 APPENDIX

Proof. The hardness is due to the proof of the previous theorem. The membership follows from
the fact that we can check the satisfaction of constraints over N using a PP oracle.

This can be seen as follows. We can evaluate weighted formulas over N of the form Σy1 . . .Σynα

where α is quantifier-free using a #P oracle: we can non-deterministically choose an assignment
ξ to y1, . . . ,yn, calculate r = Jα(ξ)KN(Iw) in polynomial time and generate r accepting branches.

Since PPP is equal to P#P also co-NPNPPP
is equal to co-NPNP#P

.
As for the co-NPNP#P

membership: Given a program Π and a potential equilibrium model I

we can guess a subset I ′ (I and check whether (I ′,I ,H) |= Π. The latter can be achieved
in co-NP#P by guessing a rule r ∈ Π and an assignment ξ to its global variables. Then we can
check whether (I ′,I ,H) |= r(ξ) in P#P by checking satisfaction of each atom and constraint in
r(ξ).

We note that MC is decidable for A C -programs over the natural numbers while SAT and
SE are undecidable. This may not be much surprising from Theorem ??, given that the semir-
ing Zd×d is (efficiently) encodable to N. The undecidability can directly be shown by a reduc-
tion from solving Diophantine equations, i.e., polynomial equations P(x1, ...,xn) = 0 in variables
x1, . . . ,xn over the integers, which by Matiyasevich’s celebrated result is undecidable; this holds
if the solutions are restricted to the natural numbers (Matiyjasevich 1996). We can equivalently
consider polynomial equations P(x1, ...,xn) = Q(x1, ...,xn) where all coefficients in the polyno-
mial expressions P(x1, . . . ,xn) and Q(x1, . . . ,xn) are non-negative. We then can write a program
Π consisting of the rules

n(0)← .

n(X)← n(Y),X =N 1+Y.

sol← n(X1), ...,n(Xn),Y =N P(X1, ...,Xn),Y =N Q(X1, ...,Xn).

⊥←¬sol.

The program Π is safe and it has a (unique) equilibrium model (in which sol is true) iff a
solution to P(x1, ...,xn) =Q(x1, ...,xn) exists. Furthermore, the existence of an equilibrium model
is equivalent to Π≡s Π\{⊥← ¬sol}.

Definition IV (Finite Groundability). Let σ some semiring signature and Π an A C -program
over σ . Then Π is finitely groundable if there is a signature σ ′ = 〈D ,P,X ,S ,r〉 s.t. the equi-
librium models of Π over σ are the same as the equilibrium models over σ ′ and D is finite.

Theorem V. For finitely ground programs over σ ′ = 〈D ,P,X ,S ,r〉 (|D |< ∞) that only use
computable semirings, SAT and SE are decidable.

Proof. We can replace universally quantified formulas with finite conjunctions over all the sub-
stitutions and existentially quantifies formulas with finite disjunctions over all the substitutions.

For variable free programs we have decidability when all the semirings are computable.

Theorem VI. Let Π be a safe program over σ without value invention, where all algebraic
constraints in heads are domain restricted. Then Π is finitely ground over σ ′= 〈D ,P,X ,S ,r〉,
where D is the subset of domain values that occur in Π.

Proof. Let I be a σ -interpretation s.t. (I ,I ,T) |=Π. Then for I ′ obtained from I by remov-
ing all atoms that contain constants not from D , we have (I ′,I ,H) |= Π. This can be seen as
follows: Assume r ∈Π with global variables x1, . . . ,xn. Since r is safe and does not contain value

APPENDIX 31

invention, the body of r can only be satisfied for substitutions of the variables with elements from
D . Therefore, if the head of r is an atom p(~x), we can only derive p(~ξ) for substitutions from D

and therefore, if the rule was satisfied previously, it is still satisfied.
Otherwise, if the head of r is a constraint, we know that it is domain restricted, i.e. of the form

k ∼R ¬¬α(~X)∗ (α(~X)→ β (~X))∗ γ(~X),

where α(~X),β (~X) are syntactically domain independent and all atoms in γ(~X) are locally ground.
Let ~ξ be some assignments to ~X over the original domain.
We consider first ¬¬α(~ξ). It holds that

J¬¬α(~ξ)

KR(IH) = e⊕ ⇐⇒ J¬α(~ξ)KR(IH) = e⊗∨ J¬α(~ξ)KR(IT) = e⊗

⇐⇒ Jα(~ξ)KR(IH) = e⊕∧ Jα(~ξ)KR(IT) = e⊕∨ Jα(~ξ)KR(IT) = e⊕

⇐⇒ Jα(~ξ)KR(IT) = e⊕

Therefore this part of the formula is not influenced by I ′.
Secondly we consider α(~ξ)→ β (~ξ). We only need to consider this value if J¬¬α(~ξ)KR(IH)

is unequal to zero, i.e. if Jα(~ξ)KR(IT) is unequal to zero. Now if Jα(~ξ)→ β (~ξ)KR(IT) is
unequal to zero this implies that Jβ (~ξ)KR(IT) is unequal to zero. If all the values in ~ξ are from
D , there is no change. Otherwise we know that Jα(~ξ)KR(IH) = Jβ (~ξ)KR(IH) = e⊕ since α(~X)

and β (~X) are syntactically domain independent and therefore have value e⊕ for values that are
not mentioned in the interpretation I ′ (see proof of the invariance of the support for syntactically
domain independent weighted formulas). It follows that Jα(~ξ)→ β (~ξ)KR(IT) is also unequal
to zero.

Since γ(~X) contains only locally ground atoms, the restriction of the interpretation to I ′ does
not change the value of γ(~ξ).

Therefore

J¬¬α(~X)∗ (α(~X)→ β (~X))∗ γ(~X)KR(IH) = J¬¬α(~X)∗ (α(~X)→ β (~X))∗ γ(~X)KR(IT)

and

IH |= k ∼R ¬¬α(~X)∗ (α(~X)→ β (~X))∗ γ(~X)

⇐⇒IT |= k ∼R ¬¬α(~X)∗ (α(~X)→ β (~X))∗ γ(~X).

We see that since (I ,I ,T) |= Π also (I ′,I ,T) |= Π. Therefore I can only be an equilibrium
model if it contains only constants from D , which implies that Π is finitely ground over σ ′

Theorem 25. For safe programs without value invention where all algebraic constraints in rule
heads are domain restricted and all semirings are computable, both SAT and SE are decidable.

Proof. This result follows easily from Theorems V and VI.

References

CABALAR, P., FANDINNO, J., SCHAUB, T., AND WANKO, P. 2020. An ASP semantics for constraints
involving conditional aggregates. arXiv preprint arXiv:2002.06911.

CASSAIGNE, J., HALAVA, V., HARJU, T., AND NICOLAS, F. 2014. Tighter undecidability bounds for
matrix mortality, zero-in-the-corner problems, and more. CoRR abs/1404.0644.

32 APPENDIX

DANTSIN, E., EITER, T., GOTTLOB, G., AND VORONKOV, A. 2001. Complexity and expressive power of
logic programming. ACM Comput. Surv. 33, 3, 374–425.

DEMOLOMBE, R. 1992. Syntactical characterization of a subset of domain-independent formulas. Journal
of the ACM (JACM) 39, 1, 71–94.

GREEN, T. J., KARVOUNARAKIS, G., AND TANNEN, V. 2007. Provenance semirings. In Proc. ACM
PODS’07. ACM, 31–40.

LIFSCHITZ, V., PEARCE, D., AND VALVERDE, A. 2001. Strongly equivalent logic programs. ACM
TOCL 2, 4, 526–541.

LIFSCHITZ, V., PEARCE, D., AND VALVERDE, A. 2007. A characterization of strong equivalence for
logic programs with variables. In International Conference on Logic Programming and Nonmonotonic
Reasoning. Springer, 188–200.

LIN, F. 2002. Reducing strong equivalence of logic programs to entailment in classical propositional logic.
KR 2, 170–176.

MATIYJASEVICH, Y. 1996. Hilbert’s tenth problem: what can we do with Diophantine equations? En-
glish version of a talk given by the author. Available at http://logic.pdmi.ras.ru/˜yumat/
personaljournal/H10history/H10histe.pdf.

PEARCE, D. AND VALVERDE, A. 2006. Quantified Equilibrium Logic and the First Order Logic of Here-
and-There. Technical Report MA-06-02.

