
Verifying Tight Logic Programs with anthem and vampire 17

Appendix A Proofs

A.1 Main Lemma

Let us now extend the correspondence between stable models defined in terms of the
SM operator and infinitary logic (Truszczyński 2012) to the above two-sorted case. We
also allow formulas to contain extensional predicate symbols, which are not considered in
(Truszczyński 2012).

We use the following notation. By Z, we denote the set of all numerals, and by T , we
denote the set of all precomputed terms. For an interpretation I and a list p of predicate
symbols, by Ip, we denote the set of precomputed atoms p(t1, . . . , tk) satisfied by I where
p ∈ p.

Let p,q be a partition of the predicate symbols in the signature. Then, the grounding
of a sentence F with respect to an interpretation I and a set of intensional predicate
symbols p (and extensional predicate symbols q) is defined as follows:

• grpI (⊥) = ⊥;
• for p ∈ p, grpI (p(t1, . . . , tk)) = p((tI1)

∗, . . . , (tIk)
∗);

• for p ∈ q, grpI (p(t1, . . . , tk)) = � if p((tI1)∗, . . . , (tIk)
∗) ∈ Iq

and grpI (p(t1, . . . , tk)) = ⊥ otherwise;
• grpI (t1 = t2) = � if tI1 = tI2 and ⊥ otherwise;
• grpI (F ⊗G) = grpI (F)⊗ grpI (G) if ⊗ is ∧, ∨, or →;
• grpI (∃X F (X)) = {grpI (F (u)) | u ∈ T }∨ if X is a program variable;
• grpI (∀X F (X)) = {grpI (F (u)) | u ∈ T }∧ if X is a program variable;
• grpI (∃X F (X)) = {grpI (F (u)) | u ∈ Z}∨ if X is an integer variable;
• grpI (∀X F (X)) = {grpI (F (u)) | u ∈ Z}∧ if X is an integer variable.

For a theory Γ, we define grpI (Γ) = {grpI (F) | F ∈ Γ}.

Definition 1. Let Γ be a theory and p be a list of predicate symbols. Then, an inter-
pretation I is called an INF-p-stable model of Γ if Ip is a stable model of grpI (Γ) in the
sense of Definition 1 in (Truszczyński 2012).

Any term, formula, or theory over the two-sorted signature σΠ can be seen as one-sorted
if we do not assign sorts to variables. On the other hand, some one-sorted terms and
formulas cannot be viewed as terms or formulas over σΠ; for instance, the one-sorted
term X + Y , where X and Y are program variables, is not a term over σΠ. We will refer
to terms, formulas, and theories over σΠ as two-sorted. One-sorted interpretations are
defined as usual in first-order logic, with integer and program variables ranging over
the same domain. One-sorted p-stable models and one-sorted INF-p-stable models are
defined as p-stable models and INF-p-stable models (see Section 4), respectively, but
using one-sorted interpretations rather than two-sorted ones. We also say that two theories
are one-sorted-equivalent if both theories have exactly the same one-sorted models. The
following is a special case of Theorem 5 in (Truszczyński 2012) restricted to our one-sorted
language.

Proposition 1. Let Γ be a finite theory and p be the list of all predicate symbols in some
signature σΠ. Then, the one-sorted p-stable models of Γ and its one-sorted INF-p-stable
models coincide.

18 Jorge Fandinno, Vladimir Lifschitz, Patrick Lühne, and Torsten Schaub

In the following, we extend this result to two-sorted stable models with extensional
predicate symbols (see Proposition 2 below). This requires the following notation and
auxiliary results. The expression is_int(t), where t is a one-sorted term, stands for the
one-sorted formula t+ 1 �= t+ 2. Given a two-sorted sentence F , we write F us to denote
the one-sorted sentence resulting from restricting all quantifiers that bind integer variables
in F to is_int(t). Formally, formula F us is recursively defined as follows:

• F us = F for any atomic formula F ;
• (F ⊗G)

us
= F us ⊗Gus with ⊗ ∈ {∧,∨,→};

• (∀X F (X))
us

= ∀X F (X)
us;

• (∃X F (X))
us

= ∃X F (X)
us;

• (∀N F (N))
us

= ∀N (is_int(N) → F (N)
us
);

• (∃N F (N))
us

= ∃N (is_int(N) ∧ F (N)
us
);

where X and N are program variables and integer variables, respectively. We also
define Γus = {F us | F ∈ Γ}.

Intuitively, the one-sorted models of Γus are in a one-to-one correspondence with the
two-sorted models of Γ. This one-to-one correspondence is formalized as follows. The
generalized value of a ground term is its value if it exists and a fixed (arbitrarily chosen)
symbolic constant u otherwise. Given a two-sorted interpretation I, by Ius, we denote
the one-sorted interpretation such that

• the universe of Ius is the set of all precomputed terms;
• Ius interprets each ground term as its generalized value;
• Ius interprets every predicate symbol in the same way as I.

Lemma 1. Let F be a two-sorted sentence and I be a two-sorted interpretation. Then,
I |= F iff Ius |= F us.

Proof. By structural induction. In case that F is an atomic formula of the form p(t1, . . . , tn),
it follows that Ius |= F us iff (s∗1, . . . , s

∗
n) ∈ pI , where each si is the generalized value

of ti, iff ((tI1)
∗, . . . , (tIn)

∗) ∈ pI iff I |= F . Note that, since F is a two-sorted sentence, the
generalized value of ti coincides with its value.

The only remaining relevant cases are quantifiers over integer variables. We show here
the case of a universal quantifier. Let N be an integer variable. Then,

Ius |= (∀N G(N))
us

iff Ius |= ∀N (is_int(N) → G(N)
us
)

iff Ius |= is_int(u) → G(u)
us for all u ∈ T

iff Ius |= G(u)
us for all u ∈ Z

iff I |= G(u) for all u ∈ Z (induction hypothesis)

iff I |= ∀N G(N).

The case for the existential quantifier is analogous.

We extend this result also to the stable models of a first-order formula. The following
auxiliary result is useful for that purpose.

Lemma 2 (Lemma 5 in Ferraris et al. 2011). The formula (u ≤ p) ∧ (F ∗(u) → F) is
satisfied by all one-sorted interpretations and for any one-sorted formula F .

Verifying Tight Logic Programs with anthem and vampire 19

Lemma 3. Let F be a two-sorted sentence, I be a two-sorted interpretation, and p be a
list of predicate symbols. Then, I |= SMp[F] iff Ius |= SMp[F

us].

Proof. From Lemma 1, we get that I |= SM[F] iff Ius |= (SM[F])
us. We show below

that formula (u ≤ p) ∧ (F ∗(u))us is equivalent to (u ≤ p) ∧ (F us(u))∗. This immediately
implies that (SM[F])

us and SM[F us] are also equivalent. The proof follows by structural
induction, and the only relevant cases are, again, quantifiers over integer variables. We
show the case of a universal quantifier here. Let N be an integer variable and assume
(u ≤ p). Then,

((∀N G(N,u))
us
)∗

= (∀N (is_int(N) → G(N,u)
us
))∗

= ∀N (is_int(N) → G(N,u)
us
)∗

= ∀N ((is_int(N) → G(N)
us
) ∧ (is_int(N)∗ → (G(N,u)

us
)∗))

= ∀N ((is_int(N) → G(N)
us
) ∧ (is_int(N) → (G(N,u)

us
)∗))

⇔ ∀N (is_int(N) → (G(N)
us ∧ (G(N,u)

us
)∗))

⇔ ∀N (is_int(N) → (G(N,u)
us
)∗) (Lemma 2)

⇔ ∀N (is_int(N) → (G(N,u)∗)us) (induction hypothesis)

= (∀N G(N,u)∗)us.

This correspondence can also be established in terms of groundings as follows. The
expression Γ ≡s Γ�, where Γ and Γ� are two infinitary propositional theories, stands for
strong equivalence in the sense of (Harrison et al. 2017, Section 3.1).

Lemma 4. Let Γ be a finite two-sorted theory, I be a two-sorted interpretation, and p

be a list of predicate symbols. Then, grpI (Γ) ≡s grpIus(Γ
us).

Proof. We show grpI (F) ≡s grpIus(F
us) for a formula F , which implies grpI (Γ) ≡s grpIus(Γ

us).
We proceed by structural induction. The only relevant cases are quantifiers over integer
variables. We show the case of a universal quantifier here. Let N be an integer variable
and G�(u) stand for grpIus(G

us(u)). Then,

grpI (∀N G(N)) = {grpI (G(u)) | u ∈ Z}∧

≡s {G�(u) | u ∈ Z}∧ (induction hypothesis)

≡s ({� → G�(u) | u ∈ Z} ∪ {⊥ → G�(u) | u ∈ T \ Z})∧

= grpIus(∀N (is_int(N) → Gus(N)))

= grpIus((∀N G(N))
us
).

The case for the existential quantifier is analogous.

Next, we combine these results to establish a correspondence between the stable models
of a first-order theory and the stable models of its infinitary grounding.

Lemma 5. Let Γ be a finite two-sorted theory, I be a two-sorted interpretation, and p be
the list of all predicate symbols in the signature. Then, the p-stable and the INF-p-stable
models of Γ coincide.

20 Jorge Fandinno, Vladimir Lifschitz, Patrick Lühne, and Torsten Schaub

Proof. We have

I is a p-stable model of Γ

iff Ius is a p-stable model of Γus (Lemma 3)

iff Ius is an INF-p-stable model of Γus (Proposition 1)

iff (Ius)p is a stable model of grpIus(Γ
us)

iff (Ius)p is a stable model of grpI (Γ) (Lemma 4)

iff Ip is a stable model of grpI (Γ)

iff I is an INF-p-stable model of Γ.

For the next-to-last equivalence, just note that (Ius)p = Ip.

Proposition 2. For any finite two-sorted theory Γ and list of predicate symbols p, its
p-stable models and its INF-p-stable models coincide.

Proof. Let q be the list of all extensional predicate symbols in Γ, that is, all predicate
symbols in the signature that do not belong to p, and let Choice(q) be the set containing
a choice sentence ∀U (p(U) ∨ ¬p(U)) for every predicate p ∈ q and where U is a list of
distinct program variables. Let Γ� be the theory obtained by replacing each occurrence
of p(t) in Γ with p ∈ q by ¬¬p(t). Let Γ1 = Γ ∪ Choice(q) and Γ�

1 = Γ� ∪ Choice(q).
Given the choice sentences in Γ1 and Γ�

1 for the predicate symbols in q, the pq-stable
models of Γ1 and Γ�

1 coincide. Then,

I is a p-stable model of Γ

iff I is a pq-stable model of Γ1 (Theorem 2 in Ferraris et al. 2011)

iff I is a pq-stable model of Γ�
1

iff I is an INF-pq-stable model of Γ�
1 (Lemma 5)

iff I is an INF-p-stable model of Γ. (see below)

It remains to be shown that the INF-pq-stable models of Γ�
1 coincide with the INF-p-stable

models of Γ. For this, note that

[grpq
I (Γ�

1)]
Ipq

= [grpq
I (Γ� ∪ Choice(q))]I

pq

= [grpq
I (Γ�)]I

pq ∪ [grpq
I (Choice(q))]I

pq

≡ [grpI (Γ
�)]I

pq ∪ [grpq
I (Choice(q))]I

pq

= [grpI (Γ
�)]I

p ∪ [grpq
I (Choice(q))]I

q

≡ [grpI (Γ
�)]I

p ∪ Iq.

The first two equalities hold by definition. The third step holds because all predicate
symbols in q occur in Γ� under the scope of negation. Note that, for q ∈ q, it follows that

[grpq
I (¬q(t))]Ipq

= [¬q((tI)∗)]Ipq

= Ipq(¬q((tI)∗))
≡ ¬I(q((tI)∗))
= [¬I(q((tI)∗))]Ipq

= [¬grpI (q(t))]I
pq

= [grpI (¬q(t))]I
pq

,

Verifying Tight Logic Programs with anthem and vampire 21

where

I(q((tI)∗)) =

�
� if q((tI)∗) ∈ Iq;
⊥ otherwise

Ipq(¬q((tI)∗)) =
�

⊥ ≡ ¬I(q((tI)∗)) if q((tI)∗) ∈ Iq;
¬⊥ = ¬I(q((tI)∗)) otherwise.

The fourth case is because no predicate in q occurs in grpI (Γ
�). Recall that extensional

predicate symbols are removed by grounding. Similarly, Choice(q) only contains predicate
symbols from q.

We now prove the following equivalence:

[grpq
I (Γ�

1)]
Ipq ≡ [grpI (Γ)]

Ip ∪ Iq (A1)

For this, note that

grpI (Γ
�) ≡ grpI (Γ)

holds because grpI (Γ
�) is the result of replacing each occurrence of p(t) in grpI (Γ) by

¬¬p(t) with p ∈ q. As a result, grpI (Γ
�) is the outcome of replacing each occurrence of X

in grpI (Γ) (with X ∈ {�,⊥}) by ¬¬X. Consequently, equivalence (A1) is proven, and we
get that any interpretation J satisfies that Jpq |= [grpq

I (Γ�
1)]

Ipq

iff Jp |= [grpI (Γ)]
Ip

and
Jq |= Iq. Note that Jq |= Iq iff Jq ⊇ Iq. Then,

I is an INF-pq-stable model of Γ�
1

iff Ipq is a stable model of grpq
I (Γ�

1)

iff Ipq is a model of [grpq
I (Γ�

1)]
Ipq

and there is no model J ⊂ Ipq of [grpq
I (Γ�

1)]
Ipq

iff Ip is a model of [grpI (Γ)]
Ip

and there is no model J ⊂ Ipq of [grpI (Γ)]
Ip ∪ Iq

iff Ip is a model of [grpI (Γ)]
Ip

and there is no model J � ⊂ Ip of [grpI (Γ)]
Ip

iff Ip is a stable model of [grpI (Γ)]

iff I is an INF-p-stable model of Γ.

The following adaptation of Proposition 3 from (Lifschitz et al. 2019) to our notation
is useful to prove the Main Lemma.

Proposition 3. Any rule R and interpretation I satisfy grpI (τ
∗R) ≡s τR.

Proof. By identifying the precomputed terms in τ∗Πprop with their names in I, we get
grpI (τ

∗Π) = τ∗Πprop, where τ∗Πprop is defined as in (Lifschitz et al. 2019, Section 5).

Proof of the Main Lemma. Let Π be a program, let p be the list of all predicate symbols
occurring in Π other than the comparison symbols, and let I be a set of precomputed
atoms. By the choice of p, we get that all predicate symbols in Π and none of the relations
belong to p and, therefore, I = (I↑)p. Then, from Proposition 2, it follows that I↑ is
a p-stable model of τ∗Π iff I↑ is an INF-p-stable model of τ∗Π iff I is a ⊆-minimal
model of [grpI↑(τ

∗Π)]I iff I is a stable model of [grpI↑(τ
∗Π)] iff I is a stable model of τΠ

(Proposition 3) iff I is a stable model of Π (by definition).

22 Jorge Fandinno, Vladimir Lifschitz, Patrick Lühne, and Torsten Schaub

A.2 Main Lemma for IO-Programs

We need the following terminology to extend the Main Lemma to io-programs. The
models of formula ∃H (SMp[F])hH are called the p-stable models with private symbols h

of F , where H is a tuple of predicate variables of the same length as h and Fh
H is the

result of replacing all occurrences of constants from h by the corresponding variables
from H. For a set Γ of first-order sentences, the p-stable models with private symbols h

of Γ are the p-stable models with private symbols h of the conjunction of all formulas in Γ

(Cabalar et al. 2020). We usually omit parentheses and write just ∃H SMp[F]hH instead
of ∃H (SMp[F])hH.

Main Lemma for IO-Programs. Let Ω = (Π,PH , In,Out) be an io-program, let p be
the list of all predicate symbols occurring in Π other than the comparison and input
symbols, and let h be the list of all its private symbols. A set I of precomputed public
atoms is an io-model of Ω for an input (v, i) iff Iv is a p-stable model with private
symbols h of τ∗Π and Iin = i.

The following is a reformulation of the Splitting Theorem in (Ferraris et al. 2009)
adapted to our notation, and it will be useful in proving the above result. We adopt the
following terminology. An occurrence of a predicate symbol in a formula is called negated if
it belongs to a subformula of the form F → ⊥ and nonnegated otherwise. An occurrence of
a predicate symbol in a formula is called positive if the number of implications containing
that occurrence in the antecedent is even. It is called strictly positive if that number is 0.
A rule of a first-order formula F is a strictly positive occurrence of an implication in F .
The dependency graph of a formula is a directed graph that

• has all intensional predicate symbols as vertices and
• has an edge from p to q if, for some rule G → H of F , formula G has a positive

nonnegated occurrence of q and H has a strictly positive occurrence of p.

Proposition 4. Let F and G be one-sorted first-order sentences and let p and q be two
disjoint tuples of distinct predicate symbols such that

• each strongly connected component of the of the dependency graph of F ∧ G is a
subset either of p or q,

• all occurrences in F of symbols from q are negated, and
• all occurrences in G of symbols from p are negated.

Then, SMpq[F ∧G] is equivalent to SMp[F] ∧ SMq[G].

This result can be straightforwardly lifted to the two-sorted language as follows.

Proposition 5. Let F and G be two-sorted first-order sentences and let p and q be two
disjoint tuples of distinct predicate symbols such that

• each strongly connected component of the dependency graph of F ∧G is a subset
either of p or q,

• all occurrences in F of symbols from q are negated, and
• all occurrences in G of symbols from p are negated.

Then, SMpq[F ∧G] is equivalent to SMp[F] ∧ SMq[G].

Verifying Tight Logic Programs with anthem and vampire 23

Proof. Let I be any interpretation. Then,

I |= SMpq[F ∧G]

iff Ius |= SMpq[(F ∧G)
us
] (Lemma 3)

iff Ius |= SMpq[F
us ∧Gus]

iff Ius |= SMp[F
us] ∧ SMq[G

us] (Proposition 4)

iff I |= SMp[F] ∧ SMq[G]. (Lemma 3)

Note that the dependency graphs of F ∧G and F us ∧Gus are the same.

Lemma 6. Let Ω = (Π,PH , In,Out) be an io-program and let p be the list of all
predicate symbols occurring in Π other than the comparison and input symbols. A set I
of precomputed public atoms is a stable model of Ω(v, i) iff Iv is a model of SMp[τ

∗Π]

and Iin = i.

Proof. Recall that, from the Main Lemma stated in Section 4, we get that I is a
stable model of Ω(v, i) iff I↑ is a pq-stable model of τ∗(Ω(v, i)) iff I↑ is a model of
SMpq[τ

∗(Ω(v, i))], where q is the list of all input symbols. Let us denote by Ω(v) the set
of rules obtained from the rules of Ω by substituting the precomputed terms v(c) for all
occurrences of all placeholders c. Then, τ∗(Ω(v, i)) = τ∗(Ω(v) ∪ i) = τ∗(Ω(v)) ∪ τ∗(i) ≡s

τ∗(Ω(v)) ∪ i. Furthermore, since there are no occurrences of predicate symbols in q in
the heads of the rules of Ω(v) nor of any predicate symbol in p in the head of the rules
in i, we get that each strongly connected component is a subset either of p or q. From
Proposition 5, this implies that

I↑ is a model of SMpq[τ
∗(Ω(v, i))]

iff I↑ is a model of SMp[τ
∗(Ω(v))] and I↑ is a model of SMq[i]

iff Iv is a model of SMp[τ
∗Π] and Iin = i.

For the second equivalence, note that Iv is identical to J ↑, except that it interprets
each placeholder c as v(c) and that Ω(v) is the result of replacing each placeholder c

by v(c).

Proof of the Main Lemma for IO-Programs. From left to right. Assume that I is an
io-model of Ω for input (v, i). Let us show that Iv is a p-stable model with private
symbols h of τ∗Π and Iin = i. By definition, the assumption implies that there is some
stable model J of Ω(v, i) such that I is the set of all public atoms of J . From Lemma 6,
this implies that J v is a model of SMp[τ

∗Π] and J in = i and, thus, that Iv is a model of
∃H SMp[(τ

∗Π)]hH and Iin = i. For this last step, recall that I and J agree on all public
predicates. By definition, this means that Iv is a p-stable model with private symbols h

of τ∗Π and Iin = i.
From right to left. Assume that Iv is a p-stable model with private symbols h of τ∗Π.

Let us show that I is an io-model of Ω for an input (v, i). By definition, the assumption
implies that Iv is a model of ∃H SMp[(τ

∗Π)]hH. This implies that there is some model J
of SMp[(τ

∗Π)] such that Iv and J agree on the interpretation of all public predicates.
Let J be the set of precomputed atoms satisfied by J . Then, there are no occurrences
of placeholders in J and, thus, we get that J v = J ↑ = J and, thus, also that J v is a
stable model of SMp[(τ

∗Π)]. Recall that we also have Iin = i and, since I and J contain

24 Jorge Fandinno, Vladimir Lifschitz, Patrick Lühne, and Torsten Schaub

the same public atoms, we get that J in = i. From Lemma 6, these two facts together
imply that J is a stable model of Ω(v, i) and, therefore, that I is an io-model of Ω for an
input (v, i).

A.3 Theorem 1

In order to prove Theorem 1, we need the notions of Clark normal form, completion, and
tight theories (Ferraris et al. 2011, Section 6). We adapt these notions to a two-sorted
language here. A theory—one-sorted or two-sorted—is in Clark normal form relative to a
list p of intensional predicates if it contains exactly one sentence of the form

∀V1 . . . Vn (G → p(V1, . . . , Vn)) (A2)

for each intensional predicate symbol p/n in p, where G is a formula and V1, . . . , Vn are
distinct program variables. The completion of a theory Γ in Clark normal form, denoted
by COMPp[Γ], is obtained by replacing each implication → by an equivalence ↔ in all
sentences of form (A2). The following is a special case of Theorem 10 in (Ferraris et al.
2011) adapted to our notation.

Proposition 6. For any one-sorted sentence F in Clark normal form and list of predi-
cates p, the implication

SMp[F] → COMPp[F]

is satisfied by all one-sorted interpretations.

Then, we can easily extend this result to two-sorted interpretations as follows.

Proposition 7. For any two-sorted sentence F in Clark normal form, list of predicates p,
and two-sorted interpretation I, if I satisfies SMp[F], then it also satisfies COMPp[F].

Proof. Let I be any two-sorted interpretation. From Lemma 1, we get that I |= COMPp[F]

iff Ius |= (COMPp[F])
us. Furthermore, we can see that (COMPp[F])

us
= COMPp[F

us],
and thus, we get

I |= COMPp[F] iff Ius |= COMPp[F
us].

Similarly, from Lemma 3, we get

I |= SMp[Γ] iff Ius |= SMp[Γ
us].

Finally, from Proposition 6, we get

Ius |= SMp[Γ
us] implies Ius |= COMPp[Γ

us].

Consequently, the result holds.

Let us introduce the Clark form of a program without input and output. The Clark
definition of p/n in Π is a formula of the form

∀V1 . . . Vn

�
k�

i=1

∃Ui Fi → p(V1, . . . , Vn)

�
, (A3)

where each Fi is the formula representation of rule Ri and rules R1, . . . , Rk constitute the

Verifying Tight Logic Programs with anthem and vampire 25

definition of p/n in Π. By Cdef (Π), we denote the theory containing the Clark definitions
of all predicate symbols. We also define Clark(Π) def= Cdef (Π) ∪ΠC , where ΠC is the set
containing the formula representation of all constraints in Π.

About first-order formulas F and G, it is said that F is strongly equivalent to G

if, for any formula H, any occurrence of F in H, and any list p of distinct predicate
symbols, SMp[H] is equivalent to SMp[H

�], where H � is obtained from H by replacing
the occurrence of F by G. About finite first-order theories Γ and Γ�, we say that Γ is
strongly equivalent to Γ� when the conjunction of all sentences in Γ is strongly equivalent
to the conjunction of all sentences in Γ�. First-order theory Γ is strongly equivalent to Γ�

iff Γ is equivalent to Γ� in quantified equilibrium logic (Ferraris et al. 2011, Theorem 8).
Therefore, Γ is strongly equivalent to Γ� if Γ is equivalent to Γ� in intuitionistic logic.

Lemma 7. Let Π be a program without constraints. Then, τ∗Π is strongly equivalent to
Cdef (Π).

Proof. By definition, τ ∗Π contains a formula of the form

∀V1 . . . VnUi (Fi → p(V1, . . . , Vn)) (A4)

for each rule Ri in Π. Note that (A4) is strongly equivalent to

∀V1 . . . Vn (∃Ui Fi → p(V1, . . . , Vn)).

Furthermore, since Π is finite, it follows that τ∗Π is finite too and, therefore, we get that
τ∗Π is strongly equivalent to Γ, where Γ is the theory containing a formula of the form

k�

i=1

∀V1 . . . Vn (∃Ui Fi → p(V1, . . . , Vn)) (A5)

for each predicate symbol p/n. Finally, since (A3) and (A5) are strongly equivalent, we
get that τ∗Π and Cdef (Π) are also strongly equivalent.

Lemma 8. For any program Π, τ ∗Π is strongly equivalent to Clark(Π).

Proof. Let Π1,Π2 be a partition of Π such that Π2 contains all constraints and Π1 all
the remaining rules. Then, τ∗Π = τ∗(Π1 ∪Π2) = τ∗Π1 ∪ τ∗Π2 = τ∗Π1 ∪ΠC . Now, the
result follows directly from Lemma 7.

Proof of Theorem 1. From the Main Lemma for IO-Programs, it follows that I is an
io-model of Ω for an input (v, i) iff Iv is a p-stable model with private symbols h of τ∗Π
and Iin = i. Furthermore,

Iv is a p-stable model with private symbols h of τ ∗Π

iff Iv is a model of ∃H SMp[τ
∗Π]hH

iff Iv is a model of ∃H SMp[Clark(Π)]hH (Lemma 8)

implies that Iv is a model of ∃HCOMPp[Clark(Π)]hH (Proposition 7)

iff Iv is a model of ∃HCOMPp[τ
∗Π]hH

iff Iv is a model of COMP[Ω].

26 Jorge Fandinno, Vladimir Lifschitz, Patrick Lühne, and Torsten Schaub

A.4 Theorem 2

To prove Theorem 2, we need the following terminology. An occurrence of a predicate
symbol in a formula is called negated if it belongs to a subformula of the form F → ⊥
and nonnegated otherwise. An occurrence of a predicate symbol in a formula is called
positive if the number of implications containing that occurrence in the antecedent is
even. The dependency graph of a theory in Clark normal form is a directed graph that

• has all intensional predicate symbols as vertices and
• has an edge from p to q if q has a positive nonnegated occurrence in G for some

sentence of form (A2).

A theory is tight if its predicate dependency graph is acyclic. The following is a reformu-
lation of Theorem 11 in (Ferraris et al. 2011) adapted to our notation.

Proposition 8. For any finite, tight, one-sorted theory Γ in Clark normal form, SMp[Γ]

is equivalent to COMPp[Γ].

The following lifts this result to the case of two sorts.

Proposition 9. For any finite, tight, two-sorted theory Γ in Clark normal form, SMp[Γ]

is equivalent to COMPp[Γ].

Proof. Let I be any two-sorted interpretation. From Lemma 1, we get that I |= COMPp[Γ]

iff Ius |= (COMPp[Γ])
us. Furthermore, it is easy to see that (COMPp[Γ])

us
= COMPp[Γ

us],
and thus, we get

I |= COMPp[Γ] iff Ius |= COMPp[Γ
us].

Similarly, from Lemma 3, we get

I |= SMp[Γ] iff Ius |= SMp[Γ
us].

Finally, from Proposition 8, we get

Ius |= COMPp[Γ
us] iff Ius |= SMp[Γ

us].

Consequently, the result holds.

Proof of Theorem 2. From the Main Lemma for IO-Programs, it follows that I is an
io-model of Ω for an input (v, i) iff Iv is a p-stable model with private symbols h of τ∗Π
and Iin = i. Furthermore,

Iv is a p-stable model with private symbols h of τ ∗Π

iff Iv is a model of ∃H SMp[τ
∗Π]hH

iff Iv is a model of ∃H SMp[Clark(Π)] (Lemma 7)

iff Iv is a model of ∃HCOMPp[Clark(Π)]hH (Proposition 9)

iff Iv is a model of ∃HCOMPp[τ
∗Π]hH

iff Iv is a model of COMP[Ω].

Recall that Ω is tight, and this implies that Clark(τ∗Π) is also tight. Note that Clark(τ∗Π)
contains a formula of form (A3) for every predicate symbol p/n and that the antecedent
of this formula is a disjunction of the formula representations of the bodies of all rules

Verifying Tight Logic Programs with anthem and vampire 27

defining p/n. Therefore, the dependency graph of Clark(τ∗Π) is identical to the dependency
graph of Ω with the exception of the addition of nonpositive edges corresponding to choice
rules.

A.5 Theorem 3

A predicate expression is a lambda expression of the form

λX1 . . . Xn F (X1, . . . , Xn), (A6)

where F (X1, . . . , Xn) is a formula and X1, . . . , Xn are object variables. This formula may
have free variables other than X1, . . . , Xn, called the parameters of (A6). If E is (A6) and
t1, . . . , tn are terms, then E(t1, . . . , tn) stands for the formula F (t1, . . . , tn). If G(P) is a
formula containing a predicate constant or variable P and E is a predicate expression of
the same arity as P , then G(E) stands for the result of replacing each atom P (t1, . . . , tn)

in G(P) by E(t1, . . . , tn). For any predicate expression E, the formulas

∀P G(P) → A(E) and G(E) → ∃P A(P)

are theorems of second-order logic.

Lemma 9. Let P = P1, . . . , Pl be a list of predicate variables and let Pi = P1, . . . , Pi be
a prefix of P. Let F1(P1), . . . , Fl(Pl) be formulas such that Pi contains all free predicate
variables occurring in Fi. Let F and G, respectively, be the following two formulas:

∃P (F1(P1) ∧ · · · ∧ Fl(Pl) ∧ F �(P)), (A7)

∀P (F1(P1) ∧ · · · ∧ Fl(Pl) → F �(P)). (A8)

Then, F ≡ G.

Proof. If l = 0, then P is the empty tuple, and thus, both (A7) and (A8) stand just for
the formula F �(P), so the result holds. Otherwise, we proceed by induction. Note that
(A7) and (A8) are, respectively, equivalent to

∃P1 (F1(P1) ∧ ∃P�
l (F2(P1,P

�
2) ∧ · · · ∧ Fl(P1,P

�
l) ∧ F �(P1,P

�
l))), (A9)

∀P1 (F1(P1) → ∀P�
l (F2(P1,P

�
2) ∧ · · · ∧ Fl(P1,P

�
l) → F �(P1,P

�
l))). (A10)

where P�
i = P2, . . . , Pi. That is, Pi = P1,P

�
i. Then, by induction hypothesis, we get that

the following two formulas are equivalent:

∃P�
l (F2(P1,P

�
2) ∧ · · · ∧ Fl(P1,P

�
l) ∧ F �(P1,P

�
l)),

∀P�
l (F2(P1,P

�
2) ∧ · · · ∧ Fl(P1,P

�
l) → F �(P1,P

�
l)).

Therefore, (A10) is equivalent to

∀P1 (F1(P1) → ∃P�
l (F2(P1,P

�
2) ∧ · · · ∧ Fl(P1,P

�
l) ∧ F �(P1,P

�
l))). (A11)

Hence, it only remains to be shown that (A9) and (A11) are equivalent. Let E be
the predicate expression λX1 . . . Xn G(X1, . . . , Xn) such that H(E) = F1(P1), with
H(Q) being the following formula:

∀V1 . . . Vn (P1(V1, . . . , Vn) ↔ Q(V1, . . . , Vn)).

28 Jorge Fandinno, Vladimir Lifschitz, Patrick Lühne, and Torsten Schaub

Then,

(A9) ⇔ ∃P1 (F1(P1) ∧ ∃P2 (F2(E,P�
2) ∧ · · · ∧ Fl(E,P�

l) ∧ F �(E,P�
l)))

⇔ ∃P1 F1(P1) ∧ ∃P2 (F2(E,P�
2) ∧ · · · ∧ Fl(E,P�

l) ∧ F �(E,P�
l))

⇔ �∧ ∃P2 (F2(E,P�
2) ∧ · · · ∧ Fl(E,P�

l) ∧ F �(E,P�
l))

⇔ ∃P2 (F2(E,P�
2) ∧ · · · ∧ Fl(E,P�

l) ∧ F �(E,P�
l))

⇔ ∀P1 (F1(P1) → ∃P2 (F2(E,P�
2) ∧ · · · ∧ Fl(E,P�

l) ∧ F �(E,P�
l)))

⇔ (A11),

and the result holds. For the second-to-last equivalence, note that F1(P1) is satisfiable
and that P1 does not occur on the right-hand side of the implication.

Proof of Theorem 3. Recall that io-program Ω uses private recursion if

• its predicate dependency graph has a cycle such that every vertex in it is a private
symbol or

• it includes a choice rule with a private symbol in the head.

This implies that, for a program that does not use private recursion, there is a private
predicate symbol that does not depend on any other private predicate symbol. Let us
assume without loss of generality that this is the predicate symbol p1/n1. Then, there is
a predicate symbol that does not depend on any other private predicate symbol other
than p1/n1, which we assume to be the predicate symbol p2/n2, and so on. Therefore, we
have an order on the private symbols p1/n1, . . . , pl/nl such that each predicate symbol
pi/ni only depends on other predicate symbols that precede them in this order. Then,
the completed definition Fi(Pi) of any private predicate symbol pi/ni can be written as

∀V1 . . . Vni
(Pi(V1, . . . , Vni

) ↔ Gi(Pi−1)),

where Pi−1 = P1, . . . , Pi−1 contains all free predicate variables in Gi and where we assume
that G1(P0) is a first-order formula. Then, (15) and (16) can be, respectively, rewritten
as (A7) and (A8). The result follows then directly from Lemma 9.

