
1

Online appendix for the paper

Omission-based Abstraction for Answer Set Programs
published in Theory and Practice of Logic Programming

Zeynep G. Saribatur and Thomas Eiter
Institute of Logic and Computation

TU Wien, Vienna, Austria
(e-mail: {zeynep,eiter}@kr.tuwien.ac.at)

Appendix A Proofs

Proof of Theorem 14
As for membership in (i), we can compute such a set PB by an elimination procedure as follows.
Starting with A′ = /0, we repeatedly pick some atom α ∈ A\A′ and test the following condition:

(+) for A′′ = A′∪{α}, the program omit(Π,A′′) has no answer set Î′′ such that Î′′|A = Î.

If (+) holds, we set A′ := A′′ and make the next pick from A\A′. Upon termination, PB = A\A′ is
a minimal put-back set. The correctness of this procedure follows from Proposition 8, by which
the elimination of spurious answer sets is anti-monotonic in the set A of atoms to omit. As for
the effort, the test (+) can be done in polynomial time with an NP oracle; from this, membership
in in FPNP follows.

The hardness for FPNP
‖ is shown by a reduction from computing, given normal logic programs

Π1, . . . ,Πn on disjoint sets X1, . . . ,Xn of atoms, the answers q1, . . . ,qn to whether Πi has some
answer set (qi = 1) or not (qi = 0).1

To this end, we use fresh atoms ai and bi and construct

Π
′
i = { ai← not bi

bi← not ai

⊥← not bi

H(r)← B(r),ai r ∈Πi

y← x,not x x,y ∈ Xi

ai← x,not x x ∈ Xi

bi← x,not x x ∈ Xi }

Clearly, {ai} is an answer set of omit(Π′,Xi ∪ {bi}), as the rule ai ← not bi is turned into a
choice; it is spurious, as only this rule in Π can derive ai. However, this violates the constraint
⊥← not bi.

Assuming w.l.o.g. that Πi includes no constraints, for every set PB of atoms such that Xi 6⊆
PB, the program omit(Π′i,(Xi ∪ {bi}) \ PB) has some answer set containing ai, thanks to the
abstraction of the rules with x,not x in the body; thus PB = Xi is the minimal candidate for

1 We are indebted to a reviewer pointing out an error in the original reduction, which we replace by an elegant one
suggested by the reviewer.



xi. xi. i = 1 . . . ,n (A2)

sat←xi,not xi,xi,not xi. i = 1 . . . ,n (A3)

zi←not zi,not xi. i = 1 . . . ,n (A4)

zi←not zi,not xi. i = 1 . . . ,n (A5)

y j←not y j,not sat. j = 1, . . . ,m (A6)

y j←not y j,not sat. j = 1, . . . ,m (A7)

sat←l◦i1 , . . . l
◦
ini
. i = 1, . . . ,k (A8)

sat←y j,not y j. j = 1, . . . ,m (A9)

sat←y j,not y j. j = 1, . . . ,m (A10)

sat←zi,not zi. i = 1 . . . ,n (A11)

sat←zi,not zi. i = 1 . . . ,n (A12)

Fig. A 1. Program rules for the proof of Theorem 14-(ii), first part

being a put-back set. Furthermore, if Πi has no answer set, then /0 is the single answer set of
omit(Π′i,{bi}) while if Πi has some answer set S, then omit(Π′i,{bi}) has the answer set S∪{ai}.
That is, Xi is the (unique) ⊆-minimal put-back set iff Πi has no answer set.

We construct the final program as Π′ =
⋃n

i=1 Π′i. Then, Î = {a1, . . . ,an} is a spurious answer
set of omit(Π′,

⋃n
i=1 Xi ∪{bi}), and every minimal put-back set PB for Î satisfies bi ∈ PB iff Πi

is satisfiable; this proves FPNP
‖ -hardness.

As for (ii), the membership in FPΣP
2 [log,wit] holds as we can decide the problem by a binary

search for a put-back set of bounded size using a Σ
p
2 witness oracle, where the finally obtained

put-back set is output.
The FPΣP

2 [log,wit] hardness is shown by a reduction from the following problem. Given a QBF
Φ = ∃X∀Y E(X ,Y ), compute a smallest size truth assignment σ to X such that ∀Y E(σ(X),Y )
evaluates to true, knowing that some σ with this property exists, where the size of σ is the number
of atoms set to true.

More specifically, we assume similar as in the proof of Theorem 12 that E(X ,Y ) =
∨k

i=1 Di is
a DNF where every Di = li1 ∧·· ·∧ lini

is a conjunction of literals over X = {x1, . . . ,xn} and Y =

{y1, . . . ,ym} that contains some literal over Y ; moreover, we assume that E(X ,Y ) is a tautology
if all literals over X are removed from it. To verify the latter assumption, we may rewrite Φ to

∃X∀Y
∨

xi∈X

(xi∧¬xi∧ y j)∨ (xi∧¬xi∧¬y j)∨E(X ,Y ), (A1)

for an arbitrary y j ∈ Y , which has the desired property.
We set up a program Π with rules shown in Figure Appendix A, where X = {xi | xi ∈ X},

Z = {z1, . . . ,zn} and Z = {zi | zi ∈ Z} are copies of X and Y = {y j | y j ∈ Y} is a copy of Y , and
l◦ maps a literal l over X ∪Y to default literals over Y ∪Y ∪Z∪Z as follows:

l◦ =


not zi, if l = ¬xi,

not zi, if l = xi,

y j, if l = y j,

y j if l = ¬y j.

We note that Π has no answer set: due to the facts xi and xi, none of the rules (A3)–(A5) is

2



applicable and zi,zi must be false in every answer set of Π. This in turn implies that in (A8) all
not zi, not zi literals are true. Now if we assume that sat would be true in an answer set of Π,
then no rule in (A6) or (A7) would be applicable to derive y j resp. y j, and then by the assumption
on E(X ,Y ) no rule (A8) is applicable; this means that sat is not reproducible and thus not in the
answer set, which is a contradiction. If on the other hand sat would be false in an answer set,
then the rules (A6) and (A7) would guess a truth assignment to Y ; by the tautology assumption on
E(X ,Y ), some rule (A8) is applicable and derives that sat is true, which is again a contradiction.

We then set A = A and Î = /0; clearly Î is a spurious answer set of omit(Π,A) = /0.
The idea behind this construction is as follows. As long as we do not put back sat, the ab-

straction program omit(Π,A′) will have some answer set. Furthermore, if we do not put back
(a) either xi or xi, for all i = 1, . . . ,n, (b) both zi and zi for all i = 1, . . . ,n and (c) all y j, y j, for
j = 1, . . . ,m, then we can guess by (A3) resp. (A9)–(A12) that sat is true, which again means
that some answer set exists. The rules (A4)–(A5) serve then to provide with zi and zi access to
xi and its negation ¬xi, respectively. More in detail, if we put back xi but not xi, then omit(Π,A′)
contains the guessing rule ri : {zi}← not zi and the rule ri : zi← not zi,not xi resulting from (A4)
and (A5), respectively. As in omit(Π,A′) the rule ri is inapplicable and no other rule has zi in
the head, the atom zi must be false; hence the rule ri amounts to a guess {zi}. If zi is guessed to
be true, then not zi and not zi faithfully represent the value of the literals ¬xi and xi (where xi

is true); this is injected into the rules (A8). On the other hand, if zi is guessed false, then both
not zi and not zi are true, which represents that both ¬xi and xi are true; if guessing zi false leads
to a (spurious) answer set of the abstract program omit(Π,A′) (in which sat must be necessarily
false), no rule (A8) in which zi or zi occurs can fire. As zi and zi occur only negated in the rules
(A8), guessing zi true (where zi and zi faithfully represent xi and ¬xi, respectively) leads then
also to an answer set of omit(Π,A′). Thus, with respect to answer set existence, zi and zi serve to
access xi and ¬xi. The case of putting back xi but not xi is symmetric.

The rules (A6)–(A7) serve to guess an assignment µ to Y (but this only works if sat is false).
The rules (A8) check whether upon a combined assignment σ ∪ µ , the formula E(σ(X),µ(Y ))
evaluates to true; if this is the case, sat is concluded which then however blocks the guessing in
(A6)–(A7), and thus no answer set exists. Consequently, E(σ(X),µ(Y )) evaluates to true for all
assignments µ(Y ), i.e., ∀Y E(σ(X),Y ) is true iff sat can be concluded for each guess on yi and
yi, i.e., no answer set is possible for it.

In conclusion, it holds that some put-back set of size s = |X |+ 2|X |+ 2|Y |+ 1, which is the
smallest possible here, exists iff Φ evaluates to true. Note that if we put back a single further
atom, for some xi ∈ X we have that xi is also a fact in omit(Π,A′), and thus by the special form
of E(X ,Y ) in (A1), regardless of how one guesses on y j and yi, one can derive sat again. Thus
the closest put-back set has either size s or s+1.

In order to discriminate among different σ(X) and select the smallest, we add further rules:

sat←not zi,ci i = 1, . . . ,n (A13)

sat←not zi,not zi,c1, . . . ,cl (A14)

where all ci are fresh atoms; we fix l below.2 Intuitively, when xi is put back, then ¬zi evaluates
to true and ci must be put back as well in order to avoid guessing on sat. Furthermore, if both
xi and xi are put back, which means that not zi and not zi are true in every answer set, then all

2 Alternatively, for (A14) rules sat← not zi,not zi,c j , j = 1, . . . , l may be used.

3



c1, . . . ,cl must be put back as well. If exactly one of xi and xi, for all i = 1, . . . ,n is put back and
the corresponding assignment σ(X) makes ∀Y E(σ(X),Y ) true, then the closest put-back set has
size s+ 1+ |σ |; if we let l be large enough, then putting both xi and xi back is more expensive
than putting back a proper assignment and the associated ci atoms; in fact l = n is sufficient. As
the final program Π is constructible in polynomial time from Φ, and the desired smallest σ(X)

is easily obtained from any smallest put-back set PB for Î the claimed result follows.

Proof of Theorem 19
1. Assume towards a contradiction that X ′ = X∪{ko(nr) | r ∈Πc

A}∪{ap(nr) | r ∈ΠX}∪{bl(nr) |
r ∈ Π \ΠX} is not answer set of Π′ ∪QA

Î , where Π′ = Tmeta[Π]∪TP[Π]∪TC[Π,A ]∪TA[A ].

This means that either (i) X ′ is not a model of (Π′∪QA
Î )

X ′ , or (ii) X ′ is not a minimal model of

(Π′∪QA
Î )

X ′ .

(i) There is some rule r ∈ (Π′∪QA
Î )

X ′ such that X ′ |= B(r), but X ′2H(r). We know that X is

an answer set of Π∪QA
Î , and thus X ∈ AS(Π). By Theorem 17, we know that X ∪{ap(nr) |

r ∈ΠX}∪{bl(nr) | r ∈Π\ΠX} is an answer set of Tmeta[Π]. As X ′ contains no ab atoms,
r cannot be in TP[Π]∪TC[Π,A ]∪TA[A ]. So r must be in QA

Î .
The rule r can be in two forms: (a) ⊥←not α. for some α ∈ Î, or (b) ⊥←α. for some
α ∈ A\ Î.

(a) As X ′ |= B(r), then α /∈ X ′ which means α /∈ X . However having r ∈ (Π∪QA
Î )

X con-

tradicts that X is an answer set of Π∪QA
Î .

(b) Similarly as (a), we reach a contradiction.

(ii) Let Y ′ ⊂ X ′ be a model of (Π′ ∪QA
Î )

X ′ , for some Y ′ = Y ∪{ko(nr) | r ∈ Πc
A}∪ {ap(nr) |

r ∈ ΠX}∪{bl(nr) | r ∈ Π \ΠX}. As the auxiliary atoms are fixed, Y ⊂ Y ′ must hold. We
claim that Y is then a model of (Π∪QA

Î )
X , which is a contradiction. Assume Y is not such

a model. Then there is a rule r ∈ (Π∪QA
Î )

X such that Y |= B(r) but Y 2H(r). There are two

cases: (a) r ∈Π, or (b) r ∈ QA
Î .

(a) By definition of Y ′, this means that Y ′ |= B(r) and Y ′2H(r). However, this contradicts
that Y ′ is a smaller model of (Π′∪QA

Î )
X ′ than X ′ since H(r)′ ∈ Y ′.

(b) In both versions of r in QA
Î , we get that r ∈ (Π′ ∪QA

Î )
X ′ which contradicts that Y ′ is a

model of (Π′∪QA
Î )

X ′ .

2. Assume towards a contradiction that (Y ∩A ) is not an answer set of Π∪QA
Î . This means

that either (i) (Y ∩A ) is not a model of (Π∪QA
Î )

(Y∩A ), or (ii) (Y ∩A ) is not a minimal model

of (Π∪QA
Î )

(Y∩A ).

(i) There is some rule r ∈ (Π∪QA
Î )

(Y∩A ) such that (Y ∩A ) |= B(r) but (Y ∩A )2H(r). As we
have (Y ∩A +) ∈ AS(Tmeta[Π]), by Theorem 17, we get (Y ∩A ) ∈ AS(Π), thus r cannot
be in Π. However, r ∈QA

Î also cannot hold, since then r will be in (QA
Î )

Y and we know that

Y |= QA
Î . Thus (Y ∩A ) must be a model of (Π∪QA

Î )
(Y∩A ).

(ii) Assume there exists some Z ⊂ (Y ∩A ) such that Z |= (Π∪QA
Î )

(Y∩A ). We claim that then
Z′ = Z ∪ {ko(nr) | r ∈ Πc

A} ∪ {ap(nr) | r ∈ Π′Y} ∪ {bl(nr) | r ∈ Π′ \Π′Y} is a model of
(Π′ ∪QA

Î )
Y , which achieves a contradiction. Now let us assume that this is not the case.

Then there is some rule r ∈ (Π′∪QA
Î )

Y such that Z′ |= B(r) and Z′2H(r). The rule r cannot

4



be in (QA
Î )

Y , since it contradicts that Y |= (QA
Î )

Y . The rest of the cases for r also results in
a contradiction.

(a) If r ∈ Tmeta[Π]Y , then r can only be of form H(r)←ap(nr),not ko(nr), where H(r) 6=
⊥. So we have ap(nr) ∈ Z′, ko(nr) /∈ Z′ and H(r) /∈ Z′. For rule r, rules of form 1 in
Definition 9 are created in TP[Π]. However, since having H(r) /∈ Y causes to have the
rule abp(nr)←ap(nr),not H(r) in TP[Π]Y , H(r) ∈ Y \Z′ should hold, which however
contradicts that Z ⊂ (Y ∩A ), as then H(r)′ ∈ Z′ would hold.

(b) If r ∈TP[Π]Y , then r can only be of form H(r)←ap(nr). As Z′2H(r) we have H(r)′ ∈
Z′ which contradicts that Z⊂ (Y ∩A ). A similar contradiction is reached if r∈TC[Π,A ]Y ,
since that means α ∈ Z′ while α /∈ Y .

(c) Having r ∈ TA[A ]Y means that Z′2abl(α)′ for some α ∈A , i.e., abl(α) ∈ Z′, which
contradicts Y ∩ABA(Π) = /0.

5


