Online appendix for the paper

 Omission-based Abstraction for Answer Set Programs

 Omission-based Abstraction for Answer Set Programs}
published in Theory and Practice of Logic Programming

Zeynep G. Saribatur and Thomas Eiter
Institute of Logic and Computation
TU Wien, Vienna, Austria
(e-mail: \{zeynep, eiter\}@kr.tuwien.ac.at)

Appendix A Proofs

Proof of Theorem 14

As for membership in (i), we can compute such a set $P B$ by an elimination procedure as follows. Starting with $A^{\prime}=\emptyset$, we repeatedly pick some atom $\alpha \in A \backslash A^{\prime}$ and test the following condition:
$(+)$ for $A^{\prime \prime}=A^{\prime} \cup\{\alpha\}$, the program omit $\left(\Pi, A^{\prime \prime}\right)$ has no answer set $\widehat{I^{\prime \prime}}$ such that $\left.\widehat{I^{\prime \prime}}\right|_{\bar{A}}=\hat{I}$.
If (+) holds, we set $A^{\prime}:=A^{\prime \prime}$ and make the next pick from $A \backslash A^{\prime}$. Upon termination, $P B=A \backslash A^{\prime}$ is a minimal put-back set. The correctness of this procedure follows from Proposition 8, by which the elimination of spurious answer sets is anti-monotonic in the set A of atoms to omit. As for the effort, the test (+) can be done in polynomial time with an NP oracle; from this, membership in in $\mathbf{F P}^{\mathbf{N P}}$ follows.

The hardness for $\mathbf{F P} \mathbf{P}_{\|}^{\mathbf{N P}}$ is shown by a reduction from computing, given normal logic programs Π_{1}, \ldots, Π_{n} on disjoint sets X_{1}, \ldots, X_{n} of atoms, the answers q_{1}, \ldots, q_{n} to whether Π_{i} has some answer set $\left(q_{i}=1\right)$ or not $\left(q_{i}=0\right) .{ }^{1}$

To this end, we use fresh atoms a_{i} and b_{i} and construct

$$
\begin{array}{rlr}
\Pi_{i}^{\prime}=\{ & a_{i} \leftarrow \text { not } b_{i} & \\
& b_{i} \leftarrow \operatorname{not} a_{i} & \\
& \perp \leftarrow \text { not } b_{i} & \\
& H(r) \leftarrow B(r), a_{i} & r \in \Pi_{i} \\
& y \leftarrow x, \text { not } x & x, y \in X_{i} \\
& a_{i} \leftarrow x, \text { not } x & x \in X_{i} \\
& b_{i} \leftarrow x, \text { not } x & \left.x \in X_{i}\right\}
\end{array}
$$

Clearly, $\left\{a_{i}\right\}$ is an answer set of $\operatorname{omit}\left(\Pi^{\prime}, X_{i} \cup\left\{b_{i}\right\}\right)$, as the rule $a_{i} \leftarrow$ not b_{i} is turned into a choice; it is spurious, as only this rule in Π can derive a_{i}. However, this violates the constraint $\perp \leftarrow$ not b_{i}.

Assuming w.l.o.g. that Π_{i} includes no constraints, for every set $P B$ of atoms such that $X_{i} \nsubseteq$ $P B$, the program $\operatorname{omit}\left(\Pi_{i}^{\prime},\left(X_{i} \cup\left\{b_{i}\right\}\right) \backslash P B\right)$ has some answer set containing a_{i}, thanks to the abstraction of the rules with x, not x in the body; thus $P B=X_{i}$ is the minimal candidate for

[^0]\[

$$
\begin{array}{lr}
x_{i} . \quad \overline{x_{i}} . & i=1 \ldots, n \\
\text { sat } \leftarrow x_{i}, \text { not } x_{i}, \overline{x_{i}}, \text { not } \overline{x_{i}} . & i=1 \ldots, n \\
z_{i} \leftarrow \text { not } \overline{z_{i}}, \text { not } \overline{x_{i}} . & i=1 \ldots, n \\
\overline{z_{i}} \leftarrow \text { not } z_{i}, \text { not } x_{i} . & i=1 \ldots, n \\
y_{j} \leftarrow \text { not } \overline{y_{j}}, \text { not sat. } & j=1, \ldots, m \\
\overline{y_{j}} \leftarrow \text { not } y_{j}, \text { not sat. } & i=1, \ldots, k \\
\text { sat } \leftarrow l_{i_{1}}^{\circ}, \ldots l_{i_{n_{i}}}^{\circ} & j=1, \ldots, m \\
\text { sat } \leftarrow y_{j}, \text { not } y_{j} . & j=1, \ldots, m \\
\text { sat } \leftarrow \overline{y_{j}}, \text { not } \overline{y_{j}} . & i=1 \ldots, n \\
\text { sat } \leftarrow z_{i}, \text { not } z_{i} . & i=1 \ldots, n \\
\text { sat } \leftarrow \overline{z_{i}}, \text { not } \overline{z_{i} .} & \tag{A12}
\end{array}
$$
\]

Fig. A 1. Program rules for the proof of Theorem 14-(ii), first part
being a put-back set. Furthermore, if Π_{i} has no answer set, then \emptyset is the single answer set of $\operatorname{omit}\left(\Pi_{i}^{\prime},\left\{b_{i}\right\}\right)$ while if Π_{i} has some answer set S, then $\operatorname{omit}\left(\Pi_{i}^{\prime},\left\{b_{i}\right\}\right)$ has the answer set $S \cup\left\{a_{i}\right\}$. That is, X_{i} is the (unique) \subseteq-minimal put-back set iff Π_{i} has no answer set.

We construct the final program as $\Pi^{\prime}=\bigcup_{i=1}^{n} \Pi_{i}^{\prime}$. Then, $\hat{I}=\left\{a_{1}, \ldots, a_{n}\right\}$ is a spurious answer set of $\operatorname{omit}\left(\Pi^{\prime}, \bigcup_{i=1}^{n} X_{i} \cup\left\{b_{i}\right\}\right)$, and every minimal put-back set $P B$ for \hat{I} satisfies $b_{i} \in P B$ iff Π_{i} is satisfiable; this proves $\mathbf{F P}_{\|}^{\mathbf{N P}}$-hardness.

As for (ii), the membership in $\mathbf{F P}^{\Sigma_{2}^{P}}[\log$, wit $]$ holds as we can decide the problem by a binary search for a put-back set of bounded size using a Σ_{2}^{p} witness oracle, where the finally obtained put-back set is output.

The $\mathbf{F P}^{\Sigma_{2}^{P}}[\log$, wit $]$ hardness is shown by a reduction from the following problem. Given a QBF $\Phi=\exists X \forall Y E(X, Y)$, compute a smallest size truth assignment σ to X such that $\forall Y E(\sigma(X), Y)$ evaluates to true, knowing that some σ with this property exists, where the size of σ is the number of atoms set to true.

More specifically, we assume similar as in the proof of Theorem 12 that $E(X, Y)=\bigvee_{i=1}^{k} D_{i}$ is a DNF where every $D_{i}=l_{i_{1}} \wedge \cdots \wedge l_{i_{n_{i}}}$ is a conjunction of literals over $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and $Y=$ $\left\{y_{1}, \ldots, y_{m}\right\}$ that contains some literal over Y; moreover, we assume that $E(X, Y)$ is a tautology if all literals over X are removed from it. To verify the latter assumption, we may rewrite Φ to

$$
\begin{equation*}
\exists X \forall Y \bigvee_{x_{i} \in X}\left(x_{i} \wedge \neg x_{i} \wedge y_{j}\right) \vee\left(x_{i} \wedge \neg x_{i} \wedge \neg y_{j}\right) \vee E(X, Y), \tag{A1}
\end{equation*}
$$

for an arbitrary $y_{j} \in Y$, which has the desired property.
We set up a program Π with rules shown in Figure Appendix A, where $\bar{X}=\left\{\bar{x}_{i} \mid x_{i} \in X\right\}$, $Z=\left\{z_{1}, \ldots, z_{n}\right\}$ and $\bar{Z}=\left\{\bar{z}_{i} \mid z_{i} \in Z\right\}$ are copies of X and $\bar{Y}=\left\{\bar{y}_{j} \mid y_{j} \in Y\right\}$ is a copy of Y, and l° maps a literal l over $X \cup Y$ to default literals over $Y \cup \bar{Y} \cup Z \cup \bar{Z}$ as follows:

$$
l^{\circ}= \begin{cases}\text { not } z_{i}, & \text { if } l=\neg x_{i}, \\ \text { not } \overline{z_{i}}, & \text { if } l=x_{i}, \\ y_{j}, & \text { if } l=y_{j}, \\ \bar{y}_{j} & \text { if } l=\neg y_{j} .\end{cases}
$$

We note that Π has no answer set: due to the facts x_{i} and \bar{x}_{i}, none of the rules (A3)-(A5) is
applicable and z_{i}, \bar{z}_{i} must be false in every answer set of Π. This in turn implies that in (A8) all not z_{i}, not \bar{z}_{i} literals are true. Now if we assume that sat would be true in an answer set of Π, then no rule in (A6) or (A7) would be applicable to derive y_{j} resp. \bar{y}_{j}, and then by the assumption on $E(X, Y)$ no rule (A8) is applicable; this means that sat is not reproducible and thus not in the answer set, which is a contradiction. If on the other hand sat would be false in an answer set, then the rules (A6) and (A7) would guess a truth assignment to Y; by the tautology assumption on $E(X, Y)$, some rule (A8) is applicable and derives that sat is true, which is again a contradiction.

We then set $A=\mathscr{A}$ and $\hat{I}=\emptyset$; clearly \hat{I} is a spurious answer set of $\operatorname{omit}(\Pi, A)=\emptyset$.
The idea behind this construction is as follows. As long as we do not put back sat, the abstraction program $\operatorname{omit}\left(\Pi, A^{\prime}\right)$ will have some answer set. Furthermore, if we do not put back (a) either x_{i} or $\overline{x_{i}}$, for all $i=1, \ldots, n$, (b) both z_{i} and $\overline{z_{i}}$ for all $i=1, \ldots, n$ and (c) all $y_{j}, \overline{y_{j}}$, for $j=1, \ldots, m$, then we can guess by (A3) resp. (A9)-(A12) that sat is true, which again means that some answer set exists. The rules (A4)-(A5) serve then to provide with z_{i} and $\overline{z_{i}}$ access to x_{i} and its negation $\neg x_{i}$, respectively. More in detail, if we put back x_{i} but not $\overline{x_{i}}$, then $\operatorname{omit}\left(\Pi, A^{\prime}\right)$ contains the guessing rule $r_{i}:\left\{z_{i}\right\} \leftarrow$ not $\overline{z_{i}}$ and the rule $\overline{r_{i}}: \overline{z_{i}} \leftarrow$ not z_{i}, not x_{i} resulting from (A4) and (A5), respectively. As in omit $\left(\Pi, A^{\prime}\right)$ the rule $\overline{r_{i}}$ is inapplicable and no other rule has $\overline{z_{i}}$ in the head, the atom $\overline{z_{i}}$ must be false; hence the rule r_{i} amounts to a guess $\left\{z_{i}\right\}$. If z_{i} is guessed to be true, then not z_{i} and not $\overline{z_{i}}$ faithfully represent the value of the literals $\neg x_{i}$ and x_{i} (where x_{i} is true); this is injected into the rules (A8). On the other hand, if z_{i} is guessed false, then both not z_{i} and not $\overline{z_{i}}$ are true, which represents that both $\neg x_{i}$ and x_{i} are true; if guessing z_{i} false leads to a (spurious) answer set of the abstract program omit $\left(\Pi, A^{\prime}\right)$ (in which sat must be necessarily false), no rule (A8) in which z_{i} or $\overline{z_{i}}$ occurs can fire. As z_{i} and $\overline{z_{i}}$ occur only negated in the rules (A8), guessing z_{i} true (where z_{i} and $\overline{z_{i}}$ faithfully represent x_{i} and $\neg x_{i}$, respectively) leads then also to an answer set of $\operatorname{omit}\left(\Pi, A^{\prime}\right)$. Thus, with respect to answer set existence, z_{i} and $\overline{z_{i}}$ serve to access x_{i} and $\neg x_{i}$. The case of putting back $\overline{x_{i}}$ but not x_{i} is symmetric.

The rules (A6)-(A7) serve to guess an assignment μ to Y (but this only works if sat is false). The rules (A8) check whether upon a combined assignment $\sigma \cup \mu$, the formula $E(\sigma(X), \mu(Y))$ evaluates to true; if this is the case, sat is concluded which then however blocks the guessing in (A6)-(A7), and thus no answer set exists. Consequently, $E(\sigma(X), \mu(Y))$ evaluates to true for all assignments $\mu(Y)$, i.e., $\forall Y E(\sigma(X), Y)$ is true iff sat can be concluded for each guess on y_{i} and $\overline{y_{i}}$, i.e., no answer set is possible for it.

In conclusion, it holds that some put-back set of size $s=|X|+2|X|+2|Y|+1$, which is the smallest possible here, exists iff Φ evaluates to true. Note that if we put back a single further atom, for some $x_{i} \in X$ we have that $\overline{x_{i}}$ is also a fact in $\operatorname{omit}\left(\Pi, A^{\prime}\right)$, and thus by the special form of $E(X, Y)$ in (A1), regardless of how one guesses on y_{j} and $\overline{y_{i}}$, one can derive sat again. Thus the closest put-back set has either size s or $s+1$.

In order to discriminate among different $\sigma(X)$ and select the smallest, we add further rules:

$$
\begin{align*}
& \text { sat } \leftarrow \text { not } \overline{z_{i}}, c_{i} \quad i=1, \ldots, n \tag{A13}\\
& \text { sat } \leftarrow \operatorname{not} \overline{z_{i}}, \text { not } z_{i}, c_{1}, \ldots, c_{l} \tag{A14}
\end{align*}
$$

where all c_{i} are fresh atoms; we fix l below. ${ }^{2}$ Intuitively, when x_{i} is put back, then $\neg z_{i}$ evaluates to true and c_{i} must be put back as well in order to avoid guessing on sat. Furthermore, if both x_{i} and $\overline{x_{i}}$ are put back, which means that not z_{i} and not $\overline{z_{i}}$ are true in every answer set, then all

[^1]c_{1}, \ldots, c_{l} must be put back as well. If exactly one of x_{i} and $\overline{x_{i}}$, for all $i=1, \ldots, n$ is put back and the corresponding assignment $\sigma(X)$ makes $\forall Y E(\sigma(X), Y)$ true, then the closest put-back set has size $s+1+|\sigma|$; if we let l be large enough, then putting both x_{i} and $\overline{x_{i}}$ back is more expensive than putting back a proper assignment and the associated c_{i} atoms; in fact $l=n$ is sufficient. As the final program Π is constructible in polynomial time from Φ, and the desired smallest $\sigma(X)$ is easily obtained from any smallest put-back set $P B$ for \hat{I} the claimed result follows.

Proof of Theorem 19

1. Assume towards a contradiction that $X^{\prime}=X \cup\left\{k o\left(n_{r}\right) \mid r \in \Pi_{A}^{c}\right\} \cup\left\{a p\left(n_{r}\right) \mid r \in \Pi^{X}\right\} \cup\left\{b l\left(n_{r}\right) \mid\right.$ $\left.r \in \Pi \backslash \Pi^{X}\right\}$ is not answer set of $\Pi^{\prime} \cup Q_{\hat{I}}^{\bar{A}}$, where $\Pi^{\prime}=\mathscr{T}_{\text {meta }}[\Pi] \cup \mathscr{T}_{P}[\Pi] \cup \mathscr{T}_{C}[\Pi, \mathscr{A}] \cup \mathscr{T}_{A}[\mathscr{A}]$. This means that either (i) X^{\prime} is not a model of $\left(\Pi^{\prime} \cup Q_{\hat{I}}^{\bar{A}}\right)^{X^{\prime}}$, or (ii) X^{\prime} is not a minimal model of $\left(\Pi^{\prime} \cup Q_{\hat{I}}^{\bar{A}}\right)^{X^{\prime}}$.
(i) There is some rule $r \in\left(\Pi^{\prime} \cup Q_{\hat{I}}^{\bar{A}}\right)^{X^{\prime}}$ such that $X^{\prime} \models B(r)$, but $X^{\prime} \not \models H(r)$. We know that X is an answer set of $\Pi \cup Q_{\hat{I}}^{\bar{A}}$, and thus $X \in A S(\Pi)$. By Theorem 17, we know that $X \cup\left\{a p\left(n_{r}\right) \mid\right.$ $\left.r \in \Pi^{X}\right\} \cup\left\{b l\left(n_{r}\right) \mid r \in \Pi \backslash \Pi^{X}\right\}$ is an answer set of $\mathscr{T}_{\text {meta }}[\Pi]$. As X^{\prime} contains no $a b$ atoms, r cannot be in $\mathscr{T}_{P}[\Pi] \cup \mathscr{T}_{C}[\Pi, \mathscr{A}] \cup \mathscr{T}_{A}[\mathscr{A}]$. So r must be in $Q_{\hat{I}}^{\bar{A}}$.
The rule r can be in two forms: (a) $\perp \leftarrow$ not α. for some $\alpha \in \hat{I}$, or (b) $\perp \leftarrow \alpha$. for some $\alpha \in \bar{A} \backslash \hat{I}$.
(a) As $X^{\prime} \models B(r)$, then $\alpha \notin X^{\prime}$ which means $\alpha \notin X$. However having $r \in\left(\Pi \cup Q_{\hat{I}}^{\bar{A}}\right)^{X}$ contradicts that X is an answer set of $\Pi \cup Q_{\hat{I}}^{\bar{A}}$.
(b) Similarly as (a), we reach a contradiction.
(ii) Let $Y^{\prime} \subset X^{\prime}$ be a model of $\left(\Pi^{\prime} \cup Q_{\hat{I}}^{\bar{A}}\right)^{X^{\prime}}$, for some $Y^{\prime}=Y \cup\left\{k o\left(n_{r}\right) \mid r \in \Pi_{A}^{c}\right\} \cup\left\{a p\left(n_{r}\right) \mid\right.$ $\left.r \in \Pi^{X}\right\} \cup\left\{b l\left(n_{r}\right) \mid r \in \Pi \backslash \Pi^{X}\right\}$. As the auxiliary atoms are fixed, $Y \subset Y^{\prime}$ must hold. We claim that Y is then a model of $\left(\Pi \cup Q_{\hat{I}}^{\bar{A}}\right)^{X}$, which is a contradiction. Assume Y is not such a model. Then there is a rule $r \in\left(\Pi \cup Q_{\bar{I}}^{\bar{A}}\right)^{X}$ such that $Y \models B(r)$ but $Y \not \models H(r)$. There are two cases: (a) $r \in \Pi$, or (b) $r \in Q_{\hat{I}}^{\bar{A}}$.
(a) By definition of Y^{\prime}, this means that $Y^{\prime} \models B(r)$ and $Y^{\prime} \not \models H(r)$. However, this contradicts that Y^{\prime} is a smaller model of $\left(\Pi^{\prime} \cup Q_{\hat{I}}^{\bar{A}}\right)^{X^{\prime}}$ than X^{\prime} since $H(r)^{\prime} \in Y^{\prime}$.
(b) In both versions of r in $Q_{\hat{I}}^{\bar{A}}$, we get that $r \in\left(\Pi^{\prime} \cup Q_{\hat{I}}^{\bar{A}}\right)^{X^{\prime}}$ which contradicts that Y^{\prime} is a model of $\left(\Pi^{\prime} \cup Q_{\hat{I}}^{\bar{A}}\right)^{X^{\prime}}$.
2. Assume towards a contradiction that $(Y \cap \mathscr{A})$ is not an answer set of $\Pi \cup Q_{\hat{I}}^{\bar{A}}$. This means that either (i) $(Y \cap \mathscr{A})$ is not a model of $\left(\Pi \cup Q_{\hat{I}}^{\bar{A}}\right)^{(Y \cap \mathscr{A})}$, or (ii) $(Y \cap \mathscr{A})$ is not a minimal model of $\left(\Pi \cup Q_{\hat{I}}^{\bar{A}}\right)^{(Y \cap \mathscr{A})}$.
(i) There is some rule $r \in\left(\Pi \cup Q_{\hat{I}}^{\bar{A}}\right)^{(Y \cap \mathscr{A})}$ such that $(Y \cap \mathscr{A}) \models B(r)$ but $(Y \cap \mathscr{A}) \nvdash H(r)$. As we have $\left(Y \cap \mathscr{A}^{+}\right) \in A S\left(\mathscr{T}_{\text {meta }}[\Pi]\right)$, by Theorem 17, we get $(Y \cap \mathscr{A}) \in A S(\Pi)$, thus r cannot be in Π. However, $r \in Q_{\hat{I}}^{\bar{A}}$ also cannot hold, since then r will be in $\left(Q_{\hat{I}}^{\bar{A}}\right)^{Y}$ and we know that $Y \models Q_{\hat{I}}^{\bar{A}}$. Thus $(Y \cap \mathscr{A})$ must be a model of $\left(\Pi \cup Q_{\hat{I}}^{\bar{A}}\right)^{(Y \cap \mathscr{A})}$.
(ii) Assume there exists some $Z \subset(Y \cap \mathscr{A})$ such that $Z \models\left(\Pi \cup Q_{\hat{I}}^{\bar{A}}\right)^{(Y \cap \mathscr{A})}$. We claim that then $Z^{\prime}=Z \cup\left\{k o\left(n_{r}\right) \mid r \in \Pi_{A}^{c}\right\} \cup\left\{a p\left(n_{r}\right) \mid r \in \Pi^{\prime Y}\right\} \cup\left\{b l\left(n_{r}\right) \mid r \in \Pi^{\prime} \backslash \Pi^{\prime Y}\right\}$ is a model of $\left(\Pi^{\prime} \cup Q_{\hat{I}}^{\bar{A}}\right)^{Y}$, which achieves a contradiction. Now let us assume that this is not the case. Then there is some rule $r \in\left(\Pi^{\prime} \cup Q_{\hat{I}}^{\bar{A}}\right)^{Y}$ such that $Z^{\prime} \models B(r)$ and $Z^{\prime} \not \models H(r)$. The rule r cannot
be in $\left(Q_{\hat{I}}^{\bar{A}}\right)^{Y}$, since it contradicts that $Y \models\left(Q_{\bar{I}}^{\bar{A}}\right)^{Y}$. The rest of the cases for r also results in a contradiction.
(a) If $r \in \mathscr{T}_{\text {meta }}[\Pi]^{Y}$, then r can only be of form $H(r) \leftarrow a p\left(n_{r}\right)$, not ko $\left(n_{r}\right)$, where $H(r) \neq$ \perp. So we have $a p\left(n_{r}\right) \in Z^{\prime}, k o\left(n_{r}\right) \notin Z^{\prime}$ and $H(r) \notin Z^{\prime}$. For rule r, rules of form 1 in Definition 9 are created in $\mathscr{T}_{P}[\Pi]$. However, since having $H(r) \notin Y$ causes to have the rule $a b_{p}\left(n_{r}\right) \leftarrow a p\left(n_{r}\right)$, not $H(r)$ in $\mathscr{T}_{P}[\Pi]^{Y}, H(r) \in Y \backslash Z^{\prime}$ should hold, which however contradicts that $Z \subset(Y \cap \mathscr{A})$, as then $H(r)^{\prime} \in Z^{\prime}$ would hold.
(b) If $r \in \mathscr{T}_{P}[\Pi]^{Y}$, then r can only be of form $H(r) \leftarrow a p\left(n_{r}\right)$. As $Z^{\prime} \not \models H(r)$ we have $H(r)^{\prime} \in$ Z^{\prime} which contradicts that $Z \subset(Y \cap \mathscr{A})$. A similar contradiction is reached if $r \in \mathscr{T}_{C}[\Pi, \mathscr{A}]^{Y}$, since that means $\alpha \in Z^{\prime}$ while $\alpha \notin Y$.
(c) Having $r \in \mathscr{T}_{A}[\mathscr{A}]^{Y}$ means that $Z^{\prime} \nvdash a b_{l}(\alpha)^{\prime}$ for some $\alpha \in \mathscr{A}$, i.e., $a b_{l}(\alpha) \in Z^{\prime}$, which contradicts $Y \cap A B_{A}(\Pi)=\emptyset$.

[^0]: ${ }^{1}$ We are indebted to a reviewer pointing out an error in the original reduction, which we replace by an elegant one suggested by the reviewer.

[^1]: ${ }^{2}$ Alternatively, for (A14) rules sat $\leftarrow \operatorname{not} \overline{z_{i}}$, not $z_{i}, c_{j}, j=1, \ldots, l$ may be used.

