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Appendix A Actions Happen As Soon As Possible

Here, we give the rule that says that actions always happen as soon as it is possible, but we must
be careful. There are quite a few things which might prevent an action from occurring any sooner.
If we leave any out, we risk rendering the problem unsolvable. For an action to be able to occur
at the previous time-step, its preconditions must hold at the previous time-step, its delete-effects
should not be used at the previous time-step, and its used add-effects should not be deleted at the
previous time-step. There are a few other conditions which at first appear to be necessary (such
as its preconditions must not be deleted at the previous time-step), but upon further consideration
you may notice that all of these are redundant if our goal is specifically to prevent the action
from occurring at the current time-step. We must borrow our definition of deleted/2 from the
modified encoding of rule 4 in Section 2 of the paper (see Encoding Reduction of that section)
and additionally add a similar definition for used/2.

deleted(F,K) :- happens(A,K); del(A F).

used(F,K) :- happens(A,K); pre(A,F); not preserving(A).

:- happens(A,K); K > 0; not preserving(A);

holds(F,K-1) : pre(A,F); not used(F,K-1) : del(A,F);

not deleted(F,K-1) : add(A,F), holds(F,K).

How does this defeat the 100-switch-scenario? Remember that the 100 switches exponentially
increased the plan length because the planner may choose to flip some switches but not others to
achieve one state, but then flip those other switches later to achieve an alternative state.

For every switch this rule boils down to, “if we want to flip switch i at time t, then we must
also flip switch i at time t−1 as well”. Otherwise the solution fails this rule since the switch flip
could have occurred one action sooner.

Under this rule, we have made it impossible to achieve more than 100 unnecessary states
within the 100-switch problem. At each step where we do not make progress somewhere else,
we must choose at least one switch to stop flipping (if we toggle the exact same set of switches
as in the last step, we revert to the same overall state as two steps earlier which is forbidden by
the layered ‘make-progress’ rule).

More generally, one can see that wherever a planning problem has multiple independent parts,
this rule forces all the parts to proceed independently and not stall needlessly. However, the rule
still has some gaps.
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• Even adding a linear number of unnecessary steps is suboptimal. All the switches are
independent so we really should not be adding more than one layer regardless of how
many switches there are.

• The switch scenario is contrived to make our solution look better than it is. One can easily
see that by using three-state switches rather than two-state switches (where each state is
reachable from the other two), it is still possible to construct exponential-length plans even
with this restriction in place. This is because we can still reach an exponential number of
states while continually changing every switch at every time-step.

The above issues are addressed by Definition 3.2 of the main paper where we give the ‘make-
progress’ notion which is used by the stepless planner.

Appendix B Proofs

B.1 Correctness of Mutex Action Rules

We show that the following handle all mutex action constraints that we care about strictly via
unit propagation (labels are added for reference):

1. used_preserved(F,K) :- happens(A,K); pre(A,F); not del(A,F).

2. deleted_unused(F,K) :- happens(A,K); del(A,F); not pre(A,F).

3. :- {used_preserved(F,K); deleted_unused(F,K);

happens(A,K) : pre(A,F), del(A,F)} > 1; valid_at(F,K).

4. deleted(F,K) :- happens(A,K); del(A,F).

5. :- holds(F,K); deleted(F,K-1).

given the existing rules:

6. holds(F,K) :- happens(A,K); pre(A,F).

7. :- holds(F,K); holds(G,K); mutex(F,G).

Proof
Suppose A and B are mutex actions because A deletes fluent F and B has F as a precondition.
The proof is based on a case analysis.

Case 1. A does not have F as a precondition and B does not delete F . If we select happens(A,K)

then by unit propagation we have deleted unused(F,K) (2) and then ¬used preserved(F,K) (3)
and then ¬happens(B,K) (1). We can write this as:

happens(A,K)⇒2 deleted unused(F,K)⇒3 ¬used preserved(F,K)⇒1 ¬happens(B,K)

Case 2. A has F as a precondition and B does not delete F . Then,

happens(A,K)⇒3 ¬used preserved(F,K)⇒1 ¬happens(B,K)

Case 3. A does not have F as a precondition, B deletes F . Then,

happens(A,K)⇒2 deletedunused(F,K)⇒3 ¬happens(B,K)

Case 4. A has F as a precondition, B deletes F . Then,

happens(A,K)⇒3 ¬happens(B,K)
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In the case of conflicting effects (A adds F , B deletes F), there’s only a conflict when the
conflicted fluent “holds”. So in fact we actually only care about a unit propagation mutex between
holds(F,K +1) and happens(B,K). A is not relevant (as mentioned in the Section 2 of the main
paper, this is where our mutex rules differ from those of (Blum and Furst 1997)). So

holds(F,K +1)⇒5 ¬deleted(F,K)⇒4 ¬happens(B,K)

Conversely:

happens(B,K)⇒4 deleted(F,K)⇒5 ¬holds(F,K +1)

Finally, suppose A and B have mutex preconditions (pre(A,F); pre(B,G); mutex(F,G)). Then
(again by unit propagation),

happens(A,K)⇒6 holds(F,K)⇒7 ¬holds(G,K)⇒6 ¬happens(B,K)

Thus no explicit mutex action rules are needed beyond this. Thanks to unit propagation, the
effect is the same.

B.2 Soundness and Completeness of Variant-II Solver

The make-progress rule here refers to the layered ‘make-progress’ rule.

Lemma Appendix B.1
Given a planning problem solution (plan) P, we can find a solution P∗ which satisfies the ‘make-
progress’ rule such that C(P∗)≤C(P) (C(P) is the sum action cost of plan P) and n(P∗)≤ n(P)
(n(P) is makespan of plan P).

Proof
If P satisfies the ‘make-progress’ rule, then P∗ = P and we’re done. Otherwise there exists a pair
of layers l1 and l2 such that SP(l2) ⊂ SP(l1) (SP(l) is the set of fluents which hold at layer l in
P). We can reduce P by “removing” all the layers between l1 (exclusive) and l2 (inclusive) along
with any actions that occur on those layers. Repeat this process until no such pair of layers exists.
Since every iteration removes at least one layer and P has a finite number of layers, it follows that
this will eventually terminate and the resulting plan P∗ will have no such pair and thus satisfy the
‘make-progress’ rule.

Corollary Appendix B.1
If a planning problem Q is solvable, then it has an optimal solution which “makes progress”
according to the rule.

Lemma Appendix B.2
Given a plan P∗ which satisfies the ‘make-progress’ rule, any prefix of that plan P..k also satisfies
the ‘make-progress’ rule.

Proof
This is trivial: If there exists no pair of layers in P∗ with some property, then of course there
exists no pair of layers with that property in any prefix of P∗.
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Lemma Appendix B.3
Given a planning problem Q with solution P, the delete-free relaxation of Q has a solution P∗, the
set of actions that occur in P (ordered according to the first time they are taken in P). It follows
that C(P∗)≤C(P) (note: this is not strictly equal since actions in P may be taken more than once
and incur their cost every time).

Proof
Also trivial: If a precondition or goal is satisfied at some layer in P, then it must also be satisfied
by that time in the delete-free relaxation since all the same actions have occurred.

Theorem Appendix B.2
(Variant-II Soundness Theorem) If Q has an optimal solution P with cost C and makespan n, then
for any k ≤ n, at makespan k the Variant-II solver will find a relaxed plan with cost ≤C.

Proof
This can be established by constructing a solution at makespan k with cost C(P,k) ≤ C. By
Corollary Appendix B.1, we may assume WLOG that P makes progress. First, set the ‘subgoal‘
fluents to be SP(k). The fluents and actions in the normal part of the program match P exactly.
By Lemma Appendix B.2 these will satisfy the ‘make-progress’ rule. Finally, the suffix layer is
solved by the set of actions that occur in the suffix Pk.. which solves the delete-free relaxation by
Lemma Appendix B.3. C(P,k) here is the sum of two parts; the solution to the prefix P..k which
is the same as P..k (and therefore has the same cost as P..k), and the relaxed solution to the suffix
Pk.., which by Lemma Appendix B.3 is no greater than in C(Pk..) so C(P,k) ≤C. It follows that
the optimal solution at makespan k is at most C(P,k) (and so is transitively ≤C).

Theorem Appendix B.3
(Variant-II Completeness Theorem) If a planning problem Q has no solution, the Variant-II solver
will eventually produce an UNSAT instance.

Proof
A plan which makes progress cannot encounter the same state twice and there are a finite number
of possible states. This means that the length of a plan which makes progress is bounded by the
number of possible states. Thus, for a sufficiently-large makespan, the make-progress rule is
unsatisfiable.

B.3 Soundness and Completeness of Stepless Planner

Theorem Appendix B.4
(Stepless Soundness Theorem) All plan costs produced by the stepless planner are lower bounds
on the cost of the true optimal plan.
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Proof
Case 1. There are sufficient occurrences of fluents and actions to construct the optimal plan: In
this case, these occurrences constitute a solution so the minimal solution to this instance will
have a cost which is no greater.

Otherwise pick an arbitrary sequentialization of the optimal plan. Now we have two cases:
Case 2. The first missing occurrence in the plan is an action occurrence. In this case, consider

the plan cut where all actions up to this point occur (since we have enough occurrences) and the
state at this cut form the subgoals. By Lemma Appendix B.3 again, we can put the remainder
of the plan into the suffix layer. The missing action occurrence will be a starting action and that
action will also be saturated so the saturation rules are satisfied.

Case 3. The first missing occurrence in the plan is a fluent occurrence. In that case, use the plan
cut up to (but not including) the action occurrence which adds this fluent occurrence (putting the
remainder of the plan including the adding action into the suffix layer by Lemma Appendix B.3).
This action will be a starting action so the added fluent will be a saturated starting fluent which
also satisfies the saturation requirement.

The ‘make progress’ rule below refers to the stepless ‘make-progress’ rule.

Lemma Appendix B.4
Given a collection of action occurrences in a plan P, they may be ordered such that for each
consecutive pair there is an (s, t)-cut which puts the first one on the s-side and the other one on
the t-side.

Proof
Pick a serialization of P. Order the actions according to the sub-order in that serialization. Place
the cuts anywhere between them.

Lemma Appendix B.5
For any action A there exists a (finite) count k such that the stepless planner will not add more
than k occurrences of A.

Proof
In order to add another occurrence of A, it must be the case that A is saturated in some plan that
makes progress. This means that k occurrences of A are used in the plan. Order the occurrences
of A as (A0,A1,A2, ...,Ak) such that there exists a cut between each consecutive pair (by Lemma
Appendix B.4; also because of our symmetry-breaking rule this can be the natural ordering by
action index). It follows by the ‘make-progress’ rule that the state at each of the cuts must be
distinct from the state at any other cut. Thus, k cannot exceed the number of possible states
(which is finite).

Corollary Appendix B.5
For any fluent F there exists a finite count k such that the stepless planner will not add more than
k occurrences of F .

Proof
When F is saturated, each occurrence must be caused by some action occurrence. Since Lemma
Appendix B.5 bounds the number of action occurrences which a progress-making plan can have,
it follows that the number of fluent occurrences is also bounded.
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Theorem Appendix B.6
(Stepless Completeness Theorem) The stepless planner will eventually find the solution if it
exists or produce an UNSAT instance if it doesn’t.

Proof
In the proof of Theorem Appendix B.4 we show that if a plan exists, then there will always be
a solution to any stepless instance constructed from that problem (either the plan itself if there
are enough occurrences, or a partial plan with a suffix layer since some fluent or action does not
have enough occurrences and can therefore be saturated). Lemma Appendix B.5 and Corollary
Appendix B.5 together ensure that the process of alternately solving instances and then including
any saturated fluents or actions will eventually halt (since there are at most a finite number of
actions and fluents that can be included before finding a progress-making plan which saturates
something becomes impossible).

Appendix C Delete-Free Planning

Recall that delete-free planning can be modeled as a graph problem: Given a directed bipartite
graph G = (X ,Y,E) with weights on X and a goal set YF ⊆ Y , find a minimum acyclic subgraph
G∗ = (X∗,Y ∗,E∗) such that

1. YF ⊆ Y ∗

2. If x ∈ X∗ and (y,x) ∈ E, then y ∈ Y ∗ and (y,x) ∈ E∗

3. For all y ∈ Y ∗, E∗ contains at least one edge (x,y) (and x ∈ X∗).

Recall its connection to delete-free planning: X is the set of actions, and Y is the set of fluents,
the (x,y) edges are add-effects and the (y,x) edges are preconditions. YF is the goal set and the
initial set has been removed (together with all corresponding preconditions) from the graph. Rule
1 means the goal fluents must be true. Rule 2 means an action implies its preconditions. Rule 3
means every fluent must have a causing action. The graph must be acyclic to ensure the actions
can occur in some order. The entire problem of a delete-free planning problem can be encoded
in a single “one-shot” ASP program. This is possible because there is no incentive to ever take
an action or cause a fluent more than once. As soon as any fluent is true, it is permanently true.

Let us write an ASP program to solve the problem of delete-free planning. Here we do not
worry about makespan; thanks to the NP-ness of delete-free planning, we can solve this problem
all in one go. Note that we can trivially add an extra rule to make our plans cost-optimal. (The
code below is a complete ASP program: run it on the problem and get an optimal solution.)

holds(F) :- init(F).

{happens(A)} :- holds(F) : pre(A,F); action(A).

holds(F) :- add(A,F); happens(A).

:- goal(F); not holds(F).

:~ happens(A); cost(A,C).[C,A]

We have again encountered a five-line program which, magnificently, does everything. It hand-
ily encodes the problem of delete-free planning. To be supported, an action’s preconditions must
hold independently of that action itself and a fluent’s causing action must not require that fluent.

However, we have lost something by encoding planning “from the ground up”. Earlier, we
mentioned how the state-space for solving a planning problem was reduced when we started
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from the goal, and built support up backwards. That is, an action should only happen if something
needs it. Let us fix that.

If we build up the plan backwards, we must be careful to ensure that the actions can happen
in some order. As such, we need to explicitly include atoms whose only purpose is to ensure
supportedness.

% Delete-free planning

holds(F) :- goal(F).

{happens(A) : add(A,F)} >= 1 :- holds(F), not init(F).

holds(F) :- pre(A,F); happens(A).

supportFluent(F) :- init(F); holds(F).

supportAct(A) :- supportFluent(F) : pre(A,F), holds(F); happens(A).

supportFluent(F) :- supportAct(A); happens(A); add(A,F); holds(F).

:- holds(F); not supportFluent(F).

:~ happens(A); cost(A,C).[C,A]

Now the first three rules encompass neededness. We add actions and fluents in working back-
wards from the goal until we encounter the initial fluents. Meanwhile the second three rules
indicate whether an action or fluent is supported. Together, with the restriction that all the fluents
must be supported, these guarantee a correct plan. Essentially, for an action or fluent to occur, it
now must have support both from the bottom and from the top.

Appendix D Stepless Planner with Suffix Layer

Requires an external program to detect which fluents and actions are saturated each time the
suffix layer is used and feed in more occurrences.

is(fluentOcc(F,1)) :- fluent(F).

is(actOcc(A,1)) :- action(A).

is(fluentOcc(F,0)) :- init(F).

% ======================== Problem Description =========================

% Helper function to recognize subsequent occurrences of fluent/action.

nextOcc(fluentOcc(F,0),fluentOcc(F,1)) :- fluent(F).

nextOcc(fluentOcc(F,M),fluentOcc(F,M+1)) :- is(fluentOcc(F,M)).

nextOcc(actOcc(A,N),actOcc(A,N+1)) :- is(actOcc(A,N)).

% Fluent occurrence which is not initial (M > 0) must have exactly one

% causing action

{causes(actOcc(A,N),fluentOcc(F,M)) : add(A,F), is(actOcc(A,N))}=1 :-

holds(fluentOcc(F,M)); M > 0.

% If an action causes a fluent, it happens.

happens(AO) :- causes(AO,_).
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% An action cannot cause more than one occurrence of the same fluent.

:- {causes(AO,fluentOcc(F,M))} > 1; is(AO); fluent(F).

% For each precondition an action occurrence has, some occurrence of

% that fluent must permit it.

{permits(fluentOcc(F,M),actOcc(A,N)) : is(fluentOcc(F,M))}=1 :-

happens(actOcc(A,N)); pre(A,F).

% A fluent occurrence which permits an action must hold.

holds(FO) :- permits(FO,_).

% A fluent which is used to satisfy a subgoal condition "permits" it.

% For each subgoal condition, exactly one occurrence of that fluent

% permits it.

{permits(fluentOcc(F,M),subgoal(F)) : is(fluentOcc(F,M))}=1 :-

subgoal(F).

% A fluent which permits a subgoal condition cannot be deleted.

:- deleted(FO); permits(FO,subgoal(_)).

% An occurrence of an action deletes an occurrence of a fluent if

% it permits it and that action has the fluent as a delete effect.

deletes(actOcc(A,N),fluentOcc(F,M)) :-

permits(fluentOcc(F,M),actOcc(A,N)); del(A,F).

% No fluent may be deleted by more than one action.

:- {deletes(_, FO)} > 1; is(FO).

% An action which deletes a fluent, but doesn’t have it as a precondition

% follows some occurrence of that fluent. Can possibly follow occurrence

% index 0 even if the fluent is not an initial fluent (indicating this

% action occurs before any occurrence of that fluent).

{follows(actOcc(A,N),fluentOcc(F,M)) : holds(fluentOcc(F,M));

follows(actOcc(A,N),fluentOcc(F,0))}=1 :-

del(A,F); not pre(A,F); happens(actOcc(A,N)).

% Fluent occurrences 0 which aren’t initial fluents count as "deleted".

deleted(fluentOcc(F,0)) :- fluent(F); not init(F).

% A fluent is deleted if something deletes it.

deleted(FO) :- deletes(_, FO).

% A fluent is deleted if something follows it.

deleted(FO) :- follows(_, FO).

% Weak constraint charging the cost of an action occurrence.

:~ happens(actOcc(A,N)); cost(A,V).[V,A,N]

% An occurrence of a fluent doesn’t hold if its previous occurrence

% doesn’t hold.

:- holds(fluentOcc(F,M+1)); not holds(fluentOcc(F,M));

is(fluentOcc(F,M)); M > 0.
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% An occurrence of an action doesn’t happen if its previous occurrence

% didn’t happen.

:- happens(BO); not happens(AO); nextOcc(AO,BO).

% ======================= Plan Event Graph ===========================

% Events in the graph; these will be grouped into vertices

event(start(FO)) :- holds(FO).

event(end(FO)) :- holds(FO).

event(end(fluentOcc(F,0))) :- fluent(F).

event(AO) :- happens(AO).

% subgoals are events

event(subgoal(F)) :- subgoal(F).

% Triggering actions

% The start of a fluent by its causing action.

actionTriggers(AO,start(FO)) :- causes(AO,FO).

% The end of a fluent by its deleting action.

actionTriggers(AO,end(FO)) :- deletes(AO,FO).

% Vertices

% If no action triggers an event, then it gets a vertex by itself.

vertex(V) :- event(V); not actionTriggers(A,V) : is(A).

% Otherwise it belongs to the vertex for its trigger action.

inVertex(E,V) :- actionTriggers(V,E).

% Every event which is the name of a vertex belongs to that vertex.

inVertex(V,V) :- vertex(V).

% Graph edges

% A fluent ends after it starts

edge(start(FO),end(FO)) :- holds(FO).

% If a fluent permits an action, then the action happens after

% the start of the fluent

edge(start(FO),AO) :- permits(FO,AO).

% If a fluent permits an action but the action doesn’t delete the

% fluent, then the action happens before the end of the fluent.

edge(AO,end(FO)) :- permits(FO,AO); not deletes(AO,FO).

% An action happens after the fluent it follows

edge(end(FO),AO) :- follows(AO,FO).

% but before the next occurrence

edge(AO,start(GO)) :- follows(AO,FO); nextOcc(FO,GO); holds(GO).

% The start of the next occurrence of a fluent happens after the

% end of the previous occurrence

edge(end(FO),start(GO)) :- holds(GO); nextOcc(FO,GO).
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% The next occurrence of an action happens after the previous

% occurrence

edge(AO,BO) :- happens(AO); happens(BO); nextOcc(AO,BO).

% And now we use stable models to assert that the graph is acyclic; sup(X)

% indicates that X has acyclic support going back to the root of the graph.

% The input for a given event has support if all events joined

% by any incoming edge have support.

sup(in(E)) :- sup(D) : edge(D,E); event(E).

% A vertex has support if all of its events’ inputs have support.

sup(V) :- sup(in(E)) : inVertex(E,V); vertex(V).

% An event has support if its vertex has support.

sup(E) :- sup(V); inVertex(E,V).

% Every vertex must have support.

:- vertex(V); not sup(V).

% ======================= Strong Minimality ============================

% A counterexample to strong minimality consists of two cuts, cut1 and cut2.

cut(cut1; cut2).

% For each vertex V and each cut C, V is on either the s-side or

% the t-side of V. Note this rule is disjunctive.

onSideOf(V,s,C) | onSideOf(V,t,C) :- vertex(V); cut(C).

% An event belongs to the cut side of its vertex.

onSideOf(E,X,C) :- inVertex(E,V); onSideOf(V,X,C).

% Any subgoal is always on the t-side of cut2.

onSideOf(subgoal(F),t,cut2) :- subgoal(F).

% If there’s a directed edge from D to E, but D is on the t-side

% and E is on the s-side, this is not a cut (invalidating this

% counterexample to strong minimality).

not_counterexample :- edge(D,E); onSideOf(D,t,C); onSideOf(E,s,C).

% If a fluent starts on the s-side of cut2 and ends on the t-side,

% then it "holds over" cut2.

holdsOver(FO,cut2) :-

onSideOf(start(FO),s,cut2); onSideOf(end(FO),t,cut2).

% Similarly if it starts and ends on the same side of cut1, then it

% doesn’t hold over cut1.

not_holdsOver(FO,cut1) :-

onSideOf(start(FO),X,cut1); onSideOf(end(FO),X,cut1).

% Action occurrence AO is not between cut1 and cut2 if it’s on the

% s-side of cut1 or the t-side of cut2.

not_betweenCuts(AO) :- onSideOf(AO,s,cut1).

not_betweenCuts(AO) :- onSideOf(AO,t,cut2).
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% If no action occurs between the two cuts, then this is not a counterexample.

not_counterexample :- not_betweenCuts(AO) : happens(AO).

% If there exists a fluent for which some occurrence holds over cut2,

% but no occurrence holds over cut1, then this is not a counterexample.

not_counterexample :-

holdsOver(fluentOcc(F,_),cut2);

not_holdsOver(fluentOcc(F,M),cut1) : holds(fluentOcc(F,M)).

% There should be no counterexample (sorry for the triple negative).

:- not not_counterexample.

% If this is not a counterexample, all atoms must hold.

onSideOf(V,s,C) :- vertex(V); cut(C); not_counterexample.

onSideOf(V,t,C) :- vertex(V); cut(C); not_counterexample.

To see why this works, imagine that we find a plan which satisfies these rules. Consider the
candidate model which includes the atom not counterexample. Because all the rules here are
strictly positive, the last two rules force all the others to hold. Any other solution is a strict subset.
Therefore if some other solution exists which does not include the not counterexample atom,
then a model including it would be rejected for not being minimal. It follows that the only models
which include not counterexample (and satisfy the triple-negative rule) are those for which no
counterexample exists.

% ========================= Suffix Layer ===============================

% All goal fluents hold in the suffix layer.

suffix(holds(F)) :- goal(F).

% If a fluent holds in the suffix layer, either some action causes it

% or it is a subgoal.

{subgoal(F); suffix(causes(A,F)) : add(A,F)} = 1 :- suffix(holds(F)).

% If an action causes a fluent in the suffix, it happens.

suffix(happens(A)) :- suffix(causes(A,_)).

% If an action occurs in the suffix layer, then all of its

% preconditions hold in ths suffix layer

suffix(holds(F)) :- suffix(happens(A)); pre(A,F).

% If any action happens in the suffix layer, then we are using it.

useSuffix :- suffix(happens(_)).

% A fluent is supported in the suffix if it’s a subgoal

suffix(sup(holds(F))) :- subgoal(F).

% An action is supported in the suffix if all of its preconditions are

suffix(sup(happens(A))) :-

suffix(sup(holds(F))) : pre(A,F); suffix(happens(A)).

% A fluent is supported in the suffix if its causing action is

suffix(sup(holds(F))) :- suffix(sup(happens(A))); suffix(causes(A,F)).
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% No action happens in the suffix without support

:- suffix(happens(A)); not suffix(sup(happens(A))).

% No fluent holds in the suffix without support

:- suffix(holds(F)); not suffix(sup(holds(F))).

% Actions that happen in the suffix layer impose their cost.

:~ suffix(happens(A)); cost(A,V).[V,A,suffix]

% Very weak preference to avoid using the suffix layer.

:~ useSuffix.[1@-1]

% ========================== Saturated ================================

% A fluent is saturated if all occurrences of it hold (besides the 0th).

saturated(fluent(F)) :-

holds(fluentOcc(F,M)) : is(fluentOcc(F,M)),M>0; fluent(F).

% An action is saturated if all occurrences of it happen.

saturated(action(A)) :-

happens(actOcc(A,N)) : is(actOcc(A,N)); action(A).

% If an action happens in the suffix layer and all of its preconditions

% are subgoals, we designate it a "starting" action.

suffix(start(action(A))) :- subgoal(F) : pre(A,F); suffix(happens(A)).

% Any fluent caused by a starting action is designated a "starting" fluent.

suffix(start(fluent(F))) :- suffix(start(action(A))); suffix(causes(A,F)).

% Guarantees that some starting action or fluent will be saturated.

:- useSuffix; not saturated(X) : suffix(start(X)).

% =======================================================================

#show causes/2. #show deletes/2. #show happens/1.

#show holds/1. #show permits/2. #show follows/2.

#show suffix(happens(A)) : suffix(happens(A)).

Appendix E An Example of Stepless Planning: Bridge Crossing

We will use a modified version of the bridge-crossing problem from (Eiter et al. 2003).
In the original problem, we have four people, Joe, Jack, William, and Averell, needing to cross

a bridge in the middle of the night. The bridge is unstable, so at most two people can cross at a
time. The four only have a single lantern between them and since there are planks missing it is
unsafe to cross unless someone in your party is carrying the lantern. In the original problem, it
takes Joe 1 minute to run across, Jack 2 minutes, William 5 minutes and Averell 10. When two
people cross together they must go at the slower speed of the two. What’s the fastest all four
can get across considering that after each crossing somebody needs to cross back carrying the
lantern?

In our version we’ll add two more people Jill and Candice for a total of six people. Jill takes 3
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minutes to cross and Candice takes 20 (the original problem doesn’t make for a very interesting
example of stepless planning).

We can now phrase the problem as follows:

person(joe;jack;jill;william;averell;candice)

side(side_a;side_b)

crossing_time(joe,1).

crossing_time(jack,2).

crossing_time(jill,3)

crossing_time(william,5).

crossing_time(averell,10).

crossing_time(candice,20).

fluent(lantern_at(S)) :- side(S).

fluent(at(P,S)) :- person(P); side(S).

init(at(P,side_a)) :- person(P).

init(lantern_at(side_a)).

goal(at(P,side_b)) :- person(P).

action(cross_alone(P,FROM,TO)) :-

person(P); side(FROM); side(TO); FROM != TO.

pre(cross_alone(P,FROM,TO),at(P,FROM)) :-

action(cross_alone(P,FROM,TO)).

pre(cross_alone(P,FROM,TO),lantern_at(FROM)) :-

action(cross_alone(P,FROM,TO)).

add(cross_alone(P,FROM,TO),at(P,TO)) :-

action(cross_alone(P,FROM,TO)).

add(cross_alone(P,FROM,TO),lantern_at(TO)) :-

action(cross_alone(P,FROM,TO)).

del(cross_alone(P,FROM,TO),at(P,FROM)) :-

action(cross_alone(P,FROM,TO)).

del(cross_alone(P,FROM,TO),lantern_at(FROM)) :-

action(cross_alone(P,FROM,TO)).

cost(cross_alone(P,FROM,TO),C) :-

action(cross_alone(P,FROM,TO)); crossing_time(P,C).

action(cross_together(P_SLOW,P_FAST,FROM,TO)) :-

side(FROM); side(TO); FROM != TO;

crossing_time(P_SLOW,T1); crossing_time(P_FAST,T2); T2 < T1.

pre(cross_together(P_SLOW,P_FAST,FROM,TO),at(P_SLOW,FROM)):-

action(cross_together(P_SLOW,P_FAST,FROM,TO)).

pre(cross_together(P_SLOW,P_FAST,FROM,TO),at(P_FAST,FROM)):-

action(cross_together(P_SLOW,P_FAST,FROM,TO)).

pre(cross_together(P_SLOW,P_FAST,FROM,TO),lantern_at(FROM)):-

action(cross_together(P_SLOW,P_FAST,FROM,TO)).
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add(cross_together(P_SLOW,P_FAST,FROM,TO),at(P_SLOW,TO)):-

action(cross_together(P_SLOW,P_FAST,FROM,TO)).

add(cross_together(P_SLOW,P_FAST,FROM,TO),at(P_FAST,TO)):-

action(cross_together(P_SLOW,P_FAST,FROM,TO)).

add(cross_together(P_SLOW,P_FAST,FROM,TO),lantern_at(TO)):-

action(cross_together(P_SLOW,P_FAST,FROM,TO)).

del(cross_together(P_SLOW,P_FAST,FROM,TO),at(P_SLOW,FROM)):-

action(cross_together(P_SLOW,P_FAST,FROM,TO)).

del(cross_together(P_SLOW,P_FAST,FROM,TO),at(P_FAST,FROM)):-

action(cross_together(P_SLOW,P_FAST,FROM,TO)).

del(cross_together(P_SLOW,P_FAST,FROM,TO),lantern_at(FROM)):-

action(cross_together(P_SLOW,P_FAST,FROM,TO)).

cost(cross_alone(P_SLOW,P_FAST,FROM,TO),C) :-

action(cross_alone(P_SLOW,P_FAST,FROM,TO)); crossing_time(P_SLOW,C).

Let’s run the stepless solver on this. On the first iteration we input one occurrence of every
fluent and every action as well as a bonus zero’th occurrence of each initial fluent.

is(fluentOcc(F,1)) :- fluent(F).

is(actOcc(A,1)) :- action(A).

is(fluentOcc(F,0)) :- init(F).

It gives back a directed graph of action and fluent dependencies. After toplogically sorting the
graph and throwing out everything that isn’t an action we have the plan:

cross_together(jack,joe,side_a,side_b)

cross_alone(joe,side_b,side_a)

suffix cross_together(candice,averell,side_a,side_b)

suffix cross_alone(joe,side_a,side_b)

suffix cross_together(william,jill,side_a,side_b)

cost: 29

In the suffix layer when Candice and Averell cross from side a to side b, the fluent lantern at(side a)
is not deleted (because the suffix layer encodes the delete-free relaxation of the problem), so this
is still considered to be achieved when Joe, and then William and Jill cross. Nobody needs to
bring the lantern back for them. The use of the suffix layer is allowed because there isn’t a sec-
ond occurrence of the fluent at( joe(sideb)), but this is a starting fluent (all 3 suffix actions are
starting actions since they do not depend on each other). Since the suffix layer was used, we add
a second occurrence of each of the fluents and actions which were saturated by this plan:

Adding:

is(fluentOcc(at(joe,side_a),2)).

is(fluentOcc(lantern_at(side_a),2)).

is(fluentOcc(lantern_at(side_b),2)).

is(fluentOcc(at(joe,side_b),2)).

is(fluentOcc(at(jack,side_b),2)).

is(actOcc(cross_together(jack,joe,side_a,side_b),2)).

is(actOcc(cross_alone(joe,side_b,side_a),2)).

and run it again:



15

cross_together(william,joe,side_a,side_b)

cross_alone(joe,side_b,side_a)

cross_together(jill,joe,side_a,side_b)

cross_alone(joe,side_b,side_a)

suffix cross_together(candice,averell,side_a,side_b)

suffix cross_together(jack,joe,side_a,side_b)

cost: 32

This time we start by having William and Joe cross together and then Joe carries the lantern
back, crosses with Jill and carries it back again. In the suffix layer, Candice and Averell cross
together while Jack and Joe cross together (each pair making use of the same undeleted lantern).
Again the suffix layer occurs because we don’t have enough occurrences of at( joe(side b)).

Interestingly, a cheaper solution seems to have been skipped. Namely the plan which is iden-
tical to the cost-29 plan, but with Joe running across and running back first for a total cost of
31.

This is because such a plan fails to make progress. We can produce two cuts, namely the one
at the start of the plan and the one after Joe crosses back the first time and see that no new fluents
hold between the two cuts. The rules enforcing strong minimality will reject this plan.

Add another occurrence of each saturated item

Adding:

is(fluentOcc(at(joe,side_a),3)).

is(fluentOcc(lantern_at(side_a),3)).

is(fluentOcc(lantern_at(side_b),3)).

is(fluentOcc(at(joe,side_b),3)).

is(fluentOcc(at(jill,side_b),2)).

is(fluentOcc(at(william,side_b),2)).

is(actOcc(cross_together(jill,joe,side_a,side_b),2)).

is(actOcc(cross_together(william,joe,side_a,side_b),2)).

is(actOcc(cross_alone(joe,side_b,side_a),3)).

and again:

cross_together(william,jack,side_a,side_b)

cross_alone(jack,side_b,side_a)

cross_together(jill,jack,side_a,side_b)

suffix cross_alone(jack,side_b,side_a)

suffix cross_alone(joe,side_a,side_b)

suffix cross_together(candice,averell,side_a,side_b)

cost: 33

Here we have William and Jack crossing together. Then Jack crosses back alone. Jill and
Jack cross together, and now Jack would cross back alone again taking the lantern, but there
are only two occurrences of the action cross alone( jack,side b,side a) in our bag so instead
we move into the suffix layer. In the suffix layer he carries the lantern back, but because of the
delete relaxation, we don’t lose the fluent at( jack,side b) so he doesn’t need to cross back again.
Candice and Averell use the lantern to cross as does Joe by himself.

The rest of the output from the stepless solver follows:
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Adding:

is(fluentOcc(at(jack,side_a),2)).

is(fluentOcc(at(jack,side_b),3)).

is(actOcc(cross_together(jill,jack,side_a,side_b),2)).

is(actOcc(cross_together(william,jack,side_a,side_b),2)).

is(actOcc(cross_alone(jack,side_b,side_a),2)).

cross_together(jill,joe,side_a,side_b)

cross_alone(joe,side_b,side_a)

cross_together(william,joe,side_a,side_b)

cross_alone(joe,side_b,side_a)

cross_together(jack,joe,side_a,side_b)

cross_alone(joe,side_b,side_a)

suffix cross_alone(joe,side_a,side_b)

suffix cross_together(candice,averell,side_a,side_b)

cost: 34

Adding:

is(fluentOcc(at(joe,side_a),4)).

is(fluentOcc(lantern_at(side_a),4)).

is(fluentOcc(lantern_at(side_b),4)).

is(fluentOcc(at(joe,side_b),4)).

is(actOcc(cross_alone(joe,side_b,side_a),4)).

cross_together(jill,jack,side_a,side_b)

cross_alone(jill,side_b,side_a)

cross_together(william,jill,side_a,side_b)

suffix cross_alone(jill,side_b,side_a)

suffix cross_alone(joe,side_a,side_b)

suffix cross_together(candice,averell,side_a,side_b)

cost: 35

Adding:

is(fluentOcc(at(jill,side_a),2)).

is(fluentOcc(at(jill,side_b),3)).

is(actOcc(cross_together(william,jill,side_a,side_b),2)).

is(actOcc(cross_alone(jill,side_b,side_a),2)).

cross_together(jack,joe,side_a,side_b)

cross_alone(jack,side_b,side_a)

cross_together(jill,jack,side_a,side_b)

cross_alone(jack,side_b,side_a)

cross_together(william,jack,side_a,side_b)

suffix cross_alone(jack,side_b,side_a)

suffix cross_together(candice,averell,side_a,side_b)

cost: 36
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Adding:

is(fluentOcc(at(jack,side_a),3)).

is(fluentOcc(at(jack,side_b),4)).

is(actOcc(cross_alone(jack,side_b,side_a),3)).

cross_together(jack,joe,side_a,side_b)

cross_alone(joe,side_b,side_a)

cross_together(jill,joe,side_a,side_b)

cross_alone(joe,side_b,side_a)

cross_together(candice,averell,side_a,side_b)

cross_alone(jack,side_b,side_a)

cross_together(william,joe,side_a,side_b)

cross_alone(joe,side_b,side_a)

cross_together(jack,joe,side_a,side_b)

cost: 37

In the last one, the suffix layer is not used so we’re done. No other plans need be searched.
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