
Online appendix for the paper

Bridging Commonsense Reasoning and Probabilistic Planning via
a Probabilistic Action Language

published in Theory and Practice of Logic Programming

Yi Wang∗, Shiqi Zhang#, Joohyung Lee∗
∗Arizona State University, USA # SUNY Binghamton, USA

Appendix A Extended Review of Preliminaries

A.1 Review: Language LPMLN

An LPMLN program is a finite set of weighted rules w : R where R is a rule and w is a real
number (in which case, the weighted rule is called soft) or α for denoting the infinite weight (in
which case, the weighted rule is called hard). Throughout the paper, we assume that the language
is propositional. Schematic variables can be introduced via grounding as usual in answer set
programming.

For any LPMLN program Π and any interpretation I , Π denotes the usual (unweighted) ASP
program obtained from Π by dropping the weights, and ΠI denotes the set of w : R in Π such
that I |= R.

In general, an LPMLN program may even have stable models that violate some hard rules,
which encode definite knowledge. However, throughout the paper, we restrict attention to LPMLN

programs whose stable models do not violate hard rules. More precisely, given a ground LPMLN

program Π, SM[Π] denotes the set

{I | I is a (deterministic) stable model of ΠI that satisfies all hard rules in Π}.

The weight of an interpretation I , denoted WΠ(I), is defined as

WΠ(I) =

exp
(∑
w:R ∈ ΠI

w

)
if I ∈ SM[Π];

0 otherwise,

and the probability of I , denoted PΠ(I), is defined as

PΠ(I) =
WΠ(I)∑

J∈SM[Π]

WΠ(J)
.

A.2 Review: DT-LPMLN

We extend the syntax and the semantics of LPMLN to DT-LPMLN by introducing atoms of the
form

utility(u, t) (A1)

where u is a real number, and t is an arbitrary list of terms. These atoms can only occur in the
head of hard rules of the form

α : utility(u, t)← Body (A2)

where Body is a list of literals. We call these rules utility rules.
The weight and the probability of an interpretation are defined the same as in LPMLN. The

utility of an interpretation I under Π is defined as

UΠ(I) =
∑

utility(u,t)∈I

u.

The expected utility of a proposition A is defined as

E[UΠ(A)] =
∑
I|=A

UΠ(I)× PΠ(I | A). (A3)

A.3 Review: Multi-Valued Probabilistic Programs

Multi-valued probabilistic programs (Lee and Wang 2016) are a simple fragment of LPMLN that
allows us to represent probability more naturally.

We assume that the propositional signature σ is constructed from “constants” and their “val-
ues.” A constant c is a symbol that is associated with a finite set Dom(c), called the domain. The
signature σ is constructed from a finite set of constants, consisting of atoms c = v 7 for every
constant c and every element v in Dom(c). If the domain of c is {FALSE, TRUE} then we say
that c is Boolean, and abbreviate c= TRUE as c and c= FALSE as ∼c.

We assume that constants are divided into probabilistic constants and non-probabilistic con-
stants. A multi-valued probabilistic program Π is a tuple 〈PF,Π〉, where

• PF contains probabilistic constant declarations of the following form:

p1 :: c=v1 | · · · | pn :: c=vn (A4)

one for each probabilistic constant c, where {v1, . . . , vn} = Dom(c), vi 6= vj , 0 ≤
p1, . . . , pn ≤ 1 and

∑n
i=1 pi = 1. We use MΠ(c = vi) to denote pi. In other words,

PF describes the probability distribution over each “random variable” c.
• Π is a set of rules such that the head contains no probabilistic constants.

The semantics of such a program Π is defined as a shorthand for LPMLN program T (Π) of
the same signature as follows.

• For each probabilistic constant declaration (A4), T (Π) contains, for each i = 1, . . . , n, (i)
ln(pi) : c=vi if 0 < pi < 1; (ii) α : c=vi if pi = 1; (iii) α : ⊥ ← c=vi if pi = 0.

• For each rule Head ← Body in Π, T (Π) contains α : Head ← Body.

• For each constant c, T (Π) contains the uniqueness of value constraints

α : ⊥ ← c=v1 ∧ c = v2 (A5)

for all v1, v2 ∈ Dom(c) such that v1 6= v2, and the existence of value constraint

α : ⊥ ← ¬
∨

v∈Dom(c)

c=v . (A6)

In the presence of the constraints (A5) and (A6), assuming T (Π) has at least one (probabilis-
tic) stable model that satisfies all the hard rules, a (probabilistic) stable model I satisfies c = v

for exactly one value v, so we may identify I with the value assignment that assigns v to c.

7 Note that here “=” is just a part of the symbol for propositional atoms, and is not equality in first-order logic.

2

A.4 Review: Action Language pBC+ with Utility

Syntax of pBC+

We assume a propositional signature σ as defined in Section A.3. We further assume that the
signature of an action description is divided into four groups: fluent constants, action constants,
pf (probability fact) constants and initpf (initial probability fact) constants. Fluent constants are
further divided into regular and statically determined. The domain of every action constant is
Boolean. A fluent formula is a formula such that all constants occurring in it are fluent constants.

The following definition of pBC+ is based on the definition of BC+ language from (Babb and
Lee 2015).

A static law is an expression of the form

caused F if G (A7)

where F and G are fluent formulas.
A fluent dynamic law is an expression of the form

caused F if G after H (A8)

where F andG are fluent formulas andH is a formula, provided that F does not contain statically
determined constants and H does not contain initpf constants.

A pf constant declaration is an expression of the form

caused c = {v1 : p1, . . . , vn : pn} (A9)

where c is a pf constant with domain {v1, . . . , vn}, 0 < pi < 1 for each i ∈ {1, . . . , n}8, and
p1 + · · ·+ pn = 1. In other words, (A9) describes the probability distribution of c.

An initpf constant declaration is an expression of the form (A9) where c is an initpf constant.
An initial static law is an expression of the form

initially F if G (A10)

where F is a fluent constant and G is a formula that contains neither action constants nor pf
constants.

A causal law is a static law, a fluent dynamic law, a pf constant declaration, an initpf constant
declaration, or an initial static law. An action description is a finite set of causal laws.

We use σfl to denote the set of fluent constants, σact to denote the set of action constants,
σpf to denote the set of pf constants, and σinitpf to denote the set of initpf constants. For any
signature σ′ and any i ∈ {0, . . . ,m}, we use i : σ′ to denote the set {i : a | a ∈ σ′}.

By i : F we denote the result of inserting i : in front of every occurrence of every constant in
formula F . This notation is straightforwardly extended when F is a set of formulas.

Semantics of pBC+

Given a non-negative integer m denoting the maximum length of histories, the semantics of an
action description D in pBC+ is defined by a reduction to multi-valued probabilistic program
Tr(D,m), which is the union of two subprograms Dm and Dinit as defined below.

8 We require 0 < pi < 1 for each i ∈ {1, . . . , n} for the sake of simplicity. On the other hand, if pi = 0 or pi = 1
for some i, that means either vi can be removed from the domain of c or there is not really a need to introduce c as a
pf constant. So this assumption does not really sacrifice expressivity.

3

For an action descriptionD of a signature σ, we define a sequence of multi-valued probabilistic
program D0, D1, . . . , so that the stable models of Dm can be identified with the paths in the
transition system described by D.

The signature σm of Dm consists of atoms of the form i : c = v such that

• for each fluent constant c of D, i ∈ {0, . . . ,m} and v ∈ Dom(c),
• for each action constant or pf constant c of D, i ∈ {0, . . . ,m− 1} and v ∈ Dom(c).

For x ∈ {act, fl, pf}, we use σxm to denote the subset of σm

{i : c = v | i : c = v ∈ σm and c ∈ σx}.

For i ∈ {0, . . . ,m}, we use i : σx to denote the subset of σxm

{i : c = v | i : c = v ∈ σxm}.

We define Dm to be the multi-valued probabilistic program 〈PF,Π〉, where Π is the conjunc-
tion of

i : F ← i : G (A11)

for every static law (A7) in D and every i ∈ {0, . . . ,m},

i+1 : F ← (i+1 : G) ∧ (i : H) (A12)

for every fluent dynamic law (A8) in D and every i ∈ {0, . . . ,m− 1},

{0:c = v}ch (A13)

for every regular fluent constant c and every v ∈ Dom(c),

{i : c = TRUE}ch, {i : c = FALSE}ch (A14)

for every action constant c, and PF consists of

p1 :: i : pf = v1 | · · · | pn :: i : pf = vn (A15)

(i = 0, . . . ,m − 1) for each pf constant declaration (A9) in D that describes the probability
distribution of pf .

In addition, we define the program Dinit, whose signature is 0 :σinitpf ∪ 0 :σfl. Dinit is the
multi-valued probabilistic program

Dinit = 〈PF init,Πinit〉

where Πinit consists of the rule

⊥ ← ¬(0 :F) ∧ 0:G

for each initial static law (A10), and PF init consists of

p1 :: 0 :pf = v1 | . . . | pn :: 0 :pf = vn

for each initpf constant declaration (A9).
We define Tr(D,m) to be the union of the two multi-valued probabilistic program

〈PF ∪ PF init,Π ∪Πinit〉.
For any LPMLN program Π of signature σ and a value assignment I to a subset σ′ of σ, we

say I is a residual (probabilistic) stable model of Π if there exists a value assignment J to σ \ σ′
such that I ∪ J is a (probabilistic) stable model of Π.

4

For any value assignment I to constants in σ, by i : I we denote the value assignment to
constants in i :σ so that i :I |= (i :c) = v iff I |= c = v.

We define a state as an interpretation Ifl of σfl such that 0 : Ifl is a residual (probabilistic)
stable model of D0. A transition of D is a triple 〈s, e, s′〉 where s and s′ are interpretations of
σfl and e is a an interpretation of σact such that 0 : s ∪ 0 : e ∪ 1 : s′ is a residual stable model
of D1. A pf-transition of D is a pair (〈s, e, s′〉, pf), where pf is a value assignment to σpf such
that 0:s ∪ 0:e ∪ 1 : s′ ∪ 0:pf is a stable model of D1.

A probabilistic transition system T (D) represented by a probabilistic action descriptionD is a
labeled directed graph such that the vertices are the states of D, and the edges are obtained from
the transitions of D: for every transition 〈s, e, s′〉 of D, an edge labeled e : p goes from s to s′,
where p = PrD1

(1 :s′ | 0 :s, 0 :e). The number p is called the transition probability of 〈s, e, s′〉
.

The soundness of the definition of a probabilistic transition system relies on the following
proposition.

Proposition 1
For any transition 〈s, e, s′〉, s and s′ are states.

We make the following simplifying assumptions on action descriptions:

1. No concurrent execution of actions: For all transitions 〈s, e, s′〉, we have e |= a= TRUE

for at most one action constant a;
2. Nondeterministic transitions are determined by pf constants: For any state s, any value

assignment e of σact, and any value assignment pf of σpf , there exists exactly one state s′

such that (〈s, e, s′〉, pf) is a pf-transition;
3. Nondeterminism on initial states are determined by initpf constants: For any value

assignment pfinit of σinitpf , there exists exactly one value assignment fl of σfl such that
0:pfinit ∪ 0:fl is a stable model of Dinit ∪D0.

For any state s, any value assignment e of σact such that at most one action is true, and any
value assignment pf of σpf , we use φ(s, e, pf) to denote the state s′ such that (〈s, a, s′〉, pf)

is a pf-transition (According to Assumption 2, such s′ must be unique). For any interpretation
I , i ∈ {0, . . . ,m} and any subset σ′ of σ, we use I|i:σ′ to denote the value assignment of I to
atoms in i : σ′. Given any value assignment TC of 0:σinitpf ∪ σpfm and a value assignment A of
σactm , we construct an interpretation ITC∪A of Tr(D,m) that satisfies TC ∪A as follows:

• For all atoms p in σpfm ∪ 0:σinitpf , we have ITC∪A(p) = TC(p);
• For all atoms p in σactm , we have ITC∪A(p) = A(p);
• (ITC∪A)|0:σfl is the assignment such that (ITC∪A)|0:σfl∪0:σinitpf is a stable model of
Dinit ∪D0.

• For each i ∈ {1, . . . ,m},

(ITC∪A)|i:σfl = φ((ITC∪A)|(i−1):σfl , (ITC∪A)|(i−1):σact , (ITC∪A)|(i−1):σpf).

By Assumptions 2 and 3, the above construction produces a unique interpretation.
It can be seen that in the multi-valued probabilistic program Tr(D,m) translated from D, the

probabilistic constants are 0:σinitpf ∪σpfm . We thus call the value assignment of an interpretation
I on 0:σinitpf ∪ σpfm the total choice of I . The following theorem asserts that the probability of
a stable model under Tr(D,m) can be computed by simply dividing the probability of the total
choice associated with the stable model by the number of choice of actions.

5

Theorem 1
For any value assignment TC of 0 : σinitpf ∪ σpfm and any value assignment A of σactm , there
exists exactly one stable model ITC∪A of Tr(D,m) that satisfies TC ∪ A, and the probability
of ITC∪A is

PrTr(D,m)(ITC∪A) =

∏
c=v∈TC

M(c = v)

(|σact|+ 1)m
.

The following theorem tells us that the conditional probability of transiting from a state s to
another state s′ with action e remains the same for all timesteps, i.e., the conditional probability
of i+1:s′ given i : s and i : e correctly represents the transition probability from s to s′ via e in
the transition system.

Theorem 2
For any state s and s′, and action e, we have

PrTr(D,m)(i+1:s′ | i : s, i : e) = PrTr(D,m)(j+1:s′ | j : s, j : e)

for any i, j ∈ {0, . . . ,m− 1} such that PrTr(D,m)(i : s) > 0 and PrTr(D,m)(j : s) > 0.

For every subset Xm of σm \ σpfm , let Xi(i < m) be the triple consisting of

• the set consisting of atoms A such that i : A belongs to Xm and A ∈ σfl;
• the set consisting of atoms A such that i : A belongs to Xm and A ∈ σact;
• the set consisting of atoms A such that i+1:A belongs to Xm and A ∈ σfl.

Let p(Xi) be the transition probability of Xi, s0 is the interpretation of σfl0 defined by X0, and
ei be the interpretations of i : σact defined by Xi.

Since the transition probability remains the same, the probability of a path given a sequence
of actions can be computed from the probabilities of transitions.

Corollary 1
For every m ≥ 1, Xm is a residual (probabilistic) stable model of Tr(D,m) iff X0, . . . , Xm−1

are transitions of D and 0:s0 is a residual stable model of Dinit. Furthermore,

PrTr(D,m)(Xm | 0:e0, . . . ,m− 1:em−1) = p(X0)× · · · × p(Xm)× PrTr(D,m)(0 :s0).

pBC+ with Utility

Wang and Lee (2019) has extended pBC+ with the notion of utility as follows.
We extend pBC+ by introducing the following expression called utility law that assigns a

reward to transitions:

reward v if F after G (A16)

where v is a real number representing the reward, F is a formula that contains fluent constants
only, and G is a formula that contains fluent constants and action constants only (no pf, no initpf
constants). We extend the signature of Tr(D,m) with a set of atoms of the form (A1). We turn
a utility law of the form (A16) into the LPMLN rule

α : utility(v, i+ 1, id) ← (i+ 1 : F) ∧ (i : G) (A17)

where id is a unique number assigned to the LPMLN rule and i ∈ {0, . . . ,m−1}.
Given a nonnegative integer m denoting the maximum timestamp, a pBC+ action description

6

D with utility over multi-valued propositional signature σ is defined as a high-level representa-
tion of the DT-LPMLN program (Tr(D,m), σactm).

We extend the definition of a probabilistic transition system as follows: A probabilistic tran-
sition system T (D) represented by a probabilistic action description D is a labeled directed
graph such that the vertices are the states of D, and the edges are obtained from the transitions
of D: for every transition 〈s, e, s′〉 of D, an edge labeled e : p, u goes from s to s′, where
p = PrD1

(1 : s′ | 0 : s ∧ 0 : e) and u = E[UD1
(0 : s ∧ 0 : e ∧ 1 : s′)]. The number p is called the

transition probability of 〈s, e, s′〉, denoted by p(s, e, s′), and the number u is called the transition
reward of 〈s, e, s′〉, denoted by u(s, e, s′).

Appendix B PBCPLUS2POMDP in Compositional Way

In particular, the inputs of PBCPLUS2POMDP(COMPO) include the following:

• LPMLN program Π(m), parameterized with maximum timestep m, that contains LPMLN

translation of fluent dynamic laws, observation dynamic laws and utility laws with no
occurrence of action constant, and static laws, as well as pf constant declarations of pf
constants that occur in those causal laws (see Figure 1);

• For each group of actions ai ∈ in a1,. . . , an, an LPMLN program Πi(m)∪Ci(m), param-
eterized with maximum timestep m; Πi(m) contains translation of fluent dynamic laws,
observation dynamic laws and utility laws where only actions in ai can occur in the body,
as well as pf constant declarations of pf constants that occurs in those causal laws; Ci(m)

contains choice rules (possibly with cardinality bounds) to generate exactly one action in
the group ai; It is up to the user how to group the actions;

• Discount factor.

The system outputs the POMDP definition M(D), so that Dm = Π(m)∪Π1(m)∪ . . .Πn(m)∪
C(m), where C(m) is the choice rule with cardinality constraint to generate at most one action
in a1, . . . , an for each timestep i ∈ {0, . . . ,m − 1}. The transition probabilities, observation
probabilities and reward function of M(D) are obtained by conjoining those from each of Π ∪
Πi ∪ Ci (i ∈ {1, . . . , n}).

Formally, let S, Ω, PM(D), OM(D), RM(D) be the set of states, the set of observations, tran-
sition probabilities, observation probabilities and reward function of M(D), resp. system PBC-
PLUS2POMDP calls LPMLN2ASP first to solve Π(0) to obtain S, and then Π(1) ∪Πi(1) ∪ Ci(1)

to obtain PM(D), OM(D), RM(D) as follows:

PM(D)(s, a, s
′) = PΠ(1)∪Πi(1)∪Ci(1)(1 : s′ | 0 : s, 0 : a)

OM(D)(s, a, o) = PΠ(1)∪Πi(1)∪Ci(1)(1 : o | 1 : s, 0 : a)

RM(D)(s, a, s
′) = E[UΠ(1)∪Πi(1)∪Ci(1)(0 : s, 0 : a, 1 : s′)]

for each a ∈ ai, s, s′ ∈ S and o ∈ Ω.

Example 1
For the dialog example, we group the actions as follows: {ConfirmItem(i) | i ∈ Item}, {ConfirmPerson(p) |
p ∈ Person}, {ConfirmRoom(r) | r ∈ Room}, {WhichItem}, {WhichPerson}, {WhichRoom},
{Deliver(i, p, r) | i ∈ Item, p ∈ Person, r ∈ Room}.

Π is

7

astep(0..m-1).
step(0..m).
boolean(t; f).
item(coffee; coke; cookies; burger).
person(alice; bob; carol).
room(r1; r2; r3).

% UEC
:- obs_Item(X1, I), obs_Item(X2, I), X1 != X2.
:- not obs_Item(coffee, I), not obs_Item(coke, I),

not obs_Item(cookies, I), not obs_Item(burger, I),
not obs_Item(na, I), step(I).

:- obs_Person(X1, I), obs_Person(X2, I), X1 != X2.
:- not obs_Person(alice, I), not obs_Person(bob, I),

not obs_Person(carol, I), not obs_Person(na, I),
step(I).

:- obs_Room(X1, I), obs_Room(X2, I), X1 != X2.
:- not obs_Room(r1, I), not obs_Room(r2, I),

not obs_Room(r3, I), not obs_Room(na, I),
step(I).

:- obs_Confirmed(X1, I), obs_Confirmed(X2, I), X1 != X2.
:- not obs_Confirmed(yes, I), not obs_Confirmed(no, I),

not obs_Confirmed(na, I), step(I).

:- fl_ItemReq(X1, I), fl_ItemReq(X2, I), X1 != X2.
:- not fl_ItemReq(coffee, I), not fl_ItemReq(coke, I),

not fl_ItemReq(cookies, I), not fl_ItemReq(burger, I),
not fl_ItemReq(na, I), step(I).

:- fl_PersonReq(X1, I), fl_PersonReq(X2, I), X1 != X2.
:- not fl_PersonReq(alice, I), not fl_PersonReq(bob, I),

not fl_PersonReq(carol, I), not fl_PersonReq(na, I),
step(I).

:- fl_RoomReq(X1, I), fl_RoomReq(X2, I), X1 != X2.
:- not fl_RoomReq(r1, I), not fl_RoomReq(r2, I),

not fl_RoomReq(r3, I), not fl_RoomReq(na, I),
step(I).

:- fl_Terminated(X1, I), fl_Terminated(X2, I), X1 != X2.
:- not fl_Terminated(t, I), not fl_Terminated(f, I), step(I).

%% No two observations can occur at the same time step
:- obs_Item(It, I), obs_Person(P, I), It != na, P != na.
:- obs_Item(It, I), obs_Room(R, I), It != na, R != na.
:- obs_Item(It, I), obs_Confirmed(C, I), It != na, C != na.
:- obs_Person(P, I), obs_Room(R, I), P != na, R != na.
:- obs_Person(P, I), obs_Confirmed(C, I), P != na, C != na.
:- obs_Room(R, I), obs_Confirmed(C, I), R != na, C != na.

% Inertial Fluents
{fl_ItemReq(It, I+1)} :- fl_ItemReq(It, I), astep(I).
{fl_PersonReq(P, I+1)} :- fl_PersonReq(P, I), astep(I).
{fl_RoomReq(R, I+1)} :- fl_RoomReq(R, I), astep(I).
{fl_Terminated(B, I+1)} :- fl_Terminated(B, I), astep(I).

% Initial value of regular fluents and observation constants are exogenous

8

{fl_Terminated(B, 0)} :- boolean(B).
{fl_ItemReq(It, 0)} :- item(It).
{fl_PersonReq(P, 0)} :- person(P).
{fl_RoomReq(R, 0)} :- room(R).
{obs_Item(It, 0)} :- item(It).
{obs_Person(P, 0)} :- person(P).
{obs_Room(R, 0)} :- room(R).
{obs_Confirmed(yes, 0); obs_Confirmed(no, 0)}.

% By default, observation constant has na value
{obs_Item(na, I)} :- step(I).
{obs_Person(na, I)} :- step(I).
{obs_Room(na, I)} :- step(I).
{obs_Confirmed(na, I)} :- step(I).

Π1 contains definition of action Ask2ConfirmItem:

% Action: ConfirmItem
:- c(It, X1, I), act_ConfirmItem(It, X2, I), X1 != X2.
:- not act_ConfirmItem(It, t, I), not act_ConfirmItem(It, f, I), item(It), astep(I).

:- pf_ConfirmWhenCorrect(X1, I), pf_ConfirmWhenCorrect(X2, I), X1 != X2.
:- not pf_ConfirmWhenCorrect(yes, I), not pf_ConfirmWhenCorrect(no, I), astep(I).
:- pf_ConfirmWhenIncorrect(X1, I), pf_ConfirmWhenIncorrect(X2, I), X1 != X2.
:- not pf_ConfirmWhenIncorrect(yes, I), not pf_ConfirmWhenIncorrect(no, I), astep(I).

@log(0.8) pf_ConfirmWhenCorrect(yes, I) :- astep(I).
@log(0.2) pf_ConfirmWhenCorrect(no, I) :- astep(I).

@log(0.2) pf_ConfirmWhenIncorrect(yes, I) :- astep(I).
@log(0.8) pf_ConfirmWhenIncorrect(no, I) :- astep(I).

obs_Confirmed(C, I+1) :- fl_ItemReq(It, I+1), fl_Terminated(f, I+1),
act_ConfirmItem(It, t, I), pf_ConfirmWhenCorrect(C, I).

obs_Confirmed(C, I+1) :- fl_ItemReq(It, I+1), fl_Terminated(f, I+1),
act_ConfirmItem(It1, t, I), It1 != It, pf_ConfirmWhenIncorrect(C, I).

{act_ConfirmItem(It, B, I)} :- item(It), boolean(B), astep(I).
:- not 1{act_ConfirmItem(It, t, I) : item(It)}1, astep(I).

Similarly, Π2, Π3 contains definition of actions ConfirmPerson and ConfirmRoom.
Π4 contains definition of actions WhichItem(t):

% Action WhichItem
:- act_WhichItem(X1, I), act_WhichItem(X2, I), X1 != X2.
:- not act_WhichItem(t, I), not act_WhichItem(f, I), astep(I).

:- pf_WhichItem(It, X1, I), pf_WhichItem(It, X2, I), X1 != X2.
:- not pf_WhichItem(It, coffee, I), not pf_WhichItem(It, coke, I),

not pf_WhichItem(It, cookies, I), not pf_WhichItem(It, burger, I),
item(It), astep(I).

@log(0.7) pf_WhichItem(coffee, coffee, I) :- astep(I).
@log(0.1) pf_WhichItem(coffee, coke, I) :- astep(I).
@log(0.1) pf_WhichItem(coffee, cookies, I) :- astep(I).

9

@log(0.1) pf_WhichItem(coffee, burger, I) :- astep(I).
@log(0.1) pf_WhichItem(coke, coffee, I) :- astep(I).
@log(0.7) pf_WhichItem(coke, coke, I) :- astep(I).
@log(0.1) pf_WhichItem(coke, cookies, I) :- astep(I).
@log(0.1) pf_WhichItem(coke, burger, I) :- astep(I).
@log(0.1) pf_WhichItem(cookies, coffee, I) :- astep(I).
@log(0.1) pf_WhichItem(cookies, coke, I) :- astep(I).
@log(0.7) pf_WhichItem(cookies, cookies, I) :- astep(I).
@log(0.1) pf_WhichItem(cookies, burger, I) :- astep(I).
@log(0.1) pf_WhichItem(burger, coffee, I) :- astep(I).
@log(0.1) pf_WhichItem(burger, coke, I) :- astep(I).
@log(0.1) pf_WhichItem(burger, cookies, I) :- astep(I).
@log(0.7) pf_WhichItem(burger, burger, I) :- astep(I).

obs_Item(It1, I+1) :- fl_ItemReq(It, I+1), fl_Terminated(f, I+1),
act_WhichItem(t, I), pf_WhichItem(It, It1, I).

%{act_WhichItem(B, I)} :- boolean(B), astep(I).
act_WhichItem(t, I) :- astep(I).

Similarly, Π5 and Π6 contain definitions of actions WhichPerson(t) and WhichRoom(t).
Π7 contains definitions of action Deliver(i, p, r):

% Action: Deliver
:- act_Deliver(It, P, R, X1, I), act_Deliver(It, P, R, X2, I), X1 != X2.
:- not act_Deliver(It, P, R, t, I), not act_Deliver(It, P, R, f, I), item(It), person(P), room(R), astep(I
).

utility(1, I+1, It) :- fl_ItemReq(It, I+1), act_Deliver(It, P, R, t, I), fl_Terminated(f, I).
utility(1, I+1, P) :- fl_PersonReq(P, I+1), act_Deliver(It, P, R, t, I), fl_Terminated(f, I).
utility(1, I+1, R) :- fl_RoomReq(R, I+1), act_Deliver(It, P, R, t, I), fl_Terminated(f, I).

fl_Terminated(t, I+1) :- act_Deliver(It, P, R, t, I).

{act_Deliver(It, P, R, B, I)} :- item(It), person(P), room(R), boolean(B), astep(I).
:- not 1{act_Deliver(It, P, R, t, I) : item(It), person(P), room(R)}1, astep(I).

Π8 contains definitions of no-action:

act_noact(I) :- astep(I).

With this way of grouping actions, system PBCPLUS2POMDP(COMPO) can generate POMDP for
this example with ∼ 5 minutes.

Appendix C Tiger Example

Example 2
(Two Tigers Example). Consider a variant of the well-known tiger example extended with two
tigers. Each of the three doors has either a tiger or a prize behind. The agent can open either
of the three doors. The agent can also listen to get a better idea of where the tiger is. Listening
yields the correct information about where each of the two tigers is with probability 0.85. This
example can be represented in the extended pBC+ as follows:

10

Notation: l, l1, l2, l3 range over Left, Middle, Right, y ranges over Tiger1, Tiger2
Observation constants: Domains:

TigerPositionObserved(y) {Left, Middle, Right, NA}
Regular fluent constants: Domains:

TigerPosition(y) {Left, Middle, Right}
Action constants: Domains:

Listen Boolean
OpenDoor(l) Boolean

Pf constants: Domains:
Pf Listen Boolean
Pf FailedListen(y) {Left, Middle, Right}

A reward of 10 is obtained for opening the door with no tiger behind.

reward 10 if TigerPosition(Tiger1)= l1 ∧ TigerPosition(Tiger2)= l2 after OpenDoor(l3)

(l1 6= l3, l2 6= l3).

A penalty of 100 is imposed on opening a door with a tiger behind.

reward −100 if TigerPosition(y)= l after OpenDoor(l).

Executing the action Listen has a small penalty of 1.

reward −1 if > after Listen.

Two tigers cannot be in the same position.

caused ⊥ if TigerPosition(Tiger1)= l ∧ TigerPosition(Tiger2)= l.

Successful listening reveals the positions of the two tigers.

observed TigerPositionObserved(y)= l if TigerPosition(y)= l after Listen ∧ Pf Listen.

Failed listening yields a random position for each tiger.

caused Pf FailedListen(y) = {Left :
1

3
, Middke :

1

3
, Right :

1

3
},

observed TigerPositionObserved(y)= l if > after Listen∧ ∼ Pf Listen ∧ Pf FailedListen(y)= l.

The positions of tigers observe the commonsense law of inertia.

inertial TigerPosition(y).

The action Listen has a success rate of 0.85.

caused Pf Listen = {TRUE : 0.85, FALSE : 0.15}.

11

