Online appendix for the paper

Bridging Commonsense Reasoning and Probabilistic Planning via
a Probabilistic Action Language
published in Theory and Practice of Logic Programming

Yi Wang*, Shigi Zhang#, Joohyung Lee*
* Arizona State University, USA # SUNY Binghamton, USA

Appendix A Extended Review of Preliminaries

A.1 Review: Language LpMEN

An LPMIN program is a finite set of weighted rules w : R where R is a rule and w is a real
number (in which case, the weighted rule is called softf) or « for denoting the infinite weight (in
which case, the weighted rule is called hard). Throughout the paper, we assume that the language
is propositional. Schematic variables can be introduced via grounding as usual in answer set
programming.

For any LPM™N program II and any interpretation I, IT denotes the usual (unweighted) ASP
program obtained from II by dropping the weights, and II; denotes the set of w : R in II such
that I = R.

In general, an L
which encode definite knowledge. However, throughout the paper, we restrict attention to LPM=N
programs whose stable models do not violate hard rules. More precisely, given a ground LPMIN
program II, SM([II] denotes the set

PMEN program may even have stable models that violate some hard rules,

{I| I is a (deterministic) stable model of II that satisfies all hard rules in IT}.

The weight of an interpretation I, denoted Wy ([), is defined as

Wa(l) = emp(w:Rze: . w> if I € SMIII];

0 otherwise,

and the probability of I, denoted Pr;(I), is defined as
Wi ()
> Wn(J)

JeSMIIT

Pu(l) =

A.2 Review: DT-LPMIN

We extend the syntax and the semantics of LPMN to DT-LPMN by introducing atoms of the
form

utility(u,t) (A1)
where u is a real number, and t is an arbitrary list of terms. These atoms can only occur in the

head of hard rules of the form

a:utility(u,t) < Body (A2)

where Body is a list of literals. We call these rules utility rules.
The weight and the probability of an interpretation are defined the same as in LPMIN The
utility of an interpretation / under II is defined as

Un(l) = Z u.

utility(u,t)el

The expected utility of a proposition A is defined as

E[Un(A)] = > Un(I) x Pu(I| A). (A3)
A

A.3 Review: Multi-Valued Probabilistic Programs

PMEN that

Multi-valued probabilistic programs (Lee and Wang 2016) are a simple fragment of L
allows us to represent probability more naturally.

We assume that the propositional signature ¢ is constructed from “constants” and their “val-
ues.” A constant ¢ is a symbol that is associated with a finite set Dom(c), called the domain. The
signature o is constructed from a finite set of constants, consisting of atoms ¢ = v 7 for every
constant ¢ and every element v in Dom(c). If the domain of ¢ is {FALSE, TRUE} then we say
that c is Boolean, and abbreviate c=TRUE as ¢ and ¢=FALSE as ~c.

We assume that constants are divided into probabilistic constants and non-probabilistic con-

stants. A multi-valued probabilistic program IT is a tuple (PF, II), where

e PF contains probabilistic constant declarations of the following form:
prioc=vy || P c=v, (A4)

one for each probabilistic constant ¢, where {v1,...,v,} = Dom(c), v; # v;, 0 <
P1s...,pn < land Y1 p; = 1. We use Mp(c = v;) to denote p;. In other words,
PF describes the probability distribution over each “random variable” c.

e Il is a set of rules such that the head contains no probabilistic constants.

The semantics of such a program IT is defined as a shorthand for LPM™N

the same signature as follows.

program 7T'(IT) of

e For each probabilistic constant declaration (A4), T'(II) contains, foreachi = 1,...,n, (i)
In(p;) :e=v;if0 < p; < 1; (i) a: e=w; if p; =1; (i) . : L < c=v; ifp; = 0.
e For each rule Head < Body in I, T'(II) contains « : Head < Body.

e For each constant ¢, T'(IT) contains the uniqueness of value constraints
a: L c=viANc=19 (AS)
for all vy, vo € Dom(c) such that v; # vq, and the existence of value constraint

a: L=\ c=v.
vEDom(c) (A6)

In the presence of the constraints (A5) and (A6), assuming 7'(IT) has at least one (probabilis-
tic) stable model that satisfies all the hard rules, a (probabilistic) stable model I satisfies ¢ = v
for exactly one value v, so we may identify I/ with the value assignment that assigns v to c.

7 Note that here “=" is just a part of the symbol for propositional atoms, and is not equality in first-order logic.

A.4 Review: Action Language pI3C+ with Utility
Syntax of pBC+

We assume a propositional signature o as defined in Section A.3. We further assume that the
signature of an action description is divided into four groups: fluent constants, action constants,
pf (probability fact) constants and initpf (initial probability fact) constants. Fluent constants are
further divided into regular and statically determined. The domain of every action constant is
Boolean. A fluent formula is a formula such that all constants occurring in it are fluent constants.

The following definition of pBC+ is based on the definition of BC+ language from (Babb and
Lee 2015).

A static law is an expression of the form

caused F' if G (A7)

where F' and G are fluent formulas.
A fluent dynamic law is an expression of the form

caused F if GG after H (AB)

where F' and G are fluent formulas and H is a formula, provided that F' does not contain statically
determined constants and H does not contain initpf constants.
A pf constant declaration is an expression of the form

caused c = {vy 1 p1,...,0, 1 Pn} (A9)

where ¢ is a pf constant with domain {vy,...,v,},0 < p; < 1foreachi € {1,...,n}®, and
p1 + -+ + p, = 1. In other words, (A9) describes the probability distribution of c.
An initpf constant declaration is an expression of the form (A9) where c is an initpf constant.
An initial static law is an expression of the form

initially F if G (A10)

where [is a fluent constant and G is a formula that contains neither action constants nor pf
constants.

A causal law is a static law, a fluent dynamic law, a pf constant declaration, an initpf constant
declaration, or an initial static law. An action description is a finite set of causal laws.

We use ! to denote the set of fluent constants, 0%t to denote the set of action constants,
0P to denote the set of pf constants, and ¢*™*Pf to denote the set of initpf constants. For any
signature o’ and any 7 € {0, ..., m}, weuse ¢ : o’ to denote the set {i : a | a € o'}

By 7 : ' we denote the result of inserting ¢ : in front of every occurrence of every constant in
formula F'. This notation is straightforwardly extended when F' is a set of formulas.

Semantics of pBC+

Given a non-negative integer m denoting the maximum length of histories, the semantics of an
action description D in pBC+ is defined by a reduction to multi-valued probabilistic program
Tr(D, m), which is the union of two subprograms D,,, and D;,,;; as defined below.

8 We require 0 < p; < 1foreachi € {1,...,n} for the sake of simplicity. On the other hand, if p; = O or p; = 1
for some ¢, that means either v; can be removed from the domain of c or there is not really a need to introduce c as a
pf constant. So this assumption does not really sacrifice expressivity.

For an action description D of a signature o, we define a sequence of multi-valued probabilistic
program Dy, Dy, ..., so that the stable models of D,, can be identified with the paths in the
transition system described by D.

The signature o, of D,, consists of atoms of the form ¢ : ¢ = v such that

o for each fluent constant ¢ of D, i € {0,...,m} and v € Dom(c),
e for each action constant or pf constant c of D, i € {0,...,m — 1} and v € Dom(c).

For x € {act, fl,pf}, we use o2, to denote the subset of oy,
{i:e=v|i:c=ve€o,andce o’}
Fori € {0,...,m}, we use i : 0” to denote the subset of o,
{i:c=v|i:c=veah}

We define D,, to be the multi-valued probabilistic program (P F, IT), where II is the conjunc-
tion of

1 F+—i:G (A11)
for every static law (A7) in D and every i € {0,...,m},
i+1:F <« (i+1:G)A(i: H) (A12)
for every fluent dynamic law (A8) in D and every i € {0,...,m — 1},
{0:c =0} (A13)
for every regular fluent constant ¢ and every v € Dom(c),
{i:c=TRUE}", {i:c=FALSE}™" (A14)
for every action constant ¢, and PF' consists of
pruiipf=vi]-[pauiipf=u, (A15)

(¢ = 0,...,m — 1) for each pf constant declaration (A9) in D that describes the probability
distribution of pf.

In addition, we define the program D;,,;;, whose signature is 0: 0"/ U 0: 07!, D;,;; is the
multi-valued probabilistic program

Dinit — <PFinit7 Hznzt>
where I1?"% consists of the rule
1+ =(0:F)A0:G

for each initial static law (A10), and PF*"* consists of

pr Oipf=v | ... | poi Oipf=wy,

for each initpf constant declaration (A9).

We define T'r(D, m) to be the union of the two multi-valued probabilistic program
(PF U PF™ TIU T,

For any LpMLN program II of signature o and a value assignment I to a subset o’ of o, we
say I is a residual (probabilistic) stable model of T1 if there exists a value assignment J to o \ o’
such that I U J is a (probabilistic) stable model of II.

4

For any value assignment I to constants in o, by ¢ : [we denote the value assignment to
constants ini:o so thati: I = (i:¢) = viff [Ec=w.

We define a state as an interpretation 17! of ¢! such that 0: I/! is a residual (probabilistic)
stable model of Dy. A transition of D is a triple (s, e, s’) where s and s’ are interpretations of
of! and e is a an interpretation of ¢®°* such that 0: s U0:e U 1 : s’ is a residual stable model
of D;. A pf-transition of D is a pair ({s, e, s’), pf), where pf is a value assignment to o/ such
that 0:s U0:eU1: s UO:pf is a stable model of D;.

A probabilistic transition system T (D) represented by a probabilistic action description D is a
labeled directed graph such that the vertices are the states of I, and the edges are obtained from
the transitions of D: for every transition (s, e, s’) of D, an edge labeled e : p goes from s to ¢/,
where p = Prp, (1:s' | 0:s,0:¢). The number p is called the transition probability of (s, e, s')

The soundness of the definition of a probabilistic transition system relies on the following
proposition.

Proposition 1
For any transition (s, e, s'), s and s’ are states.

We make the following simplifying assumptions on action descriptions:

1. No concurrent execution of actions: For all transitions (s, e, '), we have e |= a =TRUE
for at most one action constant a;

2. Nondeterministic transitions are determined by pf constants: For any state s, any value
assignment e of o, and any value assignment pf of P/, there exists exactly one state s’
such that ((s, e, s’), pf) is a pf-transition;

3. Nondeterminism on initial states are determined by initpf constants: For any value
assignment p f;,,;; of 0*™*Pf there exists exactly one value assignment f1 of o/! such that
0:pfinit UO: fl is a stable model of D+ U Dg.

For any state s, any value assignment e of o®“* such that at most one action is true, and any
value assignment pf of oPf, we use ¢(s,e,pf) to denote the state s’ such that ({(s,a,s’), pf)
is a pf-transition (According to Assumption 2, such s’ must be unique). For any interpretation
I,i € {0,...,m} and any subset ¢’ of o, we use I|;.,» to denote the value assignment of I to
atoms in 4 : o’. Given any value assignment T'C of 0:0"™*Pf U ¢ and a value assignment A of

act ' we construct an interpretation I7cya of Tr(D,m) that satisfies TC U A as follows:

Tm s

e For all atoms p in o2/ U 0: 0" we have Ircua(p) = TC(p);

e For all atoms p in 02, we have Ircua(p) = A(p);

o (Itcua)|o.est is the assignment such that (Ircua)lo.ostuo.ginites 1S a stable model of
Dinis U Dy.

e Foreachie {1,...,m},

(Ircua)liort = d((Ircua)li-1)ort, Ircua)li-1):0act, ITcua)li—1):00s)-

By Assumptions 2 and 3, the above construction produces a unique interpretation.

It can be seen that in the multi-valued probabilistic program T'r(D, m) translated from D, the
probabilistic constants are 0: o"*Pf Uaﬁf . We thus call the value assignment of an interpretation
I on0:g™™tPf ofrf the total choice of I. The following theorem asserts that the probability of
a stable model under T'r(D, m) can be computed by simply dividing the probability of the total
choice associated with the stable model by the number of choice of actions.

Theorem 1
For any value assignment T'C' of 0 : 0"™**Pf U ¢/ and any value assignment A of ¢, there

exists exactly one stable model I7¢ya of Tr(D, m) that satisfies T'C' U A, and the probability
of ITCUA is

[[M(c=v)

c=veTC

(o + D™

The following theorem tells us that the conditional probability of transiting from a state s to
another state s’ with action e remains the same for all timesteps, i.e., the conditional probability
of i4+1:s' giveni : s and 7 : e correctly represents the transition probability from s to s’ via e in
the transition system.

Pror(p,m)y(Ircua) =

Theorem 2
For any state s and s’, and action e, we have

Proppmy(i+1:s" | i:5,i:€) = Proypm)(j+1:s' | j:s,j:€)
forany i,j € {0,...,m — 1} such that Pry,(p) (i : 8) > 0and Pry,pm(j : s) > 0.
For every subset X,,, of o, \ o2/, let X?(i < m) be the triple consisting of

o the set consisting of atoms A such that i : A belongs to X,,, and A € of!;
e the set consisting of atoms A such that i : A belongs to X,,, and A € 0%,
o the set consisting of atoms A such that i+ 1: A belongs to X, and A € o/!.

Let p(X?) be the transition probability of X7, s is the interpretation of o' defined by X°, and
e; be the interpretations of i : 0%°* defined by X°.

Since the transition probability remains the same, the probability of a path given a sequence
of actions can be computed from the probabilities of transitions.

Corollary 1
For every m > 1, X, is a residual (probabilistic) stable model of Tr(D,m) iff X0, ... X™m~1
are transitions of D and 0: s is a residual stable model of D;,,;;. Furthermore,

Prop(p,m)(Xm | 0:eg,...,m —1iepm_1) =p(X%) x - x p(X™) x Proy(p,m)(0:50).

pBC+ with Utility

Wang and Lee (2019) has extended pBC+ with the notion of utility as follows.
We extend pBC+ by introducing the following expression called utility law that assigns a
reward to transitions:

reward v if F' after G (Al6)

where v is a real number representing the reward, F' is a formula that contains fluent constants
only, and G is a formula that contains fluent constants and action constants only (no pf, no initpf
constants). We extend the signature of T'r(D, m) with a set of atoms of the form (A1). We turn
a utility law of the form (A16) into the LPMEN ryle

a:utility(v,i+1,4d) < (i+1:F)A(i: G) (A17)

where id is a unique number assigned to the LPM™N rule and i € {0,...,m—1}.

Given a nonnegative integer m denoting the maximum timestamp, a pBC+ action description

6

D with utility over multi-valued propositional signature o is defined as a high-level representa-
tion of the DT-LPMEN program (Tr(D,m), o%<t).

We extend the definition of a probabilistic transition system as follows: A probabilistic tran-
sition system T (D) represented by a probabilistic action description D is a labeled directed
graph such that the vertices are the states of D, and the edges are obtained from the transitions
of D: for every transition (s, e, s’) of D, an edge labeled e : p,u goes from s to s’, where
p=Prp,(1:s]0:sA0:e)and u = E[Up,(0:s AO:e A l:s")]. The number p is called the
transition probability of (s, e, s'), denoted by p(s, e, s’), and the number w is called the transition
reward of (s, e, s'), denoted by u(s, e, s).

Appendix B PBCPLUS2POMDP in Compositional Way

In particular, the inputs of PBCPLUS2POMDP(COMPO) include the following:

o LPMEN program II(m), parameterized with maximum timestep 1, that contains LpMEN

translation of fluent dynamic laws, observation dynamic laws and utility laws with no
occurrence of action constant, and static laws, as well as pf constant declarations of pf
constants that occur in those causal laws (see Figure 1);

e For each group of actions a; € in ay.. .., ay, an LPM™N program II,; (m) U C;(m), param-
eterized with maximum timestep m; II;(m) contains translation of fluent dynamic laws,
observation dynamic laws and utility laws where only actions in a,; can occur in the body,
as well as pf constant declarations of pf constants that occurs in those causal laws; C;(m)
contains choice rules (possibly with cardinality bounds) to generate exactly one action in
the group a;; It is up to the user how to group the actions;

e Discount factor.

The system outputs the POMDP definition M (D), so that D,,, = II(m)UIIl;(m)U... I, (m)U
C(m), where C(m) is the choice rule with cardinality constraint to generate at most one action
in ay,...,a, for each timestep ¢ € {0,...,m — 1}. The transition probabilities, observation
probabilities and reward function of M (D) are obtained by conjoining those from each of IT U
ILUC; e {1,...,n}.

Formally, let S, Q, Par(p), On(p)» Rar(p) be the set of states, the set of observations, tran-
sition probabilities, observation probabilities and reward function of M (D), resp. system PBC-
PLUS2POMDP calls LPMLN2ASP first to solve II(0) to obtain S, and then II(1) U TII;(1) U C;(1)
to obtain Pyr(p), Onr(p)> Bar(p) as follows:

Priipy(s,a,8") = Puayum,yue,)(1: 8 [0:5,0:a)

Onm(py(s,a,0) = Puayum,yuc;y(1:o]1:5,0:a)

Ruai(py(s,a,s") = E[Unyom, (1yuc,; 1y (0 : 5,0 1 a, 11 8")]
foreach a € a;, s,s’ € Sand o € .

Example 1
For the dialog example, we group the actions as follows: { Confirmltem(3) | i € Item}, { ConfirmPerson(p) |
p € Person}, {ConfirmRoom(r) | r € Room}, { Whichitem}, {WhichPerson}, { WhichRoom},
{Deliver(i,p,r) | i € Item,p € Person,r € Room}.

ITis

astep(0..m-1) .

step(0..m) .

boolean(t; f).

item(coffee; coke; cookies; burger).
person(alice; bob; carol).

room(rl; r2; r3).

% UEC

:— obs_Item (X1, I), obs_Item(X2, I), X1 != X2.

:— not obs_Item(coffee, I), not obs_Item(coke, I),
not obs_Item(cookies, I), not obs_Item(burger, I),
not obs_Item(na, I), step(I).

:— obs_Person (X1, I), obs_Person(X2, I), X1 != X2.

:— not obs_Person(alice, I), not obs_Person(bob, I),
not obs_Person(carol, I), not obs_Person(na, I),
step(I).

:— obs_Room(X1, I), obs_Room(X2, I), X1 != X2.

:— not obs_Room(rl, I), not obs_Room(r2, I),
not obs_Room(r3, I), not obs_Room(na, I),
step(I).

:— obs_Confirmed (X1, I), obs_Confirmed (X2, I), X1 != X2.

:— not obs_Confirmed(yes, I), not obs_Confirmed(no, I),
not obs_Confirmed(na, I), step(I).

:— fl_TtemReqg(X1l, I), fl_TtemReq(X2, I), X1 != X2.

:— not fl_TtemReqg(coffee, I), not fl_TtemReg(coke, I),
not fl TtemReq(cookies, I), not fl TItemReq(burger, I),
not fl_TtemReqg(na, I), step(I).

:— fl1_PersonReq(X1l, I), fl PersonReq(X2, I), X1 != X2.

:— not fl_PersonReqg(alice, I), not fl_PersonReq(bob, I),
not fl_PersonReq(carol, I), not fl_PersonReqg(na, I),
step(I).

:— fl_RoomReq (X1, I), fl_RoomReq(X2, I), X1 != X2.

:— not fl_RoomReqg(rl, I), not fl_RoomReq(r2, I),
not f1l_RoomReqg(r3, I), not fl_RoomReq(na, I),
step(I).

:— fl_Terminated (X1, I), fl_Terminated(X2, I), X1 != X2.

:— not fl_Terminated(t, I), not fl_Terminated(f, I), step(I).

oo
oe

No two observations can occur at the same time step

:— obs_Item(It, I), obs_Person(P, I), It != na, P != na.

:— obs_Item(It, I), obs_Room(R, I), It != na, R != na.

:— obs_TItem(It, I), obs_Confirmed(C, I), It != na, C != na.
:— obs_Person(P, I), obs_Room(R, I), P != na, R != na.

:— obs_Person(P, I), obs_Confirmed(C, I), P != na, C != na.
:— obs_Room(R, I), obs_Confirmed(C, I), R != na, C != na.

% Inertial Fluents

{fl_TtemReq(It, I+1)} :— fl_TtemReq(It, I), astep(I).
{f1l_PersonReq(P, I+1l)} :— fl_PersonReq(P, I), astep(I).
{f1_RoomReq(R, I+1l)} :— fl_RoomReg(R, I), astep(I).
{fl_Terminated(B, I+1l)} :— fl_Terminated(B, I), astep(I).

o

% Initial value of regular fluents and observation constants are exogenous

{fl_Terminated(B, 0)} :— boolean(B) .

{fl_TtemReq(It, 0)} :— item(It).
{f1_PersonReq(P, 0)} :— person(P).
{f1_RoomReq(R, 0)} :— room(R) .
{obs_TItem(It, 0)} :— item(It).
{obs_Person(P, 0)} :— person(P).
{obs_Room(R, 0)} :— room(R) .

{obs_Confirmed(yes, 0); obs_Confirmed(no, 0)}.

% By default, observation constant has na value

{obs_Item(na, I)} :— step(I).
{obs_Person(na, I)} :— step(I).
{obs_Room(na, I)} :— step(I).
{obs_Confirmed(na, I)} :— step(I).

IT; contains definition of action Ask2Con firmlItem:

% Action: ConfirmItem
:— c(It, X1, I), act_ConfirmItem(It, X2, I), X1 != X2.

:— not act_ConfirmItem(It, t, I), not act_ConfirmItem(It, £, I), item(It), astep(I).

:— pf_ConfirmWhenCorrect (X1, I), pf_ConfirmWhenCorrect (X2, I), X1 != X2.

:— not pf_ConfirmWhenCorrect (yes, I), not pf_ConfirmWhenCorrect (no, I), astep(I).

:— pf_ConfirmWhenIncorrect (X1, I), pf_ConfirmWhenIncorrect (X2, I), X1 != X2.

:— not pf_ConfirmWhenIncorrect(yes, I), not pf_ConfirmWhenIncorrect (no, I),

@log(0.8) pf_ConfirmWhenCorrect (yes, I) :— astep(I).

@log(0.2) pf_ConfirmWhenCorrect (no, I) :— astep(I).

@log(0.2) pf_ConfirmWhenIncorrect (yes, I) :— astep(I).

@log(0.8) pf_ConfirmWhenIncorrect(no, I) :- astep(I).

obs_Confirmed(C, I+1l) :- fl_TtemReq(It, I+1l), fl_Terminated(f, I+1),
act_ConfirmItem(It, t, I), pf_ConfirmWhenCorrect(C, I).

obs_Confirmed(C, I+1l) :- fl_TtemReq(It, I+1l), fl_Terminated(f, I+1),
act_ConfirmItem(Itl, t, I), Itl != It, pf_ConfirmWhenIncorrect (C,

{act_ConfirmItem(It, B, I)} :— item(It), boolean(B), astep(I).

:— not l{act_ConfirmItem(It, t, I) : item(It)}1, astep(I).

Similarly, IT5, I3 contains definition of actions Con firm Person and Con firmRoom.
I14 contains definition of actions WhichItem(t):

% Action WhichItem
:— act_WhichItem(X1, I), act_WhichItem(X2, I), X1 != X2.
:— not act_WhichItem(t, I), not act_WhichItem(f, I), astep(I).

:— pf_WhichItem(It, X1, I), pf_WhichItem(It, X2, I), X1 != X2.

:— not pf_WhichItem(It, coffee, I), not pf_WhichItem(It, coke, I),
not pf_WhichItem(It, cookies, I), not pf WhichItem(It, burger, I),
item(It), astep(I).

@log(0.7) pf_WhichItem(coffee, coffee, I) :- astep(I).
@log(0.1) pf_WhichItem(coffee, coke, I) :— astep(I).
@log(0.1) pf_WhichItem(coffee, cookies, I) :— astep(I).

astep (

I).

I).

Qlog(0.1) pf_WhichItem(coffee, burger, I) :— astep(I).

(
@log(0.1) pf_WhichItem(coke, coffee, I) :- astep(I).
@log(0.7) pf_WhichItem(coke, coke, I) :— astep(I).
@log(0.1) pf_WhichItem(coke, cookies, I) :— astep(I).
@log(0.1) pf_WhichItem(coke, burger, I) :- astep(I).
@log(0.1) pf_WhichItem(cookies, coffee, I) :— astep(I).
Qlog(0.1) pf_WhichItem(cookies, coke, I) :— astep(I).
@log(0.7) pf_WhichItem(cookies, cookies, I) :— astep(I).
@log(0.1) pf_WhichItem(cookies, burger, I) :— astep(I).
Q@log(0.1) pf_WhichItem(burger, coffee, I) :— astep(I).
@log(0.1) pf_WhichItem(burger, coke, I) :— astep(I).
@log(0.1) pf_WhichItem(burger, cookies, I) :— astep(I).
Q@log(0.7) pf_WhichItem(burger, burger, I) :— astep(I).
obs_Item(Itl, I+1) :- fl1_TtemReq(It, I+1l), fl_Terminated(f, I+1),

act_WhichItem(t, I), pf_WhichItem(It, Itl, I).

%{act_WhichItem(B, I)} :- boolean(B), astep(I).
act_WhichItem(t, I) :— astep(I).

Similarly, IT5 and IIg contain definitions of actions W hich Person(t) and W hich Room(t).
IT; contains definitions of action Deliver(i, p,):

o)

% Action: Deliver

:— act_Deliver(It, P, R, X1, I), act_Deliver(It, P, R, X2, I), X1 != X2.

:— not act_Deliver(It, P, R, t, I), not act_Deliver(It, P, R, £, I), item(It), person(P), room(R), a:
) -

utility(1l, I+1, It) :— £fl1_TtemReq(It, I+1l), act_Deliver(It, P, R, t, I), fl_Terminated(f, I).
utility(l, I+1, P) :— fl_PersonReq(P, I+1l), act_Deliver(It, P, R, t, I), fl_Terminated(f, I).
utility(l, I+1, R) :—= £l _RoomReq(R, I+1l), act_Deliver(It, P, R, t, I), fl Terminated(f, I).
fl_Terminated(t, I+1) :— act_Deliver(It, P, R, t, I).

{act_Deliver (It, P, R, B, I)} :- item(It), person(P), room(R), boolean(B), astep(I).

:— not l{act_Deliver(It, P, R, t, I) : item(It), person(P), room(R)}1l, astep(I).

IIg contains definitions of no-action:
act_noact (I) :— astep(I).

With this way of grouping actions, system PBCPLUS2POMDP(COMPO) can generate POMDP for
this example with ~ 5 minutes.

Appendix C Tiger Example

Example 2

(Two Tigers Example). Consider a variant of the well-known tiger example extended with two
tigers. Each of the three doors has either a tiger or a prize behind. The agent can open either
of the three doors. The agent can also listen to get a better idea of where the tiger is. Listening
yields the correct information about where each of the two tigers is with probability 0.85. This
example can be represented in the extended pBBC+ as follows:

10

Notation: [, 1y, [, l3 range over Left, Middle, Right, y ranges over Tigerl, Tiger2

Observation constants: Domains:
TigerPositionObserved(y) {Left,Middle,Right,NA}
Regular fluent constants: Domains:
TigerPosition(y) {Left,Middle,Right}
Action constants: Domains:
Listen Boolean
OpenDoor(l) Boolean
Pf constants: Domains:
Pf_Listen Boolean
Pf_FailedListen(y) {Left,Middle,Right}

A reward of 10 is obtained for opening the door with no tiger behind.
reward 10 if TigerPosition(Tiger1) =1, A TigerPosition(Tiger2)=Is after OpenDoor(l3)
(lh # 13,12 # 13).
A penalty of 100 is imposed on opening a door with a tiger behind.
reward —100 if TigerPosition(y) =1 after OpenDoor(l).
Executing the action Listen has a small penalty of 1.
reward —1if T after Listen.
Two tigers cannot be in the same position.
caused L if TigerPosition(Tiger1) =1 A TigerPosition(Tiger2)=1.
Successful listening reveals the positions of the two tigers.
observed TigerPositionObserved(y) =1 if TigerPosition(y)=1 after Listen A Pf_Listen.

Failed listening yields a random position for each tiger.

caused Pf_FuailedListen(y) = {Left : ;Middke : %,Right : é}7
observed TigerPositionObserved(y)=1if T after Listen\ ~ Pf_Listen N\ Pf_FailedListen(y)=1.
The positions of tigers observe the commonsense law of inertia.

inertial TigerPosition(y).

The action Listen has a success rate of 0.85.

caused Pf_Listen = {TRUE : 0.85, FALSE : 0.15}.

11

