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Appendix A SSP processing based recursive computation with PreM

Definition 3. (γ-Cover). Let P be a positive recursive Datalog program with T as its corre-

sponding ICO. Let a constraint γ be defined over the recursive predicate on a set of k group-

by arguments, denoted by G1,G2, ...,Gk with the cost-argument denoted as C. Let γ be also

PreM to T and P. Let there be two sets S1 and S2, both of which contain tuples of the form

{(g1,g2, ...,gk,c)|gi ∈ Gi∀1 ≤ i ≤ k,c ∈R}, where R represents the set of real numbers. Now, S1

is defined as the γ-cover for S2, if for every tuple t ∈ S2, there exists only one tuple t ′ ∈ S1 such

that (i) t ′[G] = t[G] and (ii) γ(t ′[C], t[C]) = t ′[C].

It is important to note from the above definition that if S1 is the γ-cover for S2, then there can

exist a tuple t ∈ S1, such that t[G] 6= t ′[G] ∀t ′ ∈ S2 but the converse is never true.

Lemma 2. Let P be a recursive Datalog program, T be its corresponding ICO and let the con-

straint γ be PreM to T and P, resulting in the constrained ICO Tγ . Now, for any pair of positive

integers m,n, where m ≥ n, T
↑m

γ ( /0) is a γ-cover for T
↑n

γ ( /0).

Proof. This directly follows from the fact that any atom in T
↑n

γ ( /0) with cost c can only exist in

T
↑m

γ ( /0) with updated cost c′, if c = c′ or γ(c,c′) = c′. Note if c = c′, then γ(c,c′) = c′ is trivially

true.

Lemma 3. Let P be a recursive Datalog program with ICO T and let the constraint γ be PreM

to T and P. Let P also have a parallel decomposable evaluation plan that can be executed over W

workers, where Qi is the program executed at worker i and Ti is the corresponding ICO defined

over Qi. Let γ be also PreM to Ti and Qi, for 1 ≤ i ≤ W . After r rounds of synchronization (r

rounds of synchronization in SSP model means every worker has sent at least r updates), if Ib and

Is denote the interpretation of the recursive predicate under BSP and SSP models respectively for

any worker i, then Is is a γ-cover for Ib.

Proof. In a SSP based fixpoint computation, any worker i can produce an atom in three ways:

(1) From local computation not involving any of the updates sent by other workers.

(2) From a join with a new atom or an update sent by another worker j.

(3) From both cases (1) and (2) together.

Now, consider the base case, where before the first round of synchronization (i.e., at the 0th

round) each worker performs only local computation, since it has not received/sent any update

from/to any other worker. Since, in a SSP model, each local computation may involve multiple

iterations (as shown in step (6) in Figure 3), Is is trivially a γ-cover for Ib (from lemma 2).

We next assume this hypothesis (lemma 3) to be true for some r ≥ 0. Under this assump-

tion, we find that each worker i in SSP model for its fixpoint computation operates based on

the information from its own Is and from the ones sent by other workers after the rth round of

synchronization. And since each of this Is involved is a γ-cover for the corresponding Ib (when

compared against the BSP model), the aforementioned cases (1)-(3) will also produce a γ-cover

for the (r+1)th synchronization round.

Hence, by principle of mathematical induction, the lemma holds for all r ≥ 0.
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Theorem 2. Let P be a recursive Datalog program with ICO T and let the constraint γ be PreM

to T and P. Let P have a parallel decomposable evaluation plan that can be executed over W

workers, where Qi is the program executed at worker i and Ti is the corresponding ICO defined

over Qi. If γ is also PreM to Ti and Qi, for 1 ≤ i ≤ W , then:

(i). The SSP processing yields the same minimal fixpoint of γ(T ↑ω( /0)), as would have been

obtained with BSP processing.

(ii). If any worker i under BSP processing requires r rounds of synchronization, then under

SSP processing i would require ≤ r rounds to reach the minimal fixpoint, where r rounds

of synchronization in SSP model means every worker has sent at least r updates.

Proof. Theorem 1 guarantees that the BSP evaluation of the datalog program with PreM will

yield the minimal fixpoint of γ(T ↑ω( /0)). Note that in the SSP evaluation, for every tuple t pro-

duced by a worker i from the program Qi, t ∈ T ↑ω( /0). In other words, if I represents the final

interpretation of the recursive predicate under SSP evaluation, then I ⊆ T ↑ω( /0) i.e. I is bounded.

It also follows from lemma 3, that I is a γ-cover for the final interpretation of the recursive predi-

cate under BSP evaluation i.e. I is a γ-cover for γ(T ↑ω( /0)). Since, γ(T ↑ω( /0)) is the least fixpoint

under the γ constraint, we also get γ(T ↑ω( /0)) ⊆ I, as atoms in γ(T ↑ω( /0)) must have identical

cost in I.

Thus, we can write the following equation based on the above discussion,

γ(T ↑ω( /0))⊆ I ⊆ T ↑ω( /0) (A1)

Also recall, since γ is PreM to each Ti and Qi, under the SSP evaluation, each worker i also

applies γ in every iteration in its fixpoint computation (step (4) in Figure 3). Thus, we have,

I ⊆ γ(T ↑ω( /0)) (A2)

Combining equations (A1) and (A2), we get I = γ(T ↑ω( /0). Thus, the SSP evaluation also

yields the same minimal fixpoint as the BSP model.

Since, the interpretation of the recursive predicate in the least model obtained from BSP evalu-

ation is identical to that in the least model obtained from SSP processing, it directly follows from

lemma 3, that the number of synchronization rounds required by worker i in SSP evaluation will

be at most r, where r is the number of rounds i takes under BSP model.


