Appendix A Proofs of Theorems

A. 1 Theorems and Proofs from Section 3:

Theorem 15

Let $D=\left(S, L, C^{\mathbf{t}}\right)$ be an $A D F^{+}$and, for every $s \in S$, we define $C_{s}^{\max }=\left\{R \in C_{s}^{\mathbf{t}} \mid\right.$ there is no $R^{\prime} \in C_{s}^{\mathrm{t}}$ such that $\left.R \subset R^{\prime}\right\}$. Then, for every $s \in S$,

$$
\varphi_{s} \equiv \bigvee_{R \in C_{s}^{\max }} \bigwedge_{b \in \operatorname{par}(s)-R} \neg b
$$

Proof

According to Equation 11, $\varphi_{s} \equiv \varphi_{1}=\bigvee_{R \in C_{s}^{t}}\left(\bigwedge_{a \in R} a \wedge \bigwedge_{b \in \operatorname{par(s)-R}} \neg b\right)$. Let $\varphi_{2}=$ $\bigvee_{R \in C_{s}^{\max }} \bigwedge_{b \in \operatorname{par}(s)-R} \neg b$. We will show $\varphi_{1} \equiv \varphi_{2}$, i.e., for any 2-valued interpretation v, $v\left(\varphi_{1}\right)=v\left(\varphi_{2}\right):$

- If $v\left(\varphi_{1}\right)=\mathbf{t}$, then there exists $R \in C_{s}^{\mathbf{t}}$ such that for all $a \in R, v(a)=\mathbf{t}$ and for all $b \in \operatorname{par}(s)-R, v(b)=\mathbf{f}$. As there exists $R^{\prime} \in C_{s}^{\max }$ such that $R \subseteq R^{\prime}$, we obtain for all $b \in \operatorname{par}(s)-R^{\prime}, v(b)=\mathbf{f}$. Thus, $v\left(\varphi_{2}\right)=\mathbf{t}$.
- If $v\left(\varphi_{1}\right)=\mathbf{f}$, then for each $R \in C_{s}^{\mathbf{t}}$ there exists $a \in R$ such that $v(a)=\mathbf{f}$ or there exists $b \in \operatorname{par}(s)-R$ such that $v(b)=\mathbf{t}$. In particular, for each $R \in C_{s}^{\max }$ there exists $a \in R$ such that $v(a)=\mathbf{f}$ or there exists $b \in \operatorname{par}(s)-R$ such that $v(b)=\mathbf{t}$, and there exists $b \in \operatorname{par}(s)-R^{\prime}$ such that $v(b)=\mathbf{t}$, in which $R^{\prime}=$ $R-\{a \in R \mid v(a)=\mathbf{f}\}$. But then for each $R \in C_{s}^{\text {max }}$ there exists $b \in \operatorname{par}(s)-R$ such that $v(b)=\mathbf{t}$. Thus, $v\left(\varphi_{2}\right)=\mathbf{f}$.

Theorem 16

Let $D=\left(S, L, C^{\mathbf{t}}\right)$ be an $A D F^{+}$. A link $(r, s) \in L$ is redundant iff $r \in R$ for every $R \in C_{s}^{\max }$.

Proof
(\Rightarrow)
If $(r, s) \in L$ is a redundant link, then, in particular, it is a supporting link, i.e., for every $R \subseteq \operatorname{par}(s)$, we have if $R \in C_{s}^{\mathbf{t}}$, then $(R \cup\{r\}) \in C_{s}^{\mathbf{t}}$.

By absurd, suppose there exists $R \in C_{s}^{\max }$ such that $r \notin R$. This means $R \in C_{s}^{\mathbf{t}}$. But then we obtain $(R \cup\{r\}) \in C_{s}^{\mathbf{t}}$. It is an absurd as $R \in C_{s}^{\max }$.
(\Leftarrow)
Assume for any $R \in C_{s}^{\text {max }}$, we have $r \in R$. By absurd, suppose $(r, s) \in L$ is not redundant. Then there exists $R^{\prime} \subseteq \operatorname{par}(s)$ such that $C_{s}\left(R^{\prime}\right)=\mathbf{t}$ and $C_{s}\left(R^{\prime} \cup\{r\}\right)=\mathbf{f}$.

As $r \in R$ for any $R \in C_{s}^{\max }$, there exists $R^{\prime \prime} \in C_{s}^{\max }$ such that $R^{\prime} \cup\{r\} \subseteq R^{\prime \prime}$ and $C_{s}\left(R^{\prime \prime}\right)=\mathbf{t}$. But then, as any link in L is attacking, we obtain $C_{s}\left(R^{\prime} \cup\{r\}\right)=\mathbf{t}$. An absurd.

[^0]Corollary 17
Let $D=\left(S, L, C^{\mathbf{t}}\right)$ be an $A D F^{+}$. For each $s \in S$, if φ_{s} is $\bigvee_{R \in C_{s}^{\max }} \bigwedge_{b \in \operatorname{par}(s)-R} \neg b$ and $L^{\prime}=\left\{(r, s) \mid \neg r\right.$ appears in $\left.\varphi_{s}\right\}$, then L^{\prime} has no redundant link.

Proof

The result is straightforward: from Theorem 16, we know $(r, s) \in L$ is a redundant link iff for any $R \in C_{s}^{\max }$, we have $r \in R$ iff $\neg r$ does not appear in $\bigvee_{R \in C_{s}^{\max }} \bigwedge_{b \in \operatorname{par}(s)-R} \neg b$ iff $(r, s) \notin L^{\prime}$.

Theorem 19

Let $D=\left(S, L, C^{\mathbf{t}}\right)$ be an $A D F^{+}, s \in S ; r \in \operatorname{par}(s)$ and $C_{s}^{\mathbf{t}}(r)=\left\{R \in C_{s}^{\mathbf{t}} \mid r \in R\right\}$. A $\operatorname{link}(r, s) \in L$ is redundant iff $\left|C_{s}^{\mathbf{t}}(r)\right|=\frac{\left|C_{s}^{\mathbf{t}}\right|}{2}$.

Proof

The proof follows from the definition of $A D F^{+}$, a property of Power Sets and the Principle of Inclusion and Exclusion (PIE).

In D, for every $s \in S$ and $M \subseteq \operatorname{par}(s)$, if $C_{s}(M)=\mathbf{t}$, then $C_{s}\left(M^{\prime}\right)=\mathbf{t}$ for every $M^{\prime} \subseteq M$ (Definition 14). Then $C_{s}^{\mathrm{t}}=\left\{S \subseteq R \mid R \in C_{s}^{\max }\right\}=\bigcup\left\{\wp(R) \mid R \in C_{s}^{\max }\right\}$, where $C_{s}^{\max }=\left\{R \in C_{s}^{\mathbf{t}} \mid\right.$ there is no $R^{\prime} \in C_{s}^{\mathbf{t}}$ such that $\left.R \subset R^{\prime}\right\}$ and $\wp(R)$ denotes the power set of R.

Given a set S, we have $|\wp(S)|=2^{|S|}$ and that, for each $r \in S, r$ is an element of $\frac{2^{|S|}}{2}$ subsets of S, i.e., of precisely half the subsets of S. Then if $r \in S \cap T$, we have that r is an element of $\frac{2^{|S|}}{2}$ subsets of $S, \frac{2^{|T|}}{2}$ subsets of T and $\frac{2^{|S \cap T|}}{2}$ subsets of $S \cap T$. PIE ensures that $|\wp(S) \cup \wp(T)|=|\wp(S)|+|\wp(T)|-|\wp(S) \cap \wp(T)|$, which, because $\wp(S \cap T)=\wp(S) \cap \wp(T)$, leads to $|\wp(S) \cup \wp(T)|=|\wp(S)|+|\wp(T)|-|\wp(S \cap T)|$. That is, if $r \in S \cap T$, then $|\wp(S) \cup \wp(T)|=2^{|S|}+2^{|T|}-2^{|S \cap T|}$ and r is an element of $\frac{2^{|S|}}{2}+\frac{2^{|T|}}{2}-$ $\frac{2^{|S \cap T|}}{2}=\frac{\mid \wp_{(S) \cup} \wp_{(T) \mid}}{2}$ sets in $\wp(S) \cup \wp(T)$. By extension of PIE, if $r \in \bigcap\left\{S_{1}, \ldots, S_{n}\right\}$, then r is an element of $\frac{\left|\cup\left\{\wp_{\left(S_{1}\right), \ldots,}^{(} \wp_{\left(S_{n}\right)}\right)\right|}{2}$ sets in $\bigcup\left\{\wp\left(S_{1}\right), \ldots, \wp\left(S_{n}\right)\right\}$.

Let (r, s) be a redundant link, then, for all $R \in C_{s}^{\text {max }}$, we have $r \in R$ (Theorem 16), i.e., $r \in \bigcap C_{s}^{\max }$. Then r is an element of $\frac{\mid \cup\left\{\wp_{(R)} \mid R \in C_{s}^{\max } \text { and } r \in R\right\} \mid}{2}=\frac{\left|C_{s}^{\mathrm{t}}\right|}{2}$ sets in $\bigcup\left\{\wp(R) \mid R \in C_{s}^{\max }\right.$ and $\left.r \in R\right\}=C_{s}^{\mathbf{t}}$, i.e., $\left|C_{s}^{\mathbf{t}}(r)\right|=\frac{\left|C_{s}^{\mathbf{t}}\right|}{2}$.

Corollary 20

Let $D=\left(S, L, C^{\mathbf{t}}\right)$ be an $A D F^{+}$. Deciding if a link $(r, s) \in L$ is redundant can be solved in sub-quadratic time on $\left|C_{s}^{\mathbf{t}}\right|$.

Proof

Because $\left|C_{s}^{\mathbf{t}}(r)\right|=\frac{\left|C_{s}^{\mathbf{t}}\right|}{2}$, where $C_{s}^{\mathbf{t}}(r)=\left\{R \in C_{s}^{\mathbf{t}} \mid r \in R\right\}$, to find if (r, s) is a redundant link, it suffices to check for each $R \in C_{s}^{\mathbf{t}}$, if $r \in R$. For each $R \in C_{s}^{\mathbf{t}}$, checking if $r \in R$ can be done by checking, for each $s \in R$, if $s=r$. Clearly, each $R \in C_{s}^{\mathbf{t}}$ has at most $k=\max \left\{|R| \mid R \in \bigcup C_{s}^{\max }\right\}$ elements. Because $C_{s}^{\max } \subset C_{s}^{\mathbf{t}}$ and $C_{s}^{\mathbf{t}}$ is subset-complete, we have $\left|C_{s}^{\mathbf{t}}\right| \geq 2^{k}$. Then k is $O\left(\ln \left|C_{s}^{\mathbf{t}}\right|\right)$, which means that deciding if a link $(r, s) \in L$ is redundant is $O\left(\left|C_{s}^{\mathbf{t}}\right| \cdot \ln \left(\left|C_{s}^{\mathbf{t}}\right|\right)\right)$.

Theorem 21
Let $D=\left(S, L, C^{\varphi}\right)$ be an $A D F^{+}, v$ be a 3 -valued interpretation over S, and for each $s \in S, \varphi_{s}$ is the formula $\bigvee_{R \in C_{s}^{\max }} \bigwedge_{b \in \operatorname{par}(s)-R} \neg b$ depicted in Theorem 15 . It holds for every $s \in S, \Gamma_{D}(v)(s)=v\left(\varphi_{s}\right)$.

Proof

For each $s \in S$, let φ_{s} be

It is enough to prove for each $s \in S, v\left(\varphi_{s}\right)=\prod\left\{w\left(\varphi_{s}\right) \mid w \in[v]_{2}\right\}$, where $[v]_{2}=$ $\left\{w \mid w\right.$ is two-valued and $\left.v \leq_{i} w\right\}$. We have three possibilities:

- $v\left(\varphi_{s}\right)=\mathbf{t}$ iff there exists $R \in C_{s}^{\max }$ such that for each $b \in \operatorname{par}(s)-R, v(b)=\mathbf{f}$ iff there exists $R \in C_{s}^{\max }$ such that for each $b \in \operatorname{par}(s)-R$, for each $w \in[v]_{2}$, $w(b)=\mathbf{f}$ iff for each $w \in[v]_{2}, w\left(\varphi_{s}\right)=\mathbf{t}$ iff $\Pi\left\{w\left(\varphi_{s}\right) \mid w \in[v]_{2}\right\}=\mathbf{t}$.
- $v\left(\varphi_{s}\right)=\mathbf{f}$ iff for each $R \in C_{s}^{\text {max }}$, there exists $b \in \operatorname{par}(s)-R$ such that $v(b)=\mathbf{t}$ iff for each $w \in[v]_{2}$, for each $R \in C_{s}^{\max }$, there exists $b \in \operatorname{par}(s)-R$ such that $w(b)=\mathbf{t}$ iff for every $w \in[v]_{2}, w\left(\varphi_{s}\right)=\mathbf{f}$ iff $\Pi\left\{w\left(\varphi_{s}\right) \mid w \in[v]_{2}\right\}=\mathbf{f}$.
- $v\left(\varphi_{s}\right)=\mathbf{u}$, then for each $R \in C_{s}^{\max }$, there exists $b \in \operatorname{par}(s)-R$ such that $v(b) \in$ $\{\mathbf{t}, \mathbf{u}\}$ and there exists $R \in C_{s}^{\text {max }}$ such that for each $b \in \operatorname{par}(s)-R$, it holds $v(b) \in\{\mathbf{f}, \mathbf{u}\}$. Hence,
- there exists $w \in[v]_{2}$ such that for each $R \in C_{s}^{\max }$, there exists $b \in \operatorname{par}(s)-R$ such that $w(b)=\mathbf{t}$. This means there exists $w \in[v]_{2}$ such that $w\left(\varphi_{s}\right)=\mathbf{f}$;
- there exists $w^{\prime} \in[v]_{2}$, there exists $R \in C_{s}^{\max }$ such that for each $b \in \operatorname{par}(s)-R$, it holds $w^{\prime}(b)=\mathbf{f}$. This means there exists $w \in[v]_{2}$ such that $w\left(\varphi_{s}\right)=\mathbf{t}$.
But then we have $\rceil\left\{w\left(\varphi_{s}\right) \mid w \in[v]_{2}\right\}=\mathbf{u}$.

Theorem 22

Let $D=\left(S, L, C^{\varphi}\right)$ be an $A D F^{+}$. Then v is a stable model of D iff v is a 2 -valued complete model of D.

Proof

(\Rightarrow) Let v be a stable model of D. It is trivial v is a complete model of D as every stable model is a complete model.
(\Leftarrow)
Let v be a 2 -valued complete model of D. We will show v is a stable model of D, i.e., v is a grounded model of $D^{v}=\left(E_{v}, L^{v}, C^{v}\right)$, in which $E_{v}=\{s \in S \mid v(s)=\mathbf{t}\}$, $L^{v}=L \cap\left(E_{v} \times E_{v}\right)$ and for every $s \in E_{v}$, we set $\varphi_{s}^{v}=\varphi_{s}[b / \mathbf{f}: v(b)=\mathbf{f}]$.

As v is a complete model of D, if $v(s)=\mathbf{t}$, then $v\left(\varphi_{s}\right)=v\left(\bigvee_{R \in C_{s}^{\max }} \bigwedge_{b \in \operatorname{par}(s)-R} \neg b\right)=$ \mathbf{t}. This means there exists $R \in C_{s}^{\max }$ such that for each $b \in \operatorname{par}(s)-R, v(b)=\mathbf{f}$. Thus, for each $s \in E_{v}, \varphi_{s}^{v} \equiv \mathbf{t}$. As consequence, E_{v} is the grounded extension of D^{v}, i.e., v is a stable model of D.

A. 2 Theorems and Proofs from Section 4:

Proposition 29
Let P be an $N L P$. The corresponding $\Xi(P)$ is an $A D F^{+}$.

Proof

Let $\Xi(P)=\left(A, L, C^{\mathbf{t}}\right)$ be the $A D F$ corresponding to the $N L P P$ over a set of atoms A. By absurd, suppose $\Xi(P)$ is not an $A D F^{+}$. This means there exists a link $(b, a) \in L$ for which some $R \subseteq \operatorname{par}(a)$ we have $C_{a}(R)=\mathbf{f}$ and $C_{a}(R \cup\{b\})=\mathbf{t}$ (Definition 13). As $C_{a}(R \cup\{b\})=\mathbf{t}$, from Definition 28, we obtain there exists $B \in \operatorname{Sup}_{P}(a)$ such that $R \cup\{b\} \subseteq\{c \in \operatorname{par}(a) \mid \neg c \notin B\}$. Then we can say there exists $B \in \operatorname{Sup}_{P}(a)$ such that $R \subseteq\{c \in \operatorname{par}(a) \mid \neg c \notin B\}$. But then $C_{a}(R)=\mathbf{t}$. An absurd!

Proposition 30

Let P be an $N L P$ and $\Xi(P)=\left(A, L, C^{\mathbf{t}}\right)$ the corresponding $A D F^{+}$. The acceptance condition φ_{a} for each $a \in A$ is given by

$$
\varphi_{a} \equiv \bigvee_{B \in \operatorname{Sup}_{P}(a)}\left(\bigwedge_{\neg b \in B} \neg b\right)
$$

In particular, if $\operatorname{Sup}_{P}(a)=\{\emptyset\}$, then $\varphi_{a} \equiv \mathbf{t}$ and if $\operatorname{Sup}_{P}(a)=\emptyset$, then $\varphi_{a} \equiv \mathbf{f}$.

Proof

As $\Xi(P)$ is an $A D F^{+}$, we obtain from Theorem 15 that for every $a \in A$,

$$
\varphi_{a} \equiv \bigvee_{R \in C_{a}^{\max }}\left(\bigwedge_{b \in \operatorname{par}(a)-R} \neg b\right)
$$

where $C_{a}^{\text {max }}=\left\{R \in C_{a}^{\mathbf{t}} \mid\right.$ there is no $R^{\prime} \in C_{a}^{\mathbf{t}}$ such that $\left.R \subset R^{\prime}\right\}$. From Definition 28, we know $C_{a}^{\text {max }}=\left\{R \subseteq\{b \in \operatorname{par}(a) \mid \neg b \notin B\} \mid B \in \operatorname{Sup}_{P}(a)\right.$ and there is no $R^{\prime} \in C_{a}^{t}$ such that $\left.R \subset R^{\prime}\right\}=\left\{\{b \in \operatorname{par}(a) \mid \neg b \notin B\} \mid B \in \min \left\{\operatorname{Sup}_{P}(a)\right\}\right\}$, in which $\min \left\{\operatorname{Sup}_{P}(a)\right\}$ returns the minimal sets (w.r.t. set inclusion) of $\operatorname{Sup}_{P}(a)$. Thus for every $a \in A$,

$$
\varphi_{a} \equiv \bigvee_{R \in C_{a}^{\max }}\left(\bigwedge_{b \in \operatorname{par}(a)-R} \neg b\right) \equiv \bigvee_{B \in \min \left\{\operatorname{Sup}_{P}(a)\right\}}\left(\bigwedge_{\neg b \in B} \neg b\right)
$$

But then, we obtain

$$
\varphi_{a} \equiv \bigvee_{B \in \min \left\{\operatorname{Sup}_{P}(a)\right\}}\left(\bigwedge_{\neg b \in B} \neg b\right) \equiv \bigvee_{B \in \operatorname{Sup}_{P}(a)}\left(\bigwedge_{\neg b \in B} \neg b\right)
$$

Theorem 32

Let P be an $N L P$ and $\Xi(P)$ be the corresponding $A D F^{+} . v$ is a partial stable model of P iff v is a complete model of $\Xi(P)$.

Proof

Let P be an $N L P$ and $\Xi(P)=\left(A, L, C^{\mathbf{t}}\right)$ be the corresponding $A D F^{+}$. Let v be a 3valued interpretation. We will prove v is a partial stable model of P iff v is a complete model of $\Xi(P)$, i.e., $\Omega_{P}(v)=v$ iff for each $a \in A, v(a)=v\left(\varphi_{a}\right)$.

We will prove by induction on j that for each $a \in A, \Psi_{\frac{P}{v}}{ }^{j}(a)=\mathbf{t}$ iff there exists $\operatorname{Sup}_{P}(r) \in \operatorname{Sup}_{P}(a)$ such that for each $x \in \operatorname{Sup}_{P}^{\uparrow}{ }^{j}(r), v(x)=\mathbf{t}$.
Base Case: We know $\Psi_{\frac{P}{v}}^{\uparrow}(a)=\mathbf{t}$ iff $a \in \frac{P}{v}$ iff there is a rule $a \leftarrow \operatorname{not} b_{1}, \ldots$, not $b_{n} \in$ $P(n \geq 0)$ such that for each $b_{i},(1 \leq i \leq n), v\left(b_{i}\right)=\mathbf{f}$ iff there exists $\operatorname{Sup}_{P}(r) \in \operatorname{Sup}_{P}(a)$ such that $\operatorname{Sup}_{P}^{\uparrow 1}(r)=\left\{\neg b_{1}, \ldots, \neg b_{n}\right\}$ and for each $\neg b_{i} \in \operatorname{Sup}_{P}^{\uparrow 1}(r), v\left(\neg b_{i}\right)=\mathbf{t}$.
Inductive Hypothesis: Assume for each $a^{\prime} \in A, \Psi_{\frac{P}{v}}^{\uparrow}{ }^{n}\left(a^{\prime}\right)=\mathbf{t}$ iff there $\operatorname{exists}^{\operatorname{Sup}} \operatorname{Sup}_{P}(r) \in$ $\operatorname{Sup}_{P}\left(a^{\prime}\right)$ such that for each $x \in \operatorname{Sup}_{P}^{\uparrow n}(r), v(x)=\mathbf{t}$.
Inductive Step: We will prove $\Psi_{\frac{P}{v}}^{\uparrow n+1}(a)=\mathbf{t}$ iff there exists $\operatorname{Sup}_{P}(r) \in \operatorname{Sup}_{P}(a)$ such that for each $x \in \operatorname{Sup}_{P}^{\uparrow}{ }^{n+1}(r), v(x)=\mathbf{t}$:
We know $\Psi_{\frac{P}{v}}^{\uparrow n+1}(a)=\mathbf{t}$ iff there exists $a \leftarrow a_{1}, \ldots, a_{m} \in \frac{P}{v}$ such that for each $a_{i}, 1 \leq$ $i \leq m, \Psi_{\frac{P}{v}}^{\uparrow}{ }^{n}\left(a_{i}\right)=\mathbf{t}$ iff there exists $a \leftarrow a_{1}, \ldots, a_{m}$, not b_{1}, \ldots, not $b_{n} \in P$ such that for each $a_{i}, 1 \leq i \leq m, \Psi_{\frac{P}{v}}^{\uparrow}{ }^{n}\left(a_{i}\right)=\mathbf{t}$, and for each $b_{j}, 1 \leq j \leq n, v\left(b_{j}\right)=\mathbf{f}$ iff according to the Inductive Hypothesis, there exists $a \leftarrow a_{1}, \ldots, a_{m}$, not b_{1}, \ldots, not $b_{n} \in P$ such that for each $a_{i}, 1 \leq i \leq m$, there exists $\operatorname{Sup}_{P}\left(r_{i}\right) \in \operatorname{Sup}_{P}\left(a_{i}\right)$ such that for each $x \in \operatorname{Sup}_{P}^{\uparrow}{ }^{n}\left(r_{i}\right), v(x)=\mathbf{t}$, and for each $b_{j}, 1 \leq j \leq n, v\left(b_{j}\right)=\mathbf{f}$ iff there exists $a \leftarrow a_{1}, \ldots, a_{m}$, not b_{1}, \ldots, not $b_{n} \in P$ and there are statements $r, r_{i},(1 \leq i \leq m)$ in P with $\operatorname{Conc}_{P}(r)=a$ and $\operatorname{Conc}_{P}\left(r_{i}\right)=a_{i}$ such that for each r_{i}, for each $x \in \operatorname{Sup}_{P}^{\uparrow}{ }^{n}\left(r_{i}\right)$, $v(x)=\mathbf{t}$, and for each $b_{j}, 1 \leq j \leq n, v\left(\neg b_{j}\right)=\mathbf{t}$ iff there $\operatorname{exists}_{\operatorname{Sup}}^{P}(r) \in \operatorname{Sup}_{P}(a)$ such that for each $x \in \operatorname{Sup}_{P}^{\uparrow}{ }^{n+1}(r), v(x)=\mathbf{t}$.
The above result guarantees for a 3 -valued interpretation v of $P, \Omega_{P}(v)(a)=\mathbf{t}$ iff there exists $B=\operatorname{Sup}_{P}(r) \in \operatorname{Sup}_{P}(a)$ such that for each $x \in B, v(x)=\mathbf{t}$, i.e.,

$$
\begin{equation*}
\Omega_{P}(v)(a)=\mathbf{t} \text { iff } v\left(\bigvee_{B \in \operatorname{Sup}_{P}(a)}\left(\bigwedge_{\neg b \in B} \neg b\right)\right)=\mathbf{t} \text { iff } v\left(\varphi_{a}\right)=\mathbf{t} . \tag{A1}
\end{equation*}
$$

Similarly now we will prove by induction on j that for each $a \in A, \Psi_{\frac{P}{v}}^{\uparrow}{ }^{j}(a) \neq \mathbf{f}$ iff there exists $\operatorname{Sup}_{P}(r) \in \operatorname{Sup}_{P}(a)$ such that for each $x \in \operatorname{Sup}_{P}^{\uparrow}{ }^{j}(r), v(x) \neq \mathbf{f}$.
Base Case: We know $\Psi_{\frac{P}{v}}^{\uparrow}(a) \neq \mathbf{f}$ iff either $a \in \frac{P}{v}$ or $a \leftarrow \mathbf{u} \in \frac{P}{v}$ iff there exists a rule $a \leftarrow$ not b_{1}, \ldots, not $b_{n} \in P(n \geq 0)$ such that for each $b_{i},(1 \leq i \leq n), v\left(b_{i}\right) \neq \mathbf{t}$ iff there exists $\operatorname{Sup}_{P}(r) \in \operatorname{Sup}_{P}(a)$ such that $\operatorname{Sup}_{P}^{\uparrow}{ }^{1}(r)=\left\{\neg b_{1}, \ldots, \neg b_{n}\right\}$ and for each $b_{i},(1 \leq i \leq n), v\left(b_{i}\right) \neq \mathbf{t}$ iff there exists $\operatorname{Sup}_{P}(r) \in \operatorname{Sup}_{P}(a)$ such that for each $\neg b_{i} \in \operatorname{Sup}_{P}^{\uparrow}{ }^{1}(r), v\left(\neg b_{i}\right) \neq \mathbf{f}$.
Inductive Hypothesis: Assume for each $a^{\prime} \in A, \Psi_{\frac{P}{v}}^{\uparrow}{ }^{n}\left(a^{\prime}\right) \neq \mathbf{f}$ iff there $\operatorname{exists}^{\operatorname{Sup}}{ }_{P}(r) \in$ $\operatorname{Sup}_{P}\left(a^{\prime}\right)$ such that for each $x \in \operatorname{Sup}_{P}^{\uparrow}{ }^{n}(r), v(x) \neq \mathbf{f}$.
Inductive Step: We will prove $\Psi_{\frac{P}{v}}^{\uparrow} n+1(a) \neq \mathbf{f}$ iff there exists $\operatorname{Sup}_{P}(r) \in \operatorname{Sup}_{P}(a)$ such that for each $x \in \operatorname{Sup}_{P}^{\uparrow}{ }^{n+1}(r), v(x) \neq \mathbf{f}$:
We know $\Psi_{\frac{P}{v}}^{\uparrow}{ }^{n+1}(a) \neq \mathbf{f}$ iff there exists $a \leftarrow a_{1}, \ldots, a_{m} \in \frac{P}{v}$ such that for each $a_{i}, 1 \leq$
$i \leq m, \Psi_{\frac{P}{v}}^{\uparrow}{ }^{n}\left(a_{i}\right) \neq \mathbf{f}$ iff there exists $a \leftarrow a_{1}, \ldots, a_{m}$, not b_{1}, \ldots, not $b_{n} \in P$ such that for each $a_{i}, 1 \leq i \leq m, \Psi_{\frac{P}{v}}^{\uparrow}{ }^{n}\left(a_{i}\right) \neq \mathbf{f}$, and for each $b_{j}, 1 \leq j \leq n, v\left(b_{j}\right) \neq \mathbf{t}$ iff according to the Inductive Hypothesis, there exists $a \leftarrow a_{1}, \ldots, a_{m}$, not b_{1}, \ldots, not $b_{n} \in P$ such that for each $a_{i}, 1 \leq i \leq m$, there exists $\operatorname{Sup}_{P}\left(r_{i}\right) \in \operatorname{Sup}_{P}\left(a_{i}\right)$ such that for each $x \in \operatorname{Sup}_{P}^{\uparrow}{ }^{n}\left(r_{i}\right), v(x) \neq \mathbf{f}$, and for each $b_{j}, 1 \leq j \leq n, v\left(b_{j}\right) \neq \mathbf{t}$ iff there exists $a \leftarrow a_{1}, \ldots, a_{m}$, not b_{1}, \ldots, not $b_{n} \in P$ and there are statements $r, r_{i},(1 \leq i \leq m)$ in P with $\operatorname{Conc}_{P}(r)=a$ and $\operatorname{Conc}_{P}\left(r_{i}\right)=a_{i}$ such that for each r_{i}, for each $x \in \operatorname{Sup}_{P}^{\uparrow}{ }^{n}\left(r_{i}\right)$, $v(x) \neq \mathbf{f}$, and for each $b_{j}, 1 \leq j \leq n, v\left(\neg b_{j}\right) \neq \mathbf{f}$ iff there exists $\operatorname{Sup}_{P}(r) \in \operatorname{Sup}_{P}(a)$ such that for each $x \in \operatorname{Sup}_{P}^{\uparrow}{ }^{n+1}(r), v(x) \neq \mathbf{f}$.

The above result guarantees for a 3 -valued interpretation v of $P, \Omega_{P}(v)(a) \neq \mathbf{f}$ iff there exists $B=\operatorname{Sup}_{P}(r) \in \operatorname{Sup}_{P}(a)$ such that for each $x \in B, v(x) \neq \mathbf{f}$, i.e.,

$$
\begin{equation*}
\Omega_{P}(v)(a)=\mathbf{f} \text { iff } v\left(\bigvee_{B \in \operatorname{Sup}_{P}(a)}\left(\bigwedge_{\neg b \in B} \neg b\right)\right)=\mathbf{f} \text { iff } v\left(\varphi_{a}\right)=\mathbf{f} \tag{A2}
\end{equation*}
$$

From A1 and A2, we conclude v is a partial stable model of P iff for all $a \in A$, $v(a)=\Omega_{P}(v)(a)=v\left(\bigvee_{B \in \operatorname{Sup}_{P}(a)}\left(\bigwedge_{\neg b \in B} \neg b\right)\right)=v\left(\varphi_{a}\right)$, i.e., v is a complete model of $\Xi(P)$.

Theorem 33

Let P be an $N L P$ and $\Xi(P)=\left(A, L, C^{\mathbf{t}}\right)$ the corresponding $A D F^{+}$. We have

- v is a well-founded model of P iff v is a grounded model of $\Xi(P)$.
- v is a regular model of P iff v is a preferred model of $\Xi(P)$.
- v is a stable model of P iff v is a stable model of $\Xi(P)$.
- v is an L-stable model of P iff v is an L-stable model of $\Xi(P)$.

Proof

This proof is a straightforward consequence from Theorem 32;

- v is a well-founded model of P iff v is the \leq_{i}-least partial stable model of P iff (according to Theorem 32) v is the \leq_{i}-least complete model of $\Xi(P)$ iff v is the grounded model of $\Xi(P)$.
- v is a regular model of P iff v is a \leq_{i}-maximal partial stable model of P iff (according to Theorem 32) v is a \leq_{i}-maximal complete model of $\Xi(P)$ iff v is a preferred model of $\Xi(P)$.
- v is a stable model of P iff v is a partial stable model of P such that unk $(v)=$ $\{s \in S \mid v(s)=\mathbf{u}\}=\emptyset$ iff (according to Theorem 32) v is a complete model of $\Xi(P)$ such that $\operatorname{unk}(v)=\emptyset$ iff (based on Theorem 22) v is a stable model of $\Xi(P)$.
- v is an L-stable model of P iff v is a partial stable model of P with minimal $\operatorname{unk}(v)=\{s \in S \mid v(s)=\mathbf{u}\}$ (w.r.t. set inclusion) among all partial stable models of P iff (according to Theorem 32) v a complete model of $\Xi(P)$ with minimal unk (v) among all complete models of P iff v is an L-stable model of $\Xi(P)$.

A. 3 Propositions and Proofs from Section 5:

Proposition 37

Let P be an $N L P$, where each rule is either a fact or its body has only default literals as in $a \leftarrow$ not b_{1}, \ldots, not b_{n}. Let $\Xi(P)$ be the $A D F$ obtained from P via Definition 28 and $\Xi_{2}(P)$ the $A D F$ obtained from P via Definition 36. Then $\Xi(P)=\Xi_{2}(P)$.

Proof

Firstly, let P be an NLP defined over a set A of atoms, where each rule is like $a \leftarrow$ not b_{1}, \ldots, not b_{n}. We know from Definitions 25 and $26 \operatorname{Sup}_{P}(a)=\left\{\left\{\neg b_{1}, \ldots, \neg b_{n}\right\} \mid\right.$ $a \leftarrow$ not b_{1}, \ldots, not $\left.b_{n} \in P\right\}$. Then, according to Definition 28, we obtain the $A D F$ $\Xi(P)=\left(A, L, C^{\mathbf{t}}\right)$, where

- $L=\left\{(c, a) \mid a \leftarrow \operatorname{not} b_{1}, \ldots\right.$, not $b_{n} \in P$ and $\left.c \in\left\{b_{1}, \ldots, b_{n}\right\}\right\}$;
- For $a \in A, C_{a}^{\mathbf{t}}=\left\{B^{\prime} \subseteq\left\{b \in \operatorname{par}(a)\left|\neg b \notin\left\{b_{1}, \ldots, b_{n}\right\}\right| a \leftarrow \operatorname{not} b_{1}, \ldots, \operatorname{not} b_{n} \in P\right\}\right\}$ $=\left\{B^{\prime} \subseteq \operatorname{par}(a) \mid a \leftarrow \operatorname{not} b_{1}, \ldots\right.$, not $b_{n} \in P$ and $\left.\left\{b_{1}, \ldots, b_{n}\right\} \cap B^{\prime}=\emptyset\right\}$.

According to Definition 36, we obtain the $A D F \Xi_{2}(P)=\left(A, L_{2}, C_{2}^{\mathbf{t}}\right)$, where

- $L_{2}=\left\{(c, a) \mid a \leftarrow \operatorname{not} b_{1}, \ldots\right.$, not $b_{n} \in P$ and $\left.c \in\left\{b_{1}, \ldots, b_{n}\right\}\right\}=L$;
- For each $a \in A, C_{2 a}^{\mathbf{t}}=\left\{B^{\prime} \in \operatorname{par}(a) \mid a \leftarrow \operatorname{not} b_{1}, \ldots\right.$, not $b_{n} \in P,\left\{b_{1}, \ldots, b_{n}\right\} \cap$ $\left.B^{\prime}=\emptyset\right\}=C_{a}^{\mathbf{t}}$.
Hence, $\Xi(P)=\Xi_{2}(P)$.
Proposition 39
Let $S F=(A, R)$ be a $S E T A F$ and $D F^{S F}=(A, L, C)$ be the corresponding $A D F$. Then, $D F^{S F}$ is an $A D F^{+}$.

Proof

In order to show $D F^{S F}=(A, L, C)$ is an $A D F^{+}$, we will guarantee any $(r, s) \in L$ is an attacking link, i.e., for every $B \subseteq \operatorname{par}(s)$, if $C_{s}(B \cup\{r\})=\mathbf{t}$, then $C_{s}(B)=\mathbf{t}$:

Suppose $C_{s}(B \cup\{r\})=\mathbf{t}$. Then according to the translation from SETAF to $A D F$, there is no $\left(X_{i}, s\right) \in R$ such that $X_{i} \subseteq B \cup\{r\}$. Thus there is no $\left(X_{i}, s\right) \in R$ such that $X_{i} \subseteq B$. This implies $C_{s}(B)=\mathbf{t}$.

[^0]: ${ }^{1}$ As D is an $A D F^{+}$, for each $R \in C_{s}^{\max }$, for each $R^{\prime} \subseteq R$, we have $R^{\prime} \in C_{s}^{\mathbf{t}}$.

