Appendix A Proofs of Theorems

A.1 Theorems and Proofs from Section 3:

Theorem 15

Let $D = (S, L, C^{\mathbf{t}})$ be an ADF^+ and, for every $s \in S$, we define $C_s^{max} = \{R \in C_s^{\mathbf{t}} \mid \text{there is } no \ R' \in C_s^{\mathbf{t}} \text{ such that } R \subset R'\}$. Then, for every $s \in S$,

$$\varphi_s \equiv \bigvee_{R \in C_s^{max}} \bigwedge_{b \in par(s) - R} \neg b.$$

Proof

According to Equation (1), $\varphi_s \equiv \varphi_1 = \bigvee_{R \in C_s^t} \left(\bigwedge_{a \in R} a \land \bigwedge_{b \in par(s) - R} \neg b \right)$. Let $\varphi_2 = \bigvee_{R \in C_s^{max}} \bigwedge_{b \in par(s) - R} \neg b$. We will show $\varphi_1 \equiv \varphi_2$, i.e., for any 2-valued interpretation v, $v(\varphi_1) = v(\varphi_2)$:

- If $v(\varphi_1) = \mathbf{t}$, then there exists $R \in C_s^{\mathbf{t}}$ such that for all $a \in R$, $v(a) = \mathbf{t}$ and for all $b \in par(s) R$, $v(b) = \mathbf{f}$. As there exists $R' \in C_s^{max}$ such that $R \subseteq R'$, we obtain for all $b \in par(s) R'$, $v(b) = \mathbf{f}$. Thus, $v(\varphi_2) = \mathbf{t}$.
- If v(φ₁) = **f**, then for each R ∈ C^t_s there exists a ∈ R such that v(a) = **f** or there exists b ∈ par(s) − R such that v(b) = **t**. In particular, for each R ∈ C^{max}_s there exists a ∈ R such that v(a) = **f** or there exists b ∈ par(s) − R such that v(b) = **t**, and¹ there exists b ∈ par(s) − R' such that v(b) = **t**, in which R' = R − {a ∈ R | v(a) = **f**}. But then for each R ∈ C^{max}_s there exists b ∈ par(s) − R such that v(b) = **t**. Thus, v(φ₂) = **f**.

_	_
	_

Theorem 16

Let $D = (S, L, C^{\mathbf{t}})$ be an ADF^+ . A link $(r, s) \in L$ is redundant iff $r \in R$ for every $R \in C_s^{max}$.

Proof

(\Rightarrow)

If $(r, s) \in L$ is a redundant link, then, in particular, it is a supporting link, i.e., for every $R \subseteq par(s)$, we have if $R \in C_s^t$, then $(R \cup \{r\}) \in C_s^t$.

By absurd, suppose there exists $R \in C_s^{max}$ such that $r \notin R$. This means $R \in C_s^t$. But then we obtain $(R \cup \{r\}) \in C_s^t$. It is an absurd as $R \in C_s^{max}$. (\Leftarrow)

Assume for any $R \in C_s^{max}$, we have $r \in R$. By absurd, suppose $(r, s) \in L$ is not redundant. Then there exists $R' \subseteq par(s)$ such that $C_s(R') = \mathbf{t}$ and $C_s(R' \cup \{r\}) = \mathbf{f}$.

As $r \in R$ for any $R \in C_s^{max}$, there exists $R'' \in C_s^{max}$ such that $R' \cup \{r\} \subseteq R''$ and $C_s(R'') = \mathbf{t}$. But then, as any link in L is attacking, we obtain $C_s(R' \cup \{r\}) = \mathbf{t}$. An absurd. \Box

¹ As D is an ADF^+ , for each $R \in C_s^{max}$, for each $R' \subseteq R$, we have $R' \in C_s^{\mathbf{t}}$.

Corollary 17

Let $D = (S, L, C^{\mathbf{t}})$ be an ADF^+ . For each $s \in S$, if φ_s is $\bigvee_{R \in C_s^{max}} \bigwedge_{b \in par(s) - R} \neg b$ and $L' = \{(r, s) \mid \neg r \text{ appears in } \varphi_s\}$, then L' has no redundant link.

Proof

The result is straightforward: from Theorem 16, we know $(r, s) \in L$ is a redundant link iff for any $R \in C_s^{max}$, we have $r \in R$ iff $\neg r$ does not appear in $\bigvee_{R \in C_s^{max}} \bigwedge_{b \in par(s)-R} \neg b$ iff

 $(r,s) \notin L'$. \Box

Theorem 19 Let $D = (S, L, C^{\mathbf{t}})$ be an ADF^+ , $s \in S$; $r \in par(s)$ and $C_s^{\mathbf{t}}(r) = \{R \in C_s^{\mathbf{t}} \mid r \in R\}$. A link $(r, s) \in L$ is redundant iff $|C_s^{\mathbf{t}}(r)| = \frac{|C_s^{\mathbf{t}}|}{2}$.

Proof

The proof follows from the definition of ADF^+ , a property of Power Sets and the Principle of Inclusion and Exclusion (PIE).

In D, for every $s \in S$ and $M \subseteq par(s)$, if $C_s(M) = \mathbf{t}$, then $C_s(M') = \mathbf{t}$ for every $M' \subseteq M$ (Definition 14). Then $C_s^{\mathbf{t}} = \{S \subseteq R \mid R \in C_s^{max}\} = \bigcup \{ \mathcal{O}(R) \mid R \in C_s^{max} \}$, where $C_s^{max} = \{R \in C_s^{\mathbf{t}} \mid \text{there is no } R' \in C_s^{\mathbf{t}} \text{ such that } R \subset R' \}$ and $\mathcal{O}(R)$ denotes the power set of R.

Given a set S, we have $|\wp(S)| = 2^{|S|}$ and that, for each $r \in S$, r is an element of $\frac{2^{|S|}}{2}$ subsets of S, i.e., of precisely half the subsets of S. Then if $r \in S \cap T$, we have that r is an element of $\frac{2^{|S|}}{2}$ subsets of S, $\frac{2^{|T|}}{2}$ subsets of T and $\frac{2^{|S\cap T|}}{2}$ subsets of $S \cap T$. PIE ensures that $|\wp(S) \cup \wp(T)| = |\wp(S)| + |\wp(T)| - |\wp(S) \cap \wp(T)|$, which, because $\wp(S \cap T) = \wp(S) \cap \wp(T)$, leads to $|\wp(S) \cup \wp(T)| = |\wp(S)| + |\wp(S)| + |\wp(T)| - |\wp(S \cap T)|$. That is, if $r \in S \cap T$, then $|\wp(S) \cup \wp(T)| = 2^{|S|} + 2^{|T|} - 2^{|S\cap T|}$ and r is an element of $\frac{2^{|S|}}{2} + \frac{2^{|T|}}{2} - \frac{2^{|S\cap T|}}{2} = \frac{|\wp(S) \cup \wp(T)|}{2}$ sets in $\wp(S) \cup \wp(T)$. By extension of PIE, if $r \in \bigcap \{S_1, \ldots, S_n\}$, then r is an element of $\frac{|\bigcup\{\wp(S_1), \ldots, \wp(S_n)\}|}{2}$ sets in $\bigcup\{\wp(S_1), \ldots, \wp(S_n)\}$. Let (r, s) be a redundant link, then, for all $R \in C_s^{max}$, we have $r \in R$ (Theorem 16), $\lim_{n \to \infty} (\wp(r) + \wp(r) + \wp(r) + \wp(r) + \wp(r)$.

Let (r, s) be a redundant link, then, for all $R \in C_s^{max}$, we have $r \in R$ (Theorem 16), i.e., $r \in \bigcap C_s^{max}$. Then r is an element of $\frac{|\bigcup \{ \mathcal{O}(R) \mid R \in C_s^{max} \text{ and } r \in R \}|}{2} = \frac{|C_s^t|}{2}$ sets in $\bigcup \{ \mathcal{O}(R) \mid R \in C_s^{max} \text{ and } r \in R \} = C_s^t$, i.e., $|C_s^t(r)| = \frac{|C_s^t|}{2}$. \Box

Corollary 20

Let $D = (S, L, C^{\mathbf{t}})$ be an ADF^+ . Deciding if a link $(r, s) \in L$ is redundant can be solved in sub-quadratic time on $|C_s^{\mathbf{t}}|$.

Proof

Because $|C_s^{\mathbf{t}}(r)| = \frac{|C_s^{\mathbf{t}}|}{2}$, where $C_s^{\mathbf{t}}(r) = \{R \in C_s^{\mathbf{t}} \mid r \in R\}$, to find if (r, s) is a redundant link, it suffices to check for each $R \in C_s^{\mathbf{t}}$, if $r \in R$. For each $R \in C_s^{\mathbf{t}}$, checking if $r \in R$ can be done by checking, for each $s \in R$, if s = r. Clearly, each $R \in C_s^{\mathbf{t}}$ has at most $k = max\{|R| \mid R \in \bigcup C_s^{max}\}$ elements. Because $C_s^{max} \subset C_s^{\mathbf{t}}$ and $C_s^{\mathbf{t}}$ is subset-complete, we have $|C_s^{\mathbf{t}}| \ge 2^k$. Then k is $O(\ln|C_s^{\mathbf{t}}|)$, which means that deciding if a link $(r, s) \in L$ is redundant is $O(|C_s^{\mathbf{t}}|.ln(|C_s^{\mathbf{t}}|))$. \Box

 $\mathbf{2}$

Theorem 21

Let $D = (S, L, C^{\varphi})$ be an ADF^+ , v be a 3-valued interpretation over S, and for each $s \in S$, φ_s is the formula $\bigvee_{R \in C_s^{max}} \bigwedge_{b \in par(s) - R} \neg b$ depicted in Theorem 15. It holds for every $s \in S$, $\Gamma_D(v)(s) = v(\varphi_s)$.

Proof For each $s \in S$, let φ_s be

$$\bigvee_{R \in C_s^{max}} \bigwedge_{b \in par(s) - R} \neg b$$

It is enough to prove for each $s \in S$, $v(\varphi_s) = \prod \{w(\varphi_s) \mid w \in [v]_2\}$, where $[v]_2 = \{w \mid w \text{ is two-valued and } v \leq_i w\}$. We have three possibilities:

- $v(\varphi_s) = \mathbf{t}$ iff there exists $R \in C_s^{max}$ such that for each $b \in par(s) R$, $v(b) = \mathbf{f}$ iff there exists $R \in C_s^{max}$ such that for each $b \in par(s) R$, for each $w \in [v]_2$, $w(b) = \mathbf{f}$ iff for each $w \in [v]_2$, $w(\varphi_s) = \mathbf{t}$ iff $\prod \{w(\varphi_s) \mid w \in [v]_2\} = \mathbf{t}$.
- $v(\varphi_s) = \mathbf{f}$ iff for each $R \in C_s^{max}$, there exists $b \in par(s) R$ such that $v(b) = \mathbf{t}$ iff for each $w \in [v]_2$, for each $R \in C_s^{max}$, there exists $b \in par(s) R$ such that $w(b) = \mathbf{t}$ iff for every $w \in [v]_2$, $w(\varphi_s) = \mathbf{f}$ iff $\prod \{w(\varphi_s) \mid w \in [v]_2\} = \mathbf{f}$.
- $v(\varphi_s) = \mathbf{u}$, then for each $R \in C_s^{max}$, there exists $b \in par(s) R$ such that $v(b) \in {\mathbf{t}, \mathbf{u}}$ and there exists $R \in C_s^{max}$ such that for each $b \in par(s) R$, it holds $v(b) \in {\mathbf{f}, \mathbf{u}}$. Hence,
 - there exists $w \in [v]_2$ such that for each $R \in C_s^{max}$, there exists $b \in par(s) R$ such that $w(b) = \mathbf{t}$. This means there exists $w \in [v]_2$ such that $w(\varphi_s) = \mathbf{f}$;
 - there exists $w' \in [v]_2$, there exists $R \in C_s^{max}$ such that for each $b \in par(s) R$, it holds $w'(b) = \mathbf{f}$. This means there exists $w \in [v]_2$ such that $w(\varphi_s) = \mathbf{t}$.

But then we have $\prod \{w(\varphi_s) \mid w \in [v]_2\} = \mathbf{u}$.

Theorem 22

Let $D = (S, L, C^{\varphi})$ be an ADF^+ . Then v is a stable model of D iff v is a 2-valued complete model of D.

Proof

 (\Rightarrow) Let v be a stable model of D. It is trivial v is a complete model of D as every stable model is a complete model.

 (\Leftarrow)

Let v be a 2-valued complete model of D. We will show v is a stable model of D, i.e., v is a grounded model of $D^v = (E_v, L^v, C^v)$, in which $E_v = \{s \in S \mid v(s) = \mathbf{t}\},$ $L^v = L \cap (E_v \times E_v)$ and for every $s \in E_v$, we set $\varphi_s^v = \varphi_s[b/\mathbf{f} : v(b) = \mathbf{f}].$

As v is a complete model of D, if $v(s) = \mathbf{t}$, then $v(\varphi_s) = v(\bigvee_{R \in C_s^{max}} \bigwedge_{b \in par(s) - R} \neg b) = \mathbf{t}$. This means there exists $R \in C_s^{max}$ such that for each $b \in par(s) - R$, $v(b) = \mathbf{f}$. Thus, for each $s \in E_v$, $\varphi_s^v \equiv \mathbf{t}$. As consequence, E_v is the grounded extension of D^v , i.e., v is a stable model of D. \Box

A.2 Theorems and Proofs from Section 4:

Proposition 29

Let P be an NLP. The corresponding $\Xi(P)$ is an ADF^+ .

Proof

Let $\Xi(P) = (A, L, C^{\mathbf{t}})$ be the *ADF* corresponding to the *NLP* P over a set of atoms A. By absurd, suppose $\Xi(P)$ is not an ADF^+ . This means there exists a link $(b, a) \in L$ for which some $R \subseteq par(a)$ we have $C_a(R) = \mathbf{f}$ and $C_a(R \cup \{b\}) = \mathbf{t}$ (Definition 13). As $C_a(R \cup \{b\}) = \mathbf{t}$, from Definition 28, we obtain there exists $B \in Sup_P(a)$ such that $R \cup \{b\} \subseteq \{c \in par(a) \mid \neg c \notin B\}$. Then we can say there exists $B \in Sup_P(a)$ such that $R \subseteq \{c \in par(a) \mid \neg c \notin B\}$. But then $C_a(R) = \mathbf{t}$. An absurd! \Box

Proposition 30

Let P be an NLP and $\Xi(P) = (A, L, C^{\mathbf{t}})$ the corresponding ADF^+ . The acceptance condition φ_a for each $a \in A$ is given by

$$\varphi_a \equiv \bigvee_{B \in \operatorname{Sup}_P(a)} \left(\bigwedge_{\neg b \in B} \neg b \right).$$

In particular, if $\operatorname{Sup}_P(a) = \{\emptyset\}$, then $\varphi_a \equiv \mathbf{t}$ and if $\operatorname{Sup}_P(a) = \emptyset$, then $\varphi_a \equiv \mathbf{f}$.

Proof

As $\Xi(P)$ is an ADF^+ , we obtain from Theorem 15 that for every $a \in A$,

/

$$\varphi_a \equiv \bigvee_{R \in C_a^{max}} \left(\bigwedge_{b \in par(a) - R} \neg b \right),$$

where $C_a^{max} = \{R \in C_a^{\mathbf{t}} \mid \text{there is no } R' \in C_a^{\mathbf{t}} \text{ such that } R \subset R'\}$. From Definition 28, we know $C_a^{max} = \{R \subseteq \{b \in par(a) \mid \neg b \notin B\} \mid B \in \operatorname{Sup}_P(a) \text{ and there is no } R' \in C_a^{\mathbf{t}} \text{ such that } R \subset R'\} = \{\{b \in par(a) \mid \neg b \notin B\} \mid B \in min \{\operatorname{Sup}_P(a)\}\}, \text{ in which } min \{\operatorname{Sup}_P(a)\} \text{ returns the minimal sets (w.r.t. set inclusion) of } \operatorname{Sup}_P(a). Thus for every <math>a \in A$,

$$\varphi_a \equiv \bigvee_{R \in C_a^{max}} \left(\bigwedge_{b \in par(a) - R} \neg b \right) \equiv \bigvee_{B \in min\{\operatorname{Sup}_P(a)\}} \left(\bigwedge_{\neg b \in B} \neg b \right),$$

But then, we obtain

$$\varphi_a \equiv \bigvee_{B \in \min\{\operatorname{Sup}_P(a)\}} \left(\bigwedge_{\neg b \in B} \neg b\right) \equiv \bigvee_{B \in \operatorname{Sup}_P(a)} \left(\bigwedge_{\neg b \in B} \neg b\right).$$

Theorem 32

Let P be an NLP and $\Xi(P)$ be the corresponding ADF^+ . v is a partial stable model of P iff v is a complete model of $\Xi(P)$.

Proof

Let P be an NLP and $\Xi(P) = (A, L, C^{t})$ be the corresponding ADF^{+} . Let v be a 3valued interpretation. We will prove v is a partial stable model of P iff v is a complete model of $\Xi(P)$, i.e., $\Omega_P(v) = v$ iff for each $a \in A$, $v(a) = v(\varphi_a)$.

We will prove by induction on j that for each $a \in A$, $\Psi_{\underline{P}}^{\uparrow j}(a) = \mathbf{t}$ iff there exists $\operatorname{Sup}_P(r)\in\operatorname{Sup}_P(a) \text{ such that for each } x\in\operatorname{Sup}_P^{\uparrow j}(r),\,v(x)=\mathbf{t}.$

Base Case: We know $\Psi_{\underline{P}}^{\uparrow 1}(a) = \mathbf{t}$ iff $a \in \frac{P}{v}$ iff there is a rule $a \leftarrow \mathsf{not} b_1, \ldots, \mathsf{not} b_n \in$ $P(n \ge 0)$ such that for each $b_i, (1 \le i \le n), v(b_i) = \mathbf{f}$ iff there exists $\operatorname{Sup}_P(r) \in \operatorname{Sup}_P(a)$ such that $\operatorname{Sup}_P^{\uparrow 1}(r) = \{\neg b_1, \ldots, \neg b_n\}$ and for each $\neg b_i \in \operatorname{Sup}_P^{\uparrow 1}(r), v(\neg b_i) = \mathbf{t}$. **Inductive Hypothesis:** Assume for each $a' \in A, \Psi_{\frac{P}{v}}^{\uparrow n}(a') = \mathbf{t}$ iff there exists $\operatorname{Sup}_P(r) \in \mathbb{C}$.

 $\operatorname{Sup}_{P}(a')$ such that for each $x \in \operatorname{Sup}_{P}^{\uparrow n}(r), v(x) = \mathbf{t}$. Inductive Step: We will prove $\Psi_{P}^{\uparrow n+1}(a) = \mathbf{t}$ iff there exists $\operatorname{Sup}_{P}(r) \in \operatorname{Sup}_{P}(a)$ such that for each $x \in \operatorname{Sup}_{P}^{\uparrow n+1}(r), v(x) = \mathbf{t}$: We know $\Psi_{P}^{\uparrow n+1}(a) = \mathbf{t}$ iff there exists $a \leftarrow a_1, \ldots, a_m \in \frac{P}{v}$ such that for each $a_i, 1 \leq \frac{P}{v}$ $i \leq m, \Psi_{\underline{P}}^{\uparrow n}(a_i) = \mathbf{t}$ iff there exists $a \leftarrow a_1, \ldots, a_m, \mathsf{not} \ b_1, \ldots, \mathsf{not} \ b_n \in P$ such that for each $a_i, 1 \leq i \leq m, \Psi_{\underline{P}}^{\uparrow n}(a_i) = \mathbf{t}$, and for each $b_j, 1 \leq j \leq n, v(b_j) = \mathbf{f}$ iff according to the Inductive Hypothesis, there exists $a \leftarrow a_1, \ldots, a_m$, not b_1, \ldots , not $b_n \in P$ such that for each a_i , $1 \leq i \leq m$, there exists $\text{Sup}_P(r_i) \in \text{Sup}_P(a_i)$ such that for each $x \in \operatorname{Sup}_{P}^{\uparrow n}(r_{i}), v(x) = \mathbf{t}$, and for each $b_{j}, 1 \leq j \leq n, v(b_{j}) = \mathbf{f}$ iff there exists $a \leftarrow a_1, \ldots, a_m$, not b_1, \ldots , not $b_n \in P$ and there are statements $r, r_i, (1 \le i \le m)$ in P with $\operatorname{Conc}_P(r) = a$ and $\operatorname{Conc}_P(r_i) = a_i$ such that for each r_i , for each $x \in \operatorname{Sup}_P^{\uparrow n}(r_i)$, $v(x) = \mathbf{t}$, and for each b_j , $1 \le j \le n$, $v(\neg b_j) = \mathbf{t}$ iff there exists $\operatorname{Sup}_P(r) \in \operatorname{Sup}_P(a)$ such that for each $x \in \operatorname{Sup}_P^{\uparrow n+1}(r), v(x) = \mathbf{t}$.

The above result guarantees for a 3-valued interpretation v of $P, \Omega_P(v)(a) = \mathbf{t}$ iff there exists $B = \operatorname{Sup}_{P}(r) \in \operatorname{Sup}_{P}(a)$ such that for each $x \in B$, $v(x) = \mathbf{t}$, i.e.,

$$\Omega_P(v)(a) = \mathbf{t} \ iff \ v \left(\bigvee_{B \in \operatorname{Sup}_P(a)} \left(\bigwedge_{\neg b \in B} \neg b\right)\right) = \mathbf{t} \ iff \ v(\varphi_a) = \mathbf{t}.$$
(A1)

Similarly now we will prove by induction on j that for each $a \in A$, $\Psi_{\underline{P}}^{\uparrow j}(a) \neq \mathbf{f}$ iff there exists $\operatorname{Sup}_P(r) \in \operatorname{Sup}_P(a)$ such that for each $x \in \operatorname{Sup}_P^{\uparrow j}(r), v(x) \neq \mathbf{f}$.

Base Case: We know $\Psi_{\underline{P}}^{\uparrow 1}(a) \neq \mathbf{f}$ iff either $a \in \frac{P}{v}$ or $a \leftarrow \mathbf{u} \in \frac{P}{v}$ iff there exists a rule $a \leftarrow \text{not } b_1, \dots, \text{not } b_n \in P \ (n \ge 0)$ such that for each $b_i, \ (1 \le i \le n), \ v(b_i) \neq \mathbf{t}$ iff there exists $\operatorname{Sup}_P(r) \in \operatorname{Sup}_P(a)$ such that $\operatorname{Sup}_P^{\uparrow 1}(r) = \{\neg b_1, \ldots, \neg b_n\}$ and for each b_i , $(1 \leq i \leq n)$, $v(b_i) \neq t$ iff there exists $\text{Sup}_P(r) \in \text{Sup}_P(a)$ such that for each $\neg b_i \in \operatorname{Sup}_P^{\uparrow 1}(r), v(\neg b_i) \neq \mathbf{f}.$

Inductive Hypothesis: Assume for each $a' \in A$, $\Psi_{\frac{P}{n}}^{\uparrow n}(a') \neq \mathbf{f}$ iff there exists $\operatorname{Sup}_{P}(r) \in$

 $\operatorname{Sup}_{P}(a')$ such that for each $x \in \operatorname{Sup}_{P}^{\uparrow n}(r), v(x) \neq \mathbf{f}$. Inductive Step: We will prove $\Psi_{\frac{P}{v}}^{\uparrow n+1}(a) \neq \mathbf{f}$ iff there exists $\operatorname{Sup}_{P}(r) \in \operatorname{Sup}_{P}(a)$ such

that for each $x \in \operatorname{Sup}_{P}^{\uparrow n+1}(r), v(x) \neq \mathbf{f}$: We know $\Psi_{\frac{P}{v}}^{\uparrow n+1}(a) \neq \mathbf{f}$ iff there exists $a \leftarrow a_1, \ldots, a_m \in \frac{P}{v}$ such that for each $a_i, 1 \leq \frac{P}{v}$

 $i \leq m, \Psi_{\frac{P}{v}}^{\uparrow n}(a_i) \neq \mathbf{f}$ iff there exists $a \leftarrow a_1, \ldots, a_m, \operatorname{not} b_1, \ldots, \operatorname{not} b_n \in P$ such that for each $a_i, 1 \leq i \leq m, \Psi_{\frac{P}{v}}^{\uparrow n}(a_i) \neq \mathbf{f}$, and for each $b_j, 1 \leq j \leq n, v(b_j) \neq \mathbf{t}$ iff according to the Inductive Hypothesis, there exists $a \leftarrow a_1, \ldots, a_m, \operatorname{not} b_1, \ldots, \operatorname{not} b_n \in P$ such that for each $a_i, 1 \leq i \leq m$, there exists $\operatorname{Sup}_P(r_i) \in \operatorname{Sup}_P(a_i)$ such that for each $x \in \operatorname{Sup}_P^{\uparrow n}(r_i), v(x) \neq \mathbf{f}$, and for each $b_j, 1 \leq j \leq n, v(b_j) \neq \mathbf{t}$ iff there exists $a \leftarrow a_1, \ldots, a_m, \operatorname{not} b_1, \ldots, \operatorname{not} b_n \in P$ and there are statements $r, r_i, (1 \leq i \leq m)$ in P with $\operatorname{Conc}_P(r) = a$ and $\operatorname{Conc}_P(r_i) = a_i$ such that for each r_i , for each $x \in \operatorname{Sup}_P^{\uparrow n}(r_i),$ $v(x) \neq \mathbf{f}$, and for each $b_j, 1 \leq j \leq n, v(\neg b_j) \neq \mathbf{f}$ iff there exists $\operatorname{Sup}_P(r) \in \operatorname{Sup}_P(a)$ such that for each $x \in \operatorname{Sup}_P^{\uparrow n+1}(r), v(x) \neq \mathbf{f}$.

The above result guarantees for a 3-valued interpretation v of P, $\Omega_P(v)(a) \neq \mathbf{f}$ iff there exists $B = \operatorname{Sup}_P(r) \in \operatorname{Sup}_P(a)$ such that for each $x \in B$, $v(x) \neq \mathbf{f}$, i.e.,

$$\Omega_P(v)(a) = \mathbf{f} \ iff \ v \left(\bigvee_{B \in \mathsf{Sup}_P(a)} \left(\bigwedge_{\neg b \in B} \neg b\right)\right) = \mathbf{f} \ iff \ v(\varphi_a) = \mathbf{f}.$$
(A2)

From (A1) and (A2), we conclude v is a partial stable model of P iff for all $a \in A$, $v(a) = \Omega_P(v)(a) = v\left(\bigvee_{B \in \operatorname{Sup}_P(a)} \left(\bigwedge_{\neg b \in B} \neg b\right)\right) = v(\varphi_a)$, i.e., v is a complete model of $\Xi(P)$. \Box

Theorem 33

Let P be an NLP and $\Xi(P) = (A, L, C^{\mathbf{t}})$ the corresponding ADF^+ . We have

- v is a well-founded model of P iff v is a grounded model of $\Xi(P)$.
- v is a regular model of P iff v is a preferred model of $\Xi(P)$.
- v is a stable model of P iff v is a stable model of $\Xi(P)$.
- v is an L-stable model of P iff v is an L-stable model of $\Xi(P)$.

Proof

This proof is a straightforward consequence from Theorem 32:

- v is a well-founded model of P iff v is the \leq_i -least partial stable model of P iff (according to Theorem 32) v is the \leq_i -least complete model of $\Xi(P)$ iff v is the grounded model of $\Xi(P)$.
- v is a regular model of P iff v is a \leq_i -maximal partial stable model of P iff (according to Theorem 32) v is a \leq_i -maximal complete model of $\Xi(P)$ iff v is a preferred model of $\Xi(P)$.
- v is a stable model of P iff v is a partial stable model of P such that $unk(v) = \{s \in S \mid v(s) = u\} = \emptyset$ iff (according to Theorem 32) v is a complete model of $\Xi(P)$ such that $unk(v) = \emptyset$ iff (based on Theorem 22) v is a stable model of $\Xi(P)$.
- v is an L-stable model of P iff v is a partial stable model of P with minimal $unk(v) = \{s \in S \mid v(s) = u\}$ (w.r.t. set inclusion) among all partial stable models of P iff (according to Theorem 32) v a complete model of $\Xi(P)$ with minimal unk(v) among all complete models of P iff v is an L-stable model of $\Xi(P)$.

A.3 Propositions and Proofs from Section 5:

Proposition 37

Let P be an NLP, where each rule is either a fact or its body has only default literals as in $a \leftarrow \text{not } b_1, \ldots, \text{not } b_n$. Let $\Xi(P)$ be the ADF obtained from P via Definition 28 and $\Xi_2(P)$ the ADF obtained from P via Definition 36. Then $\Xi(P) = \Xi_2(P)$.

Proof

Firstly, let P be an NLP defined over a set A of atoms, where each rule is like $a \leftarrow$ not $b_1, \ldots,$ not b_n . We know from Definitions 25 and 26 $\operatorname{Sup}_P(a) = \{\{\neg b_1, \ldots, \neg b_n\} \mid a \leftarrow \text{not } b_1, \ldots, \text{not } b_n \in P\}$. Then, according to Definition 28, we obtain the $ADF \equiv (P) = (A, L, C^t)$, where

- $L = \{(c, a) \mid a \leftarrow \text{not } b_1, \dots, \text{not } b_n \in P \text{ and } c \in \{b_1, \dots, b_n\}\};$
- For $a \in A$, $C_a^{\mathbf{t}} = \{B' \subseteq \{b \in par(a) \mid \neg b \notin \{b_1, \dots, b_n\} \mid a \leftarrow \text{not } b_1, \dots, \text{not } b_n \in P\}\}\$ = $\{B' \subseteq par(a) \mid a \leftarrow \text{not } b_1, \dots, \text{not } b_n \in P \text{ and } \{b_1, \dots, b_n\} \cap B' = \emptyset\}.$

According to Definition 36, we obtain the ADF $\Xi_2(P) = (A, L_2, C_2^t)$, where

- $L_2 = \{(c, a) \mid a \leftarrow \text{not } b_1, \dots, \text{not } b_n \in P \text{ and } c \in \{b_1, \dots, b_n\}\} = L;$
- For each $a \in A$, $C_{2a}^{\mathbf{t}} = \{B' \in par(a) \mid a \leftarrow \text{not } b_1, \dots, \text{not } b_n \in P, \{b_1, \dots, b_n\} \cap B' = \emptyset\} = C_a^{\mathbf{t}}$.

Hence, $\Xi(P) = \Xi_2(P)$. \Box

Proposition 39

Let SF = (A, R) be a SETAF and $DF^{SF} = (A, L, C)$ be the corresponding ADF. Then, DF^{SF} is an ADF^+ .

Proof

In order to show $DF^{SF} = (A, L, C)$ is an ADF^+ , we will guarantee any $(r, s) \in L$ is an attacking link, i.e., for every $B \subseteq par(s)$, if $C_s(B \cup \{r\}) = \mathbf{t}$, then $C_s(B) = \mathbf{t}$:

Suppose $C_s(B \cup \{r\}) = \mathbf{t}$. Then according to the translation from *SETAF* to *ADF*, there is no $(X_i, s) \in R$ such that $X_i \subseteq B \cup \{r\}$. Thus there is no $(X_i, s) \in R$ such that $X_i \subseteq B$. This implies $C_s(B) = \mathbf{t}$. \Box