
1

Online appendix for the paper

The Expressive Power of Higher-Order Datalog
published in Theory and Practice of Logic Programming

ANGELOS CHARALAMBIDIS

Institute of Informatics and Telecommunications, NCSR “Demokritos”, Greece
(e-mail: acharal@iit.demokritos.gr)

CHRISTOS NOMIKOS

Dept of Computer Science and Engineering, University of Ioannina, Greece

(e-mail: cnomikos@cs.uoi.gr)

PANOS RONDOGIANNIS

Dept of Informatics and Telecommunications, National and Kapodistrian University of Athens, Greece
(e-mail: prondo@di.uoa.gr)

Appendix A The Expressive Power of First-Order Datalog

In this appendix we present a proof of the well-known theorem (Papadimitriou 1985;

Grädel 1992; Vardi 1982; Immerman 1986; Leivant 1989) that Datalog captures PTIME

(under the assumption that the input strings are encoded, as already discussed, through

the input relation). Our proof builds on that of (Papadimitriou 1985) and (Dantsin et al.

2001), but gives more technical details.

Theorem 2

The set of first-order Datalog programs captures PTIME.

Proof

The proof of the above theorem consists of the proofs of the following two statements:

Statement 1

Every language L decided by a Datalog program P, can also be decided by a Turing

machine in time O(nq), where n is the length of the input string and q is a constant that

depends only on P.

Statement 2

Every language L decided by a Turing machine in time O(nq), where n is the length of

its input, can be decided by a Datalog program P.

Proof of Statement 1

Assume that the maximum number of atoms that appear in any rule in P is equal to

l, the total number of constants that appear in P is equal to c (including a, b, empty,

end, but excluding the n natural numbers that appear in the relation input), the total

number of rules in P is equal to r, the total number of predicates is equal to p, and the

maximum arity of a predicate that appears in P is t. We present a multi-tape Turing

machine which decides the language L in time O(nq), where n is the length of the input

string, for some q that depends only on the above characteristics of P.



2

The Turing machine, with input w, starts by constructing the set of facts Dw that

represent w in the Datalog program (i.e., the relation input), which are stored on a

separate tape. Each number that appears as an argument in the relation input is written

in binary using O(log n) bits. The construction of Dw requires O(n · log n) time.

Next, the Turing machine executes the usual bottom-up procedure for computing the

least fixed-point of a Datalog program through the iterations of the TP operator. In-

tuitively, it starts by assigning the empty relation to all predicates in P and at each

iteration it examines each clause of P and determines if it can generate any new tuples.

The relations assigned to predicates in P are stored each on a separate tape. Observe

that there are at most p · (n+c)t tuples in the minimum Herbrand model MP of P (in the

extreme case where all the predicates have the same maximum arity t and all possible

tuples for all possible predicates belong to the minimum model). Therefore, the bottom-

up procedure will terminate after at most p · (n + c)t iterations, since at each iteration

at least one tuple must be produced. Each such iteration of the bottom-up computation

takes polynomial time with respect to n:

• For every rule, the machine instantiates all the variables using the (n+ c) available

constants. The number of different such instantiations of a rule is bounded by

(n+ c)l·t.

• For each such instantiation it examines if the atoms in the body of the rule have

already been produced in a previous step of the computation. Searching through

the list of the already produced atoms for a specific predicate takes time O(t · log n ·
(n + c)t) in the worst case (since the maximum number of atoms that such a list

may contain is (n+ c)t and the length of each atom is O(t · log n)). Doing this for

all atoms in the rule body, requires time O(l · t · log n · (n+ c)t). If all atoms in the

(instantiated) body of the rule are found in the corresponding lists, then we search

the head of the rule in the list that corresponds to its predicate; if it is not found,

then it is appended at the end of the list. This search and update requires time

O(t · log n · (n+ c)t).

• Doing the above operation for all the rules of the program requires time O(r · l · t ·
log n · (n+ c)(l+1)·t).

From the above we get that in order to produce the minimum Herbrand model MP of P,

we need time O(n · log n+p · r · l · t · log n · (n+ c)(l+2)·t). Since p, r, l, t and c are constants

that depend only on P and do not depend on n, the running time of the Turing machine

is O(nq) for q = (l + 2) · t.
The Turing machine returns yes if and only if accept is true in the minimum Herbrand

model MP.

Proof of Statement 2

In order to establish the second statement, we need to define a simulator of the Turing

machine in Datalog. Assume that M decides L in time O(nq). Then there exists an

integer constant d, such that for every input w of length n ≥ 2, M terminates after at

most nd − 1 steps. The Datalog program that is presented below produces the correct

answer for all inputs of length at least 2 by simulating nd−1 steps of the Turing machine

M . For the special cases of strings of length 0 or 1 that belong to L, the correct answer



3

is produced directly by appropriate rules (notice that for n = 1, the value of nd − 1 is 0,

regardless of the choice of d).

We start by defining predicates base zero (which is true of 0, ie. of the first argument

of the first tuple in the input relation), base last (which is true of n−1, ie., of the first

argument of the last tuple in the input relation), base succ (which, given a number k,

0 ≤ k < n− 1, returns k + 1), and base pred (which given k + 1 returns k):

base zero 0.

base last I ← (input I X end).

base succ I J ← (input I X J),(input J,A,K).

base pred I J ← (base succ J I).

Given the above predicates, we can simulate counting from 0 up to n− 1. We extend

the range of the numbers we can support up to nd− 1 for any fixed d by using d distinct

arguments in predicates; we view these d arguments more conveniently as d-tuples, ie.,

we use the notation X̄ to represent the sequence of d arguments X1, . . . , Xd. We define the

predicates tuple zero, tuple last and tuple base last that act on such d-tuples and

represent the numbers 0, nd − 1 and n− 1 respectively.

tuple zero X ← (base zero X1),. . .,(base zero Xd).

tuple last X ← (base last X1),. . .,(base last Xd).

tuple base last X ← (base zero X1),. . .,(base zero Xd−1),

(base last Xd).

To define tuple succ we need d clauses that have as arguments two tuples having d

elements each:

tuple succ X Y ← (X1 ≈ Y1),...,(Xd−1 ≈ Yd−1),

(base succ Xd Yd).

tuple succ X Y ← (X1 ≈ Y1),...,(Xd−2 ≈ Yd−2),

(base succ Xd−1 Yd−1),

(base last Xd),

(base zero Yd).

· · ·
tuple succ X Y ← (base succ X1 Y1),

(base last X2),...,(base last Xd),

(base zero Y2),...,(base zero Yd).

Now we can easily define tuple pred as follows:

tuple pred X Y ← tuple succ Y X.

The less than relation over the numbers we consider, is defined as follows:

less than X Y ← tuple succ X Y.

less than X Y ← (tuple succ X Z),(less than Z Y).

We can also define tuple non zero, namely the predicate that succeeds if its argument

is not equal to zero:

tuple non zero X ← (tuple zero Z),(less than Z X).



4

We now define predicates symbolσ, states and cursor, for every σ ∈ Σ and for every

state s of the Turing machine we are simulating. Intuitively, symbolσ T X succeeds if

the tape has symbol σ in position X of the tape at time-step T, states T succeeds if

the machine is in state s at step T and cursor T X succeeds if the head of the machine

points at position X at step T. Since symbols and states are finite there will be a finite

number of clauses defining the above predicates. We assume that the Turing machine

never attempts to go to the left of its leftmost symbol. Moreover, we assume that in the

beginning of its operation, the first n squares of the tape hold the input, the rest of the

squares hold the empty character “ ” and the machine starts operating from its initial

state denoted by s0. If the Turing machine accepts the input then it goes into the special

state called yes and stays there forever.

The initialization of the Turing machine is performed by the following clauses:

symbolσ T X ← (tuple zero T),

(base zero X1),. . .,(base zero Xd−1),

(input Xd σ W).

symbol T X ← (tuple zero T),

(tuple base last Y),(less than Y X).

states0 T ← (tuple zero T).

cursor T X ← (tuple zero T),(tuple zero X).

For each transition rule we generate a set of clauses. We start with the rule “if the

head is in symbol σ and in state s then write symbol σ′ and go to state s′”, which is

translated as follows:

symbolσ′ T′ X ← (tuple succ T T′),(states T),

(cursor T X),(symbolσ T X).

states′ T′ ← (tuple succ T T′),(states T),

(cursor T X),(symbolσ T X).

cursor T′ X ← (tuple succ T T′),(states T),

(cursor T X),(symbolσ T X).

We continue with the transition: “if the head is in symbol σ and in state s, then go to

state s′ and move the head right”, which generates the following:

symbolσ T′ X ← (tuple succ T T′),(states T),

(cursor T X),(symbolσ T X).

states′ T′ ← (tuple succ T T′),(states T),

(cursor T X),(symbolσ T X).

cursor T′ X′ ← (tuple succ T T′),(states T),

(cursor T X),(symbolσ T X),(tuple succ X X′).

We also have the transition: “if the head is in symbol σ and in state s then go to state

s′ and move the head left”, which generates the following:

symbolσ T′ X ← (tuple succ T T′),(states T),

(cursor T X),(symbolσ T X).

states′ T′ ← (tuple succ T T′),(states T),

(cursor T X),(symbolσ T X).

cursor T′ X′ ← (tuple succ T T′),(states T),

(cursor T X),(symbolσ T X),(tuple pred X X′).



5

We also need to provide “inertia” rules for the tape squares that are not affected by

the above rules. These squares are exactly those that have a different position from the

one pointed to by the cursor. Therefore, the following clauses will suffice:

symbolσ T′ X′ ← (tuple succ T T′),(cursor T X),

(less than X X′),(symbolσ T X′).

symbolσ T′ X′ ← (tuple succ T T′),(cursor T X),

(less than X′ X),(symbolσ T X′).

Lastly, the following rule succeeds iff the Turing machine succeeds after nd − 1 steps.

accept ← (tuple last T),(stateyes T).

In the case of strings of length n ≤ 1 that belong to L, we add appropriate rules to

the Datalog program. For example, if a ∈ L, then the following rule is included in the

Datalog program:

accept ← (input 0 a end).

This completes the proof of the theorem.

Appendix B Proof of Lemma 1

Lemma 1

Let P be a k-order Datalog program, k ≥ 2, that decides a language L. Then, there exists

a Turing machine that decides the same language in time O(expk−1(nq)), where n is the

length of the input string and q is a constant that depends only on P.

Proof

Let P be a k-order Datalog program that decides a language L. Assume that the maximum

length of a rule in P is equal to l, the total number of constants that appear in P is equal

to c (including a, b, empty, end, but excluding the n natural numbers that appear in

the relation input), the total number of rules in P is equal to r, the total number of

predicates is equal to p, the total number of predicates types involved in P is equal to s,

and the maximum arity of a predicate type that is involved in P is t. A summary of all

these parameters is given in Table B1. We present a multi-tape Turing machine which

Symbol Characteristic of P

l maximum length of a rule
c number of constants
r number of rules
p number of predicates
s number of predicate types
t maximum arity of a predicate type

Table B 1. Characteristics of P used in our analysis.



6

decides the language L in time O(expk−1(nq)), where n is the length of the input string,

for some q that depends only on the above characteristics of P.

The Turing machine, with input w, starts by constructing the set of facts Dw that

represent w in the Datalog program (i.e., the relation input), which are stored on a

separate tape. Each number that appears as an argument in the relation input is written

in binary using O(log n) bits. It also writes on a separate tape all the elements of the set

JιK (that is, the c constants that occur in P and the n numbers that appear in the input

relation). This requires O(n · log n) time.

Subsequently, the Turing machine performs two major phases: (i) it produces all the

monotonic relations that are needed for the bottom-up execution of the program, and (ii)

it performs instantiations of the rules using these monotonic relations as-well-as individ-

ual constants, computing in this way, in a bottom-up manner, the minimum Herbrand

model of P. The complexity of these two major phases is analyzed in detail below.

Complexity of producing the monotonic relations. The Turing machine constructs the

set JρK, for every predicate type JρK of order at most k − 1, which is involved in P. The

elements of JρK are monotonic functions, which are represented by their corresponding

relations. Predicate types are considered in increasing order, and for each type JρK the

set JρK is stored on a separate tape. These sets will be used later by the Turing machine,

each time that it needs to instantiate predicate variables that occur in the rules of P.

Before we present in more details the above construction and analyze its time com-

plexity, we need to calculate upper bounds for the number of elements in JρK and for the

length of their representation. We prove that, for every j-order predicate ρ, the number

of elements in JρK is at most expj(t
j−1 · (n + c)t) and each of them can be represented

using O(log n · expj−1(j · tj · (n + c)t)) symbols. These two statements can be proved

simultaneously by induction on j, as shown below.

For the basis of the induction, consider a first order predicate type ρ of arity m ≤
t. Each element in JρK corresponds to a set of tuples, where each tuple consists of m

constants. Since there are (n + c) different constants in P ∪ Dw, there are 2(n+c)
m ≤

2(n+c)
t

= exp1(t0 · (n + c)t) elements in JρK. Moreover, every element in JρK contains at

most (n + c)t tuples, each tuple consists of at most t constants and each constant can

be represented using O(log n) symbols. Thus the length of the representation of every

element in JρK is O(log n · t ·(n+c)t) = O(log n ·exp0(1 · t1 ·(n+c)t)). Thus, the statement

holds for j = 1.

For the induction step, assume that j > 1 and that our statement holds for all i < j.

Consider a j-order predicate type ρ = ρ1 → · · · → ρm → o of arity m ≤ t. Each element

in JρK corresponds to a subset of Jρ1K× · · · × JρmK. For every ν, 1 ≤ ν ≤ m, ρν is either

equal to ι, or is an i-order predicate type, with i < j. In the former case, JρνK contains

(n + c) elements; in the latter case JρνK contains at most expi(t
i−1 · (n + c)t) elements,

by the induction hypothesis. In both cases JρνK contains at most expj−1(tj−2 · (n+ c)t)

elements. Using some properties of the function exp, we get that the number of elements

in JρK is bounded by 2(expj−1(t
j−2·(n+c)t))m ≤ 2expj−1(m·t

j−2·(n+c)t) ≤ 2expj−1(t
j−1·(n+c)t) =

expj(t
j−1 ·(n+c)t). Moreover, every element in JρK corresponds to a relation that contains

at most (expj−1(tj−2 · (n+ c)t))t ≤ expj−1(tj−1 · (n+ c)t) tuples; each one of these tuples

consists of at most t elements and, by the induction hypothesis, each element can be

represented using O(log n·expj−2((j−1)·tj−1 ·(n+c)t)) symbols. By the properties of the



7

function exp it follows that t·expj−2((j−1)·tj−1 ·(n+c)t) ≤ expj−2((j−1)·tj ·(n+c)t) ≤
expj−1((j − 1) · tj · (n+ c)t) and expj−1(tj−1 · (n+ c)t) · expj−1((j − 1) · tj · (n+ c)t) ≤
expj−1(j · tj · (n + c)t). Thus, the length of the representation of a j-order relation is

O(log n · expj−1(j · tj · (n+ c)t)).

Since c, t and j are constants that do not depend on n, it follows that for every j-order

predicate ρ, the number of elements in JρK is O(expj(n
t+1)) and each of these elements

can be represented using O(expj−1(nt+1)) symbols.

In order to create a list with all the elements of type JρK for a j-order type ρ =

ρ1 → · · · → ρm → o of arity m ≤ t, the Turing machine first constructs the cartesian

product S = Jρ1K × · · · × JρmK. Since ρ1, · · · , ρm have order at most j − 1, the sets

Jρ1K, · · · , JρmK have already been constructed in previous steps of the Turing machine.

The construction of S requires time linear to the length of its representation, provided

that the sets Jρ1K, · · · , JρmK are stored on separate tapes. Since ρ may have arguments

of the same type, this may require to create at most m − 1 copies of such sets. Notice

that the sets S, Jρ1K, · · · , JρmK are actually j-order relations, and therefore their repre-

sentations have length O(expj−1(nt+1)). We conclude that the time required to create S

is O(expj−1(nt+1)) (since m is a constant that does not depend on n).

The set JρK contains the elements in the powerset 2S of S which represent monotonic

functions. The set 2S can be constructed in time linear to the length of its represen-

tation. Since 2S is a (j + 1)-order relation, this length is O(expj(n
t+1)). Thus, 2S can

be constructed in time O(expj(n
t+1)). Now, JρK can be obtained from 2S , by removing

elements that represent non-monotonic functions. In order to decide whether a relation in

2S belongs to JρK, it suffices to consider each pair of elements in S and verify that, for this

pair, the monotonicity property is not violated. This verification requires time linear to

the length of the relation, for each pair of elements in S. Thus, the time required to check

whether a relation represents a monotonic function is O((expj−1(nt+1))2t ·expj−1(nt+1)).

The number of relations in 2S is O(expj(n
t+1)). Using the properties of the function exp,

we get that (expj−1(nt+1))2t · expj−1(nt+1) · expj(n
t+1) ≤ expj(2t · nt+1) · expj(n

t+1) ·
expj(n

t+1) ≤ expj((2t + 2) · nt+1) ≤ expj(n
t+2). Thus, the removal of relations that do

not correspond to monotonic functions requires time O(expj(n
t+2)).

By adding the times required to construct S and 2S , and remove non-relevant relations,

we conclude that the time to create a list with all the elements in JρK is O(expj−1(nt+1))+

O(expj(n
t+1)) +O(expj(n

t+2)) = O(expj(n
t+2)).

The above process is executed for each of the s predicate types of order at most k− 1

involved in P. Since s is a constant that does not depend on n, the time required for the

construction of all the relations of each predicate type is O(expk−1(nt+2)).

Complexity of performing the bottom-up computation. Next, the Turing machine essen-

tially computes the successive approximations to the minimum Herbrand model MP of

P, by iterative application of the TP operator (as described at the end of Section 2). For

each predicate constant defined in P, the relation that represents its meaning is written

on a separate tape; initially all these relations are empty. At each iteration of the TP
operator, new tuples may be added to the meaning of predicate constants. In order to

calculate one iteration of TP, the Turing machine considers each clause in P and exam-

ines what new tuples it can produce. More specifically, given a rule, it replaces every

individual variable that appears in the rule by a constant symbol and every predicate



8

variable with a monotonic relation of the same type as the variable; moreover, it replaces

every predicate constant, say q, that appears in the body of the clause with the relation

that has been computed for q during the previous iterations of TP. It then checks if the

body of the instantiated clause evaluates to true: this is performed by essentially check-

ing if elements belong to sets. If an instantiation of a clause body evaluates to true, the

instantiated head is added to the meaning of the head predicate.

Observe that there are at most p · (expk−1(tk−2 · (n + c)t))t tuples in the minimum

Herbrand model MP of P (in the extreme case, all the predicates have order k, the same

maximum arity t and all possible tuples for all possible predicates belong to the minimum

model). Therefore, the bottom-up procedure will terminate after at most p·(expk−1(tk−2 ·
(n+ c)t))t iterations, since at each iteration at least one tuple must be produced. Since

(expk−1(tk−2 · (n + c)t))t ≤ expk−1(tk−1 · (n + c)t) and k, p, t are constants that do not

depend on n, the number of iterations is O(expk−1(nt+1)).

We calculate a bound of the time that is required for each one of the above iterations:

• For every rule in the program, the Turing machine instantiates each individual

variable in the rule using elements in JιK. Moreover, it instantiates each predicate

variables of type ρ with relations representing monotonic functions in JρK (recall

that these sets have been constructed in the first phase of the execution of the

Turing machine). Finally, it replaces every predicate constant in the body of the

rule with the relation that has already been computed for it during the previ-

ous iterations of TP. By the syntactic rules of Higher-Order Datalog programs,

predicate variables may have order at most k − 1. Thus, the number of differ-

ent such instantiations of a rule is bounded by (expk−1(tk−2 · (n + c)t))l. Since

(expk−1(tk−2 · (n + c)t))l ≤ expk−1(l · tk−2 · (n + c)t) and k, l, t are constants

that do not depend on n, the number of different instantiations for each rule is

O(expk−1(nt+1)).

• Each rule contains a constant number of (individual or predicate) variables. Since

all predicate variables have order at most k − 1, each variable is replaced by

at most O(expk−2(nt+1)) symbols. Thus, the length of the instantiated rule is

O(expk−2(nt+1)). Moreover, the instantiation can be computed in time linear to

its length.

• For each such instantiation the Turing machine examines if the body of the rule

evaluates to true. This may require at most l rewritings of the instantiated body

of the rule, each resulting after partially applying a predicate to its first argument.

Each rewriting requires time linear to the length of the instantiated rule, that is,

O(expk−2(nt+1)). Since l does not depend on n, the total time that is needed to

examine if the body of the rule evaluates to true is O(expk−2(nt+1)).

• If the body of some instantiated rule evaluates to true, then we search the head of

the rule in the list that corresponds to its predicate; if it is not found, then it is

inserted in the list. This search and insertion requires time linear to the length of

this list, which is O(expk−1(nt+1)).

• The total time needed to repeat the above process for every instantiation of a

specific rule is O(expk−1(nt+1)) ·O(expk−1(nt+1)) = O((expk−1(nt+1))2).

• Since the number of rules r does not depend on n, the total time required for one

iteration of the TP operator is also O((expk−1(nt+1))2).



9

From the above we get that in order to produce the minimum Herbrand model MP of

P, we need time O(expk−1(nt+1)) · O((expk−1(nt+1))2) = O((expk−1(nt+1))3). By the

properties of the function exp, it is (expk−1(nt+1))3 ≤ expk−1(3nt+1) ≤ expk−1(nt+2).

We conclude that the running time of the Turing machine isO(expk−1(nq)) for q = t+2.

The Turing machine returns yes if and only if accept is true in the minimum Herbrand

model MP. This completes the proof of the lemma.

References

Dantsin, E., Eiter, T., Gottlob, G., and Voronkov, A. 2001. Complexity and expressive
power of logic programming. ACM Computing Surveys 33, 3, 374–425.

Grädel, E. 1992. Capturing complexity classes by fragments of second-order logic. Theoretical
Computer Science 101, 1, 35–57.

Immerman, N. 1986. Relational queries computable in polynomial time. Information and
Control 68, 1-3, 86–104.

Leivant, D. 1989. Descriptive characterizations of computational complexity. Journal of Com-
puter and System Science 39, 1, 51–83.

Papadimitriou, C. H. 1985. A note on the expressive power of prolog. Bulletin of the
EATCS 26, 21–22.

Vardi, M. Y. 1982. The complexity of relational query languages (extended abstract). In
Proceedings of the 14th Annual ACM Symposium on Theory of Computing, May 5-7, 1982,
San Francisco, California, USA. ACM, 137–146.


