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Appendix A Proofs

A.1 Correctness of the Oracle

Definitions. For a program Π and a type of model w ∈ {cla, sta}, we say that M is a w-model
of Π when either w is sta and M is a stable model of Π or w is cla and M is a classical model
of Π . We define Mcla = atoms(Π ) and Msta = atoms(Π ). Also Tcla = backbone(Π ) and
Tsta = cautious(Π ). We say that (Π , w, S,G) is a suitable quadruple when Π is a program,
w ∈ {cla, sta}, S ⊆ {un, ov , ch}, and G = (Vatoms(Π ), {Oracle} ∪

⋃
x∈S x).

Lemma 1
Let (Π , w, S,G) be a suitable quadruple, and let LO,U,A be a reachable state from ∅Mw,∅,B in
G, where B ∈ {over , under∅, chunk}. There is a path in G from ∅O,U,A to LO,U,A that does
not contain any control state.

Proof
Let LO,U,A be a state reachable from ∅Mw,∅,B in G, where B ∈ {over , under∅, chunk}. Assume
it is reachable without going through any control state; in this case A = B, U = ∅ and O = Mw

as the Oracle rule does not modify these. Otherwise a path H leading to LO,U,A goes through
some control state; and after the last control state in this path, a rule among {UnderApprox ,

OverApprox , Chunk} has been applied, which involves that the state occurring right after ap-
plying this rule was ∅O′,U ′,A′ for some O′, U ′ and A′. The Oracle rule does not modify these
components of oracle states, and additionally, by the choice of the last control state in H as the
predecessor of ∅O′,U ′,A′ , there is no control state in the part of H from ∅O′,U ′,A′ to LO,U,A. So
necessarily O′ = O, U ′ = U and A′ = A. Hence, in any case there is a path from ∅O,U,A to
LO,U,A that does not contain any control state.
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Lemma 2
Let (Π , w, S,G) be a suitable quadruple, and let LO,U,A be a reachable state from ∅Mw,∅,B in
G, where B ∈ {over , under∅, chunk}. If the rule FailA applies to LO,U,A in G, then ΠO,U,A

has no w-model; and, if the rule Find applies, then L is a w-model of ΠO,U,A.

Proof
By Lemma 1, there is a path from ∅O,U,A to LO,U,A that does not contain any control state.
Hence, this path is justified exclusively by the Oracle rule.

First, assume that w = cla . Applying the results from ?), the lemma holds in this case. If the
rule FailA applies to LO,U,A in G, then ΠO,U,A has no classical model, and if the rule Find

applies then L is a classical model of ΠO,U,A.
Second, assume that w = sta . Then, by the results of ?) the Lemma also holds in this case.

Indeed, if the rule FailA applies to LO,U,A in G, then ΠO,U,A has no stable model; and if the rule
Find applies, then L is a stable model of ΠO,U,A.

A.2 Correctness of the Structure

Lemma 3
Let (Π , w, S,G) be a suitable quadruple, and if a state LO,U,A or Cont(O,U) is reachable from
∅Mw,∅,B in G, where B ∈ {over , under∅, chunk}, then U ⊆ Tw ⊆ O.

Proof
We prove this lemma by induction on the path leading from ∅Mw,∅,B to LO,U,A or Cont(O,U).
So as to initialize this induction, we simply note that ∅Mw,∅,B is such that ∅ ⊆ Tw ⊆Mw. Now,
assume that a state is reachable from ∅Mw,∅,B in G and that for any state on the path the lemma
holds, in particular on its predecessor. We are going to prove that for this state the lemma holds.

First case: assume that the state is a core state LO,U,A. If its predecessor is a core state, then
the predecessor is L′

O,U,A for some L′, since the Oracle rule does not modify these O, U and
A. By the induction hypothesis, the lemma holds. If its predecessor is a control state then note
that the control rules that may link this predecessor to LO,U,A are OverApprox , UnderApprox

and Chunk , of which none modifies the over-approximation and under-approximation; hence,
the predecessor is Cont(O,U) and by the induction hypothesis the lemma holds.

Second case: when the state is a control state. Then, its predecessor is a core state LO,U,A. By
the induction hypothesis, U ⊆ Tw ⊆ O. The rule applied is a return rule.

• If the rule is Terminal , then the state is Cont(O ∩ L,U). By Lemma 2, L is a w-model
of ΠO,U,A. So no element of Mw \ L belongs to Tw, and no element of L can be part of
Tw. Hence, U ⊆ Tw ⊆ O ∩ L.
• If the rule is Failunder , then the state is Cont(O,U ∪ {a}). By Lemma 2, ΠO,U,A has no
w-model. So no w-model of Π satisfies a. So a belongs to Tw. Hence, U∪{a} ⊆ Tw ⊆ O.

In all cases the lemma holds, which ends the proof by induction.

Lemma 4
Let (Π , w, S,G) be a suitable quadruple, and let LO,U,A be a reachable state from ∅Mw,∅,B in
G, where B ∈ {over , under∅, chunk}. If Failover applies to LO,U,A, then Tw = O.
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Proof
Assume that Failover applies to some state LO,U,A reachable from ∅Mw,∅,B . Then A = over .
The path has to go through at least one control state so that A 6= B, and hence the rule Find has
to have been applied; so Π has at least one w-model and Tw is well defined. Also, by Lemma
2, ΠO,U,over has no w-model. In other words, Π ∪ {← O} has no w-model. As the constraint
added to Π is monotonic, Π has no w-model satisfying← O. In other words, all the w-models
of Π satisfy O, so O ⊆ Tw. Since, by Lemma 3, Tw ⊆ O, also Tw = O.

Lemma 5
Let (Π , w, S,G) be a suitable quadruple, and let LO,U,A be a reachable state from ∅Mw,∅,B in G,
where B ∈ {over , under∅, chunk}. If there is a transition in G from LO,U,A to Cont(O′, U ′)

and A 6= B, then O′ \ U ′ ⊂ O \ U .

Proof
Assume that there is a transition in G from LO,U,A to Cont(O,U) and A 6= B.

If this transition is justified by Failchunk or Failunder , then A is chunkN or underN for some
N . Also O′ = O and U ′ = U ∪ N , so O′ \ U ′ ⊆ (O \ U) \ N . The last control rule applied
was necessarily Chunk , so that N ⊆ O \ U and N 6= ∅. Then (O \ U) \ N ⊂ O \ U , so
O′ \ U ′ ⊂ O \ U .

If this transition is justified by Find , we first prove that O ∩L 6= O and U ⊆ L. First, assume
A = over . Then, by Lemma 2, L is a w-model of ΠO,U,over = Π ∪ {← O}. Therefore, L is
a w-model of Π and a classical model of {← O}. Since it is a w-model of Π and U ⊆ Tw, by
definition of Tw also U ⊆ L. Since L is a classical model of {← O}, also O ∩ L 6= ∅. Hence,
O ∩ L 6= O. Now, assume A = chunkN . The last control rule applied was necessarily Chunk ,
so that N ⊆ O \ U and hence N ⊆ O. Also, by Lemma 2, L is a w-model of ΠO,U,chunkN

=

Π ∪ {← N}, so L is a w-model of Π and a classical model of {← N}, and N ∩ L 6= ∅. Since
it is a w-model of Π and U ⊆ Tw, by definition of Tw also U ⊆ L. Since L is a classical model
of {← N}, also O ∩L 6= ∅, and hence O ∩L 6= O. The proof in the case of underN is identical
to the case of chunkN . So in any case O ∩ L 6= O and U ⊆ L. So O′ \ U ′ = (O ∩ L) \ U is a
strict subset of O \ U .

A.3 Finiteness and Lack of Reachable Cycles

Lemma 6
Let Π be a program, and let S ⊆ {un, ov , ch}. Then, the graph (Vatoms(Π ), {Oracle}∪

⋃
x∈S x)

is finite.

Proof
Any core state relative to atoms(Π ) is made of a record relative to atoms(Π ), two sets of literals
relative to atoms(Π ), and one action relative to atoms(Π ). The set lit(atoms(Π )) of literals
relative to atoms(Π ) is finite, and so is its powerset; hence there is only a finite amount of
possibilities for the two sets of literals relative to atoms(Π ). Also, since an action can only be
over , chunkM , or underM for M a set of literals relative to atoms(Π ), there is only a finite
amount of possible actions. Finally, since the set of literals relative to atoms(Π ) is finite, and so
is its powerset; so there are only a finite amount of possible records relative to atoms(Π ) since
repetitions are not allowed in records. So there is a only finite amount of core states relative to
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Vatoms(Π ). Since the other types of states are only made of a portion of what makes a core state,
there is also a finite amount of them. As a consequence, Vatoms(Π ) is finite, and hence the graph
(Vatoms(Π ), {Oracle} ∪

⋃
x∈S x) is finite.

Lemma 7
Let (Π , w, S,G) be a suitable quadruple. Then, there is no cycle in G reachable from the initial
state ∅Mw,∅,B , where B ∈ {over , under∅, chunk}.

Proof
We are going to define a partial order on Vatoms(Π ).

First, we define an order on records as follows. For any record L, we consider the strings
L1, . . . , Li such that each Lk, 1 ≤ k ≤ i, contains the literals assigned at level i. We define
the order < on string of integers as the lexicographic order on strings on integers. For any core
state LO,U,A we define v(LO,U,A) as the string 2, v(L) if A 6= B, and 0, v(L) if A = B. We
consider that any control state Cont(O,U) is such that v(Cont(O,U)) = 1, and any state s that
is a terminal state is such that v(s) = 3.

We then define an order on the gap between over-approximation and under-approximation,
which in general is O \ U . We define the functions ove and und. For any state s, if s is LO,U,A

or Cont(O,U) then ove(s) = O and und(s) = U , otherwise ove(s) = ∅ and und(s) =

lit(atoms(Π )). For two sets of literals M and M ′, we say that M < M ′ if M ′ ⊆M .
We write ≤lex to denote the lexicographic composition of orders. Then we define our order

on states as follows. For any two states, s < s′ iff (ove(s) \ und(s), v(s)) ≤lex (ove(s′) \
und(s′), v(s′)). The relations on v(s) and ove(s) \ und(s) are clearly partial orders. Hence the
obtained lexicographic order is also a partial order. We are now going to show that any edge
(s, s′) in {Oracle} ∪

⋃
x∈S x such that s is reachable from the initial state is such that s < s′

and s 6= s′. Assume that a state s is reachable from the initial state and the rule Find , Failunder

or Failchunk applies to s so as to create the edge (s, s′). Then by Lemma 5, s < s′ and s 6= s′.
So, indeed, any edge (s, s′) in {Oracle} ∪

⋃
x∈S x such that s is reachable from the initial state

is also such that s < s′ and s 6= s′. As a consequence, since the relation < on states is a partial
order and there is only a finite amount of ordered elements, there is no infinite path, and hence
no cycle among the reachable elements of (Vatoms(Π ), {Oracle} ∪

⋃
x∈S x).

A.4 Proof of Theorem ??

By Lemmas 6 and 7, the graph G = (Vatoms(Π ), {Oracle} ∪
⋃

x∈S x) is finite and no cycle is
reachable from the initial state. Assume a state LO,U,A is terminal in G; this is impossible since
if no other rule applies then Find applies. Similarly, assume a state Cont(O,U) is reachable and
terminal in G. Either O = U and Terminal applies, or O 6= U and, by Lemma 3, U ⊂ O so
one of the rules of the nonempty set {OverApprox ,UnderApprox ,Chunk} ∩

⋃
x∈S x applies.

In both cases a rule applies, which is a contradiction.
Therefore, the terminal state is Ok(L) for some L. Hence, as to end the proof of the theorem

we now study the type of state that can actually be terminal. Assume that Ok(M) is the terminal
state reachable from the initial state. Either it was reached by a transition justified by Failover

and, by Lemma 4, in any state LM,U,over from which this transition may have originated holds
Tw = M , or it was reached by a transition justified by Terminal and, by Lemma 3, in any
state Cont(M,M) from which this transition may have originated holds M ⊆ Tw ⊆ M , hence
Tw = M .


