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Appendix B Introduction to Spark and Spark Streaming

Spark (Zaharia et al., 2012) is a distributed processing engine that was designed as

an alternative to Hadoop MapReduce (Marz and Warren, 2015), but with a focus on

iterative processing—e.g. to implement distributed machine learning algorithms—

and interactive low latency jobs—e.g. for ad hoc SQL queries on massive datasets.

The key to achieving these goals is an extended memory hierarchy that allows for an

increased performance in many situations, and a data model based on immutable

collections inspired in functional programming that is the basis for its fault tol-

erance mechanism. The core of Spark is a batch computing framework (Zaharia

et al., 2012) that is based on manipulating so called Resilient Distributed Datasets

(RDDs), which provide a fault tolerant implementation of distributed collections.

Computations are defined as transformations on RDDs, that should be determin-

istic and side-effect free, as the fault tolerance mechanism of Spark is based on

its ability to recompute any fragment (partition) of an RDD when needed. Hence

Spark programmers are encouraged to define RDD transformations that are pure

functions from RDD to RDD, and the set of predefined RDD transformations in-

cludes typical higher-order functions like map, filter, etc., as well as aggregations

by key and joins for RDDs of key-value pairs. We can also use Spark actions, which

allow us to collect results into the driver program or store them into an external

data store. The driver program is the local process that starts the connection to the

Spark cluster, and issues the execution of Spark jobs, acting as a client of the Spark

cluster. Spark actions are impure, so idempotent actions are recommended in order

to ensure a deterministic behavior even in the presence of recomputations triggered

by the fault tolerance or speculative task execution mechanisms (Apache Spark

Team, 2016). Spark is written in Scala and offers APIs for Scala, Java, Python,

and R; in this work we focus on the Scala API. The example in Figure B 1 uses the

Scala Spark shell to implement a variant of the famous word count example that in

this case computes the number of occurrences of each character in a sentence. For

that we use parallelize, a feature of Spark that allows us to create an RDD from
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scala> val cs: RDD[Char] = sc.parallelize("let’s count some letters", numSlices=3)
scala> cs.map{(_, 1)}.reduceByKey{_+_}.collect()¡
res4: Array[(Char, Int)] = Array((t,4), ( ,3), (l,2), (e,4), (u,1), (m,1), (n,1),

(r,1), (’,1), (s,3), (o,2), (c,1))

Fig. B 1. Letter count in Spark

object HelloSparkStreaming extends App {
val conf = new SparkConf().setAppName("HelloSparkStreaming")

.setMaster("local[5]")
val sc = new SparkContext(conf)
val batchInterval = Duration(100)
val ssc = new StreamingContext(sc, batchInterval)
val batches = "let’s count some letters, again and again"

.grouped(4)
val queue = new Queue[RDD[Char]]
queue ++= batches.map(sc.parallelize(_, numSlices = 3))
val css : DStream[Char] = ssc.queueStream(queue,

oneAtATime = true)
css.map{(_, 1)}.reduceByKey{_+_}.print()
ssc.start()
ssc.awaitTerminationOrTimeout(5000)
ssc.stop(stopSparkContext = true)

}

-----------------------
Time: 1449638784400 ms
-----------------------
(e,1)
(t,1)
(l,1)
(’,1)
...
-----------------------
Time: 1449638785300 ms
-----------------------
(i,1)
(a,2)
(g,1)
-----------------------
Time: 1449638785400 ms
-----------------------
(n,1)

Fig. B 2. Letter count in Spark Streaming

a local collection, which is useful for testing. We start with a set of chars distributed

among 3 partitions, we pair each char with a 1 by using map, and then group by

first component in the pair and sum by the second by using reduceByKey and the

addition function (_+_), thus obtaining a set of (char, frequency) pairs. We collect

this set into an Array in the driver with collect.

Besides the core RDD API, the Spark release contains a set of high level libraries

that accelerates the development of Big Data processing applications, and that

are also one of the reasons for its growing popularity. This includes libraries for

scalable machine learning, graph processing, a SQL engine, and Spark Streaming,

which is the focus of this work. In Spark Streaming, the notions of transformations

and actions are extended from RDDs to DStreams (Discretized Streams), which

are series of RDDs corresponding to splitting an input data stream into fixed time

windows, also called micro batches. Micro batches are generated at a fixed rate

according to the configured batch interval. Spark Streaming is synchronous in the

sense that given a collection of input and transformed DStreams, all the batches for

each DStream are generated at the same time as the batch interval is met. Actions

on DStreams are also periodic and are executed synchronously for each micro batch.

The code in Figure B 2 is the streaming version of the code in Figure B 1. In this

case we process a DStream of characters, where batches are obtained by splitting

a String into pieces by making groups (RDDs) of 4 consecutive characters. We use

the testing utility class QueueInputDStream, which generates batches by picking

RDDs from a queue, to generate the input DStream by parallelizing each substring

into an RDD with 3 partitions. The program is executed using the local master

mode of Spark, which replaces slave nodes in a distributed cluster by local threads,

which is useful for developing and testing.
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Appendix C Overview of property-based testing and ScalaCheck

Classical unit testing with xUnit-like frameworks (Meszaros, 2007) is based on

specifying input – expected output pairs, and then comparing the expected output

with the actual output obtained by applying the test subject to the input. On the

other hand, in property-based testing (PBT) a test is expressed as a property, which

is a formula in a restricted version of first order logic that relates program input

and output. The testing framework checks the property by evaluating it against a

bunch of randomly generated inputs. If a counterexample for the property is found

then the test fails, otherwise it passes. This allows developers to obtain quite a good

test coverage of the production code with a fairly small investment on development

time, specially when compared to xUnit frameworks. However xUnit frameworks

are still useful for testing corner cases that would be difficult to cover with a PBT

property. The following is a “hello world” ScalaCheck property that checks the

commutativity of addition:1

class HelloPBT extends Specification with ScalaCheck {

def is = s2"""Hello world PBT spec,

where int addition is commutative $intAdditionCommutative"""

def intAdditionCommutative =

Prop.forAll("x" |: arbitrary[Int], "y" |: arbitrary[Int]) { (x, y) =>

x + y === y + x

}.set(minTestsOk = 100)

}

PBT is based on generators (the functions in charge of computing the inputs,

which define the domain of discourse for a formula) and assertions (the atoms of

a formula), which together with a quantifier form a property (the formula to be

checked). In the example above the universal quantifier Prop.forAll is used to de-

fine a property that checks whether the assertion x + y === y + x holds for 100

values for x and y randomly generated by two instances of the integer generator

arbitrary[Int]. Each of those pairs of values generated for x and y is called a test

case, and a test case that refutes the assertions of a property is called a counterex-

ample. Here arbitrary is a higher order generator that is able to generate random

values for predefined and custom types. Besides universal quantifiers, ScalaCheck

supports existential quantifiers—although these are not much used in practice (Nils-

son, 2014; Venners, 2015)—, and logical operators to compose properties. PBT is a

sound procedure to check the validity of the formulas implied by the properties, in

the sense that any counterexample that is found can be used to build a definitive

proof that the property is false. However, it is not complete, as there is no guarantee

that the whole space of test cases is explored exhaustively, so if no counterexample

is found then we cannot conclude that the property holds for all possible test cases

that could had been generated: all failing properties are definitively false, but not

all passing properties are definitively true. PBT is a lightweight approach that does

1 Here we use the integration of ScalaCheck with the Specs2 (Torreborre, 2014) testing library.
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not attempt to perform sophisticated automatic deductions, but it provides a very

fast test execution that is suitable for the test-driven development (TDD) cycle,

and empirical studies (Claessen and Hughes, 2011; Shamshiri et al., 2015) have

shown that in practice random PBT obtains good results, with a quality compa-

rable to more sophisticated techniques. This goes in the line of assuming that in

general testing of non trivial systems is often incomplete, as the effort of completely

modeling all the possible behaviors of the system under test with test cases is not

cost effective in most software development projects, except for critical systems.

Appendix D Code for AMP Camp’s Twitter tutorial with sscheck

Now we will present a more complex example, adapted for Berkeley’s AMP Camp

training on Spark,2 but adding sscheck properties for the functions implemented

in that tutorial. The complete code for these examples is available at https://

github.com/juanrh/sscheck-examples/releases/tag/0.0.4.

Our test subject will be an object TweetOps, which defines a series of operations

on a stream of tweets. A tweet is a piece of text of up to 140 characters, together

with some meta-information like an identifier for the author or the creation date.

Those words in a tweet that start with the # character are called “hashtags”, and

are used by the tweet author to label the tweet, so other users that later search

for tweets with a particular hashtag might locate those related tweets easily. The

operations below take a stream of tweets and, respectively, generate the stream

for the set of hashtags in all the tweets; the stream of pairs (hashtags, number of

occurrences) in a sliding time window with the specified size3; and the stream that

contains a single element for the most popular hashtag, i.e. the hashtag with the

highest number of occurrences, again for the specified time window.

object TweetOps {

def getHashtags(tweets: DStream[Status]): DStream[String]

def countHashtags(batchInterval: Duration, windowSize: Int)

(tweets: DStream[Status]): DStream[(String, Int)]

def getTopHashtag(batchInterval: Duration, windowSize: Int)

(tweets: DStream[Status]): DStream[String]

}

In this code, the class twitter4j.Status from the library Twitter4J (Yamamoto,

2010) is used to represent each particular tweet. In the original AMP Camp training,

the class TwitterUtils4 is used to define a DStream[Status] by repeatedly calling

the Twitter public API to ask for new tweets. Instead, in this example we replace

the Twitter API by an input DStream defined by using an sscheck generator, so we

can control the shape of the tweets that will be used as the test inputs. To do that

2 http://ampcamp.berkeley.edu/3/exercises/realtime-processing-with-spark-streaming.
html

3 See https://spark.apache.org/docs/1.6.2/streaming-programming-guide.html#
window-operations for details on Spark Streaming window operators.

4 https://spark.apache.org/docs/1.6.0/api/java/org/apache/spark/streaming/twitter/
TwitterUtils.html

https://github.com/juanrh/sscheck-examples/releases/tag/0.0.4
https://github.com/juanrh/sscheck-examples/releases/tag/0.0.4
http://ampcamp.berkeley.edu/3/exercises/realtime-processing-with-spark-streaming.html
http://ampcamp.berkeley.edu/3/exercises/realtime-processing-with-spark-streaming.html
https://spark.apache.org/docs/1.6.2/streaming-programming-guide.html#window-operations
https://spark.apache.org/docs/1.6.2/streaming-programming-guide.html#window-operations
https://spark.apache.org/docs/1.6.0/api/java/org/apache/spark/streaming/twitter/TwitterUtils.html
https://spark.apache.org/docs/1.6.0/api/java/org/apache/spark/streaming/twitter/TwitterUtils.html
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we employ the mocking (Mackinnon et al., 2001) library Mockito (Kaczanowski,

2012) for stubbing (Fowler, 2007) Status objects, i.e. to easily synthetize objects

that impersonate a real Status object, and that provide predefined answers to some

methods, in this case the method that returns the text for a tweet.

object TwitterGen {

/** Generator of Status mocks with a getText method

* that returns texts of up to 140 characters

*

* @param noHashtags if true then no hashtags are generated in the

* tweet text

* */

def tweet(noHashtags: Boolean = true): Gen[Status]

/** Take a Status mocks generator and return a Status mocks

* generator that adds the specified hashtag to getText

* */

def addHashtag(hashtagGen: Gen[String])

(tweetGen: Gen[Status]): Gen[Status]

def tweetWithHashtags(possibleHashTags: Seq[String]): Gen[Status]

def hashtag(maxLen: Int): Gen[String]

def tweetWithHashtagsOfMaxLen(maxHashtagLength: Int): Gen[Status]

}

D.1 Extracting hashtags

Now we are ready to write our first property, which checks that getHashtags works

correctly, that is, it computes the set of hashtags (words starting with #). In the

property we generate tweets that use a predefined set of hashtags, and then we

check that all hashtags produced in the output are contained in that set.

Example 1
def getHashtagsOk = {

type U = (RDD[Status], RDD[String])

val hashtagBatch = (_ : U)._2

val numBatches = 5

val possibleHashTags = List("#spark", "#scala", "#scalacheck")

val tweets = BatchGen.ofNtoM(5, 10,

tweetWithHashtags(possibleHashTags)

)

val gen = BatchGen.always(tweets, numBatches)

val formula = always {

at(hashtagBatch){ hashtags =>

hashtags.count > 0 and

( hashtags should foreachRecord(possibleHashTags.contains(_)) )

}

} during numBatches

forAllDStream(

gen)(

TweetOps.getHashtags)(
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formula)

}

In the next example we use the “reference implementation” PBT technique (Nils-

son, 2014) to check the implementation of TweetOps.getHashtags, which is based

on the Spark transformations flatMap and filter also using String.startsWith,

against a regexp-based reference implementation. This gives us a more thorough

test, because we use a different randomly generated set of hashtags for each batch

of each test case, instead of a predefined set of hashtags for all the test cases.

Example 2
private val hashtagRe = """#\S+""".r

private def getExpectedHashtagsForStatuses(statuses: RDD[Status])

: RDD[String] =

statuses.flatMap { status => hashtagRe.findAllIn(status.getText)}

def getHashtagsReferenceImplementationOk = {

type U = (RDD[Status], RDD[String])

val (numBatches, maxHashtagLength) = (5, 8)

val tweets = BatchGen.ofNtoM(5, 10,

tweetWithHashtagsOfMaxLen(maxHashtagLength))

val gen = BatchGen.always(tweets, numBatches)

val formula = alwaysR[U] { case (statuses, hashtags) =>

val expectedHashtags = getExpectedHashtagsForStatuses(statuses).cache()

hashtags must beEqualAsSetTo(expectedHashtags)

} during numBatches

forAllDStream(

gen)(

TweetOps.getHashtags)(

formula)

}

D.2 Counting hashtags

In order to check countHashtags, in the following property we setup a scenario

where the hashtag #spark is generated for some period, and then the hashtag

#scala is generated for another period, and we express the expected counting be-

haviour with several subformulas: we expect to get the expected count of hash-

tags for spark for the first period (laterAlwaysAllSparkCount); we expect to

eventually get the expected count of hastags for scala (laterScalaCount); and

we expect that after reaching the expected count for spark hashtags, we would

then decrease the count as time passes and elements leave the sliding window

(laterSparkCountUntilDownToZero).

Example 3
def countHashtagsOk = {

type U = (RDD[Status], RDD[(String, Int)])

val countBatch = (_ : U)._2
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val windowSize = 3

val (sparkTimeout, scalaTimeout) = (windowSize * 4, windowSize * 2)

val sparkTweet = tweetWithHashtags(List("#spark"))

val scalaTweet = tweetWithHashtags(List("#scala"))

val (sparkBatchSize, scalaBatchSize) = (2, 1)

val gen = BatchGen.always(BatchGen.ofN(sparkBatchSize, sparkTweet),

sparkTimeout) ++

BatchGen.always(BatchGen.ofN(scalaBatchSize, scalaTweet),

scalaTimeout)

def countNHashtags(hashtag : String)(n : Int) =

at(countBatch)(_ should existsRecord(_ == (hashtag, n : Int)))

val countNSparks = countNHashtags("#spark") _

val countNScalas = countNHashtags("#scala") _

val laterAlwaysAllSparkCount =

later {

always {

countNSparks(sparkBatchSize * windowSize)

} during (sparkTimeout -2)

} on (windowSize + 1)

val laterScalaCount =

later {

countNScalas(scalaBatchSize * windowSize)

} on (sparkTimeout + windowSize + 1)

val laterSparkCountUntilDownToZero =

later {

{ countNSparks(sparkBatchSize * windowSize) } until {

countNSparks(sparkBatchSize * (windowSize - 1)) and

next(countNSparks(sparkBatchSize * (windowSize - 2))) and

next(next(countNSparks(sparkBatchSize * (windowSize - 3))))

} on (sparkTimeout -2)

} on (windowSize + 1)

val formula =

laterAlwaysAllSparkCount and

laterScalaCount and

laterSparkCountUntilDownToZero

forAllDStream(

gen)(

TweetOps.countHashtags(batchInterval, windowSize)(_))(

formula)

}

Then we check the safety of countHashtags by asserting that any arbitrary

generated hashtag is never skipped in the count. Here we again exploit the reference

implementation technique to extract the expected hashtags, and join this with the

output counts, so we can assert that all and only all expected hastags are counted,

and that those countings are never zero at the time the hashtag is generated.

Example 4
def hashtagsAreAlwasysCounted = {

type U = (RDD[Status], RDD[(String, Int)])
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val windowSize = 3

val (numBatches, maxHashtagLength) = (windowSize * 6, 8)

val tweets = BatchGen.ofNtoM(5, 10,

tweetWithHashtagsOfMaxLen(maxHashtagLength))

val gen = BatchGen.always(tweets, numBatches)

val alwaysCounted = alwaysR[U] { case (statuses, counts) =>

val expectedHashtags = getExpectedHashtagsForStatuses(statuses).cache()

val expectedHashtagsWithActualCount =

expectedHashtags

.map((_, ()))

.join(counts)

.map{case (hashtag, (_, count)) => (hashtag, count)}

.cache()

val countedHashtags = expectedHashtagsWithActualCount.map{_._1}

val countings = expectedHashtagsWithActualCount.map{_._2}

// all hashtags have been counted

countedHashtags must beEqualAsSetTo(expectedHashtags) and

// no count is zero

(countings should foreachRecord { _ > 0 })

} during numBatches

forAllDStream(

gen)(

TweetOps.countHashtags(batchInterval, windowSize)(_))(

alwaysCounted)

}

D.2.1 Getting the most popular hashtag

Now we check the correctness of getTopHashtag, that extracts the most “popular”

hashtag, i.e. the hashtag with the highest number of occurrences at each time win-

dow. For that we use the following property where we define a scenario in which we

start with the hashtag #spark as the most popular (generator sparkPopular), and

after that the hashtag #scala becomes the most popular (generator scalaPopular),

and asserting on the output DStream that #spark is the most popular hashtag until

#scala is the most popular.

Example 5
def sparkTopUntilScalaTop = {

type U = (RDD[Status], RDD[String])

val windowSize = 1

val topHashtagBatch = (_ : U)._2

val scalaTimeout = 6

val sparkPopular =

BatchGen.ofN(5, tweetWithHashtags(List("#spark"))) +

BatchGen.ofN(2, tweetWithHashtags(List("#scalacheck")))
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val scalaPopular =

BatchGen.ofN(7, tweetWithHashtags(List("#scala"))) +

BatchGen.ofN(2, tweetWithHashtags(List("#scalacheck")))

val gen = BatchGen.until(sparkPopular, scalaPopular, scalaTimeout)

val formula =

{ at(topHashtagBatch)(_ should foreachRecord(_ == "#spark" )) } until {

at(topHashtagBatch)(_ should foreachRecord(_ == "#scala" ))

} on (scalaTimeout)

forAllDStream(

gen)(

TweetOps.getTopHashtag(batchInterval, windowSize)(_))(

formula)

}

Finally, we state the safety of getTopHastag by checking that there is always

one top hashtag.

Example 6
def alwaysOnlyOneTopHashtag = {

type U = (RDD[Status], RDD[String])

val topHashtagBatch = (_ : U)._2

val (numBatches, maxHashtagLength) = (5, 8)

val tweets =

BatchGen.ofNtoM(5, 10,

tweetWithHashtagsOfMaxLen(maxHashtagLength))

val gen = BatchGen.always(tweets, numBatches)

val formula = always {

at(topHashtagBatch){ hashtags =>

hashtags.count === 1

}

} during numBatches

forAllDStream(gen)(

TweetOps.getTopHashtag(batchInterval, 2)(_))(

formula)

}

D.2.2 Defining liveness properties with the consume operator

So far we have basically defined two types of properties: properties where we simu-

late a particular scenario, and safety properties where we assert that we will never

reach a particular “bad” state. It would be also nice to be able to write liveness

properties in sscheck, which is another class of properties typically used with tem-

poral logic, where we express that something good keeps happening with a formula

of the shape of �t1(ϕ1 → ♦t2ϕ2). In this kind of formulas it would be useful to

define the conclusion formula ϕ2 that should happen later, based on the value of

the word that happened when the premise formula ϕ1 was evaluated. This was our
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motivation for adding to the LTLss logic the consume operator λox.ϕ, that can be

used in liveness formulas of the shape �t1(λox.♦t2ϕ2) or �t1(λox.ϕ1 → ♦t2ϕ2). One

example of the former is the following liveness property for countHashtags, that

checks that always each hashtag eventually gets a count of 0, if we generate empty

batches at the end of the test case so all hashtags end up getting out of the counting

window.

Example 7
def alwaysEventuallyZeroCount = {

type U = (RDD[Status], RDD[(String, Int)])

val windowSize = 4

val (numBatches, maxHashtagLength) = (windowSize * 4, 8)

// repeat hashtags a bit so counts are bigger than 1

val tweets = for {

hashtags <- Gen.listOfN(6, hashtag(maxHashtagLength))

tweets <- BatchGen.ofNtoM(5, 10,

addHashtag(Gen.oneOf(hashtags))(tweet(noHashtags=true)))

} yield tweets

val emptyTweetBatch = Batch.empty[Status]

val gen = BatchGen.always(tweets, numBatches) ++

BatchGen.always(emptyTweetBatch, windowSize*2)

val alwaysEventuallyZeroCount = alwaysF[U] { case (statuses, _) =>

val hashtags = getExpectedHashtagsForStatuses(statuses)

laterR[U] { case (_, counts) =>

val countsForStatuses =

hashtags

.map((_, ()))

.join(counts)

.map{case (hashtag, (_, count)) => count}

countsForStatuses should foreachRecord { _ == 0}

} on windowSize*3

} during numBatches

forAllDStream(gen)(

TweetOps.countHashtags(batchInterval, windowSize)(_))(

alwaysEventuallyZeroCount)

}

One example of the second kind of liveness properties, that use an implication in

the body of an always, is the following property for getTopHashtag, that checks

that if we superpose two generators, one for a random noise of hashtags that have

a small number of occurrences (generator tweets), and another for a periodic peak

of a random hashtag that suddenly has a big number of occurrences (generator

tweetsSpike), then each time a peak happens then the corresponding hashtag

eventually becomes the top hashtag.

Example 8
def alwaysPeakImpliesEventuallyTop = {
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type U = (RDD[Status], RDD[String])

val windowSize = 2

val sidesLen = windowSize * 2

val numBatches = sidesLen + 1 + sidesLen

val maxHashtagLength = 8

val peakSize = 20

val emptyTweetBatch = Batch.empty[Status]

val tweets =

BatchGen.always(

BatchGen.ofNtoM(5, 10,

tweetWithHashtagsOfMaxLen(maxHashtagLength)),

numBatches)

val popularTweetBatch = for {

hashtag <- hashtag(maxHashtagLength)

batch <- BatchGen.ofN(peakSize, tweetWithHashtags(List(hashtag)))

} yield batch

val tweetsSpike = BatchGen.always(emptyTweetBatch, sidesLen) ++

BatchGen.always(popularTweetBatch, 1) ++

BatchGen.always(emptyTweetBatch, sidesLen)

// repeat 6 times the superposition of random tweets

// with a sudden spike for a random hastag

val gen = Gen.listOfN(6, tweets + tweetsSpike).map{_.reduce(_++_)}

val alwaysAPeakImpliesEventuallyTop = alwaysF[U] { case (statuses, _) =>

val hashtags = getExpectedHashtagsForStatuses(statuses)

val peakHashtags = hashtags.map{(_,1)}.reduceByKey{_+_}

.filter{_._2 >= peakSize}.keys.cache()

val isPeak = Solved[U] { ! peakHashtags.isEmpty }

val eventuallyTop = laterR[U] { case (_, topHashtag) =>

topHashtag must beEqualAsSetTo(peakHashtags)

} on numBatches

isPeak ==> eventuallyTop

} during numBatches * 3

forAllDStream(

gen)(

TweetOps.getTopHashtag(batchInterval, windowSize)(_))(

alwaysAPeakImpliesEventuallyTop)

}

The consume operator is also useful to define other types of properties like the

following, that only uses consume and next as temporal operators, but that is able

to express the basic condition for counting correctly and on time. It states that

for any number of repetitions n less or equal to the counting window size, and for

any random word prefix, if we repeat the word prefix n times then after the n− 1

instants we will have a count of at least (to account for hashtags randomly generated

twice) n for all the hashtags in the first batch. Here we use def next[T](times:

Int)(phi: Formula[T]) that returns the result of applying next times times on

the given formula.
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Example 9
def forallNumRepetitionsLaterCountNumRepetitions = {

type U = (RDD[Status], RDD[(String, Int)])

val windowSize = 5

val (numBatches, maxHashtagLength) = (windowSize * 6, 8)

// numRepetitions should be <= windowSize, as in the worst case each

// hashtag is generated once per batch before being repeated using

// Prop.forAllNoShrink because sscheck currently does not support shrinking

Prop.forAllNoShrink(Gen.choose(1, windowSize)) { numRepetitions =>

val tweets = BatchGen.ofNtoM(5, 10,

tweetWithHashtagsOfMaxLen(maxHashtagLength))

val gen = for {

tweets <- BatchGen.always(tweets, numBatches)

// using tweets as a constant generator, to repeat each generated

// stream numRepetitions times

delayedTweets <- PDStreamGen.always(tweets, numRepetitions)

} yield delayedTweets

val laterCountNumRepetitions = nextF[U] { case (statuses, _) =>

val hashtagsInFirstBatch = getExpectedHashtagsForStatuses(statuses)

// -2 because we have already consumed 1 batch in the outer nextF, and

// we will consume 1 batch in the internal now

next(max(numRepetitions-2, 0))(now { case (_, counts) =>

val countsForHashtagsInFirstBatch =

hashtagsInFirstBatch

.map((_, ()))

.join(counts)

.map{case (hashtag, (_, count)) => count}

countsForHashtagsInFirstBatch should foreachRecord { _ >= numRepetitions }

})

}

forAllDStream(

gen)(

TweetOps.countHashtags(batchInterval, windowSize)(_))(

laterCountNumRepetitions)

}

}
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