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Appendix A Proof of Proposition 1

Let S be a set of atoms and let σ be a signature. By S|σ , we denote the projection of S onto σ.
Let S′ be a set of atoms. We say S agrees with S′ onto σ if S|σ = S′|σ .

In the following proofs, whenever we talk about an LPOD program Π, we refer to (9) as its
ordered disjunction part Πod.

Lemma 1
Let Π be an answer set program, S an answer set of Π, and A an atom in S.

(a) S is an answer set of Π ∪ {A← body}.
(b) S is an answer set of Π ∪ {head← body} if S 6� body.
(c) S is an answer set of Π \ {head← body} if S 6� body.
(d) S is an answer set of Π ∪ {constraint} if S � constraint.
(e) S is an answer set of Π \ {constraint} if S � constraint.

Here, body is a conjunction of atoms in Π where each atom is possibly preceded by not, head is
a disjunction of atoms in Π, and constraint is a rule of the form← body.

Lemma 2
Let Π be an answer set program. Let r be a rule of the formA← B1, . . . , Bm, notC1, . . . , notCn
where A,Bi, Cj are atoms. Let S be a set of atoms such that S ∩ {C1, . . . , Cn} = φ. Then S is
an answer set of Π ∪ {r} iff S is an answer set of Π ∪ {A← B1, . . . , Bm}.

Lemma 3
(Proposition 8 in (Ferraris 2011)) Let Π be an ASP program, Q be a set of atoms not occurring
in Π. For each q ∈ Q, let Def(q) be a formula that doesn’t contain any atoms from Q. Then
X 7→ X \ Q is a 1-1 correspondence between the answer sets of Π ∪ {Def(q) → q : q ∈ Q}
and the answer sets of Π.

Let Π be an LPOD with signature σ. By the definition of a split program of LPOD, there are
n1 × · · · × nm split programs of Π. Let Π(k1, . . . , km) denote a split program of Π, where for
1 ≤ i ≤ m, ki ∈ {1, . . . , ni} and rule i in Π is replaced by its ki-th option:

Ckii ← Bodyi, not C1
i , . . . , not Cki−1

i (A1)

where Bodyi is the body of rule i.
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Let APΠ(x1, . . . , xm), where xi ∈ [0, ni], denote the assumption program obtained from Π

by replacing each LPOD rule i with its xi-th assumption, Oi(xi):

bodyi ← Bodyi (A2)

⊥ ← xi = 0, bodyi (A3)

⊥ ← xi > 0, not bodyi (A4)

Cji ← bodyi, xi = j (for 1 ≤ j ≤ ni) (A5)

⊥ ← bodyi, xi 6= j, not C1
i , . . . , not Cj−1

i , Cji (for 1 ≤ j ≤ ni) (A6)

where Bodyi is the body of rule i, and bodyi is an atom not occurring in Π.
Proposition 1 For any LPOD Π of signature σ and any set S of atoms of σ, S is a candidate
answer set of Π iff S ∪ {bodyi | S satisfies the body of rule i in Πod} is an answer set of some
assumption program of Π. More specifically,

(a) for any candidate answer set S of Π, let’s obtain x1, . . . , xm such that, for 1 ≤ i ≤ m,

— xi = 0 if S 6� Bodyi,
— xi = k if S � Bodyi, and Cki ∈ S, and Cji 6∈ S for 1 ≤ j ≤ k − 1,

then φ(S) = S ∪ {bodyi | S satisfies the body of rule i in Πod} is an answer set of
APΠ(x1, . . . , xm);

(b) for any answer set S′ of any assumption program APΠ(x1, . . . , xm), S′|σ is a candidate
answer set of Π.

Proof.

(a) Let S be a candidate answer set of Π. We obtain x1, . . . , xm such that, for 1 ≤ i ≤ m,

— xi = 0 if S 6� Bodyi,
— xi = k if S � Bodyi, and Cki ∈ S, and Cji 6∈ S for 1 ≤ j ≤ k − 1.

We will prove that φ(S) is an answer set of APΠ(x1, . . . , xm). Since S is a candidate
answer set of Π, S must be an answer set of some Π(k1, . . . , km). Let’s consider any
LPOD rule i in Π. We know rule i is replaced by one of its options (A1) in Π(k1, . . . , km).
Let’s obtain Π′ from Π(k1, . . . , km) by replacing the option of rule i with Oi(xi). Recall
that Bodyi represent the body of rule i. Let S′ be S ∪ {bodyi | S � Bodyi }. We are going
to prove S′ is an answer set of Π′.
Since xi = j is not an atom, rule (A6) is strong equivalent to the following constraint

← bodyi, C
j
i , not C1

i , . . . , not Cj−1
i , not xi = j

thus Lemma 1 (d) applies to this rule. According to the assignments for x1, . . . , xm, it’s
obvious that rules (A3), (A4), (A6) are satisfied by φ(S).

— If S 6� Bodyi, S
′ 6� bodyi. By Lemma 1 (c), S is an answer set of Π(k1, . . . , km) minus

the option of rule i. Since rules (A3), (A4), (A6) are satisfied by S, and the bodies of
rules (A2), (A5) are not satisfied by S, by Lemma 1 (d) and Lemma 1 (b), S′ = S is
an answer set of Π′.

— If S � Bodyi, then S′ � bodyi, and xi > 0, and at least one of the atoms in
{C1

i , . . . , C
ni
i } must be true, and the first atom among them that is true in S is Cxi

i

(S satisfies Cxi
i and S doesn’t satisfy Cji for j ∈ {1, . . . , xi − 1}). Let Π′′ be the

union of Π(k1, . . . , km) and the rule (A2), then by Lemma 3, S′ is an answer set of
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Π′′. Assume for the sake of contradiction that ki < xi. By rule (A1), at least one of
{C1

i , . . . , C
ki
i } must be true in S, which contradicts with the fact that the first atom

that is true in S is Cxi
i . 5 Then there are 2 cases for ki:

– if ki = xi, by Lemma 2, S′ is an answer set of Π′′ ∪ {Cxi
i ← bodyi} minus rule

(A1). Consequently, by Lemma 1 (b), S′ is an answer set of Π′′ union rule (A5)
minus rule (A1). Since rules (A3), (A4), (A6) are satisfied by S′, by Lemma 1 (d),
S′ is an answer set of Π′;

– if ki > xi, “not Cxi
i ” is in the body of rule (A1), then by Lemma 1 (c), S′ is an

answer set of Π′′ minus rule (A1). Since S � Cxi
i , by Lemma 1 (a), S′ is an answer

set of Π′′ ∪{Cxi
i ← bodyi} minus rule (A1). Consequently, by Lemma 1 (b), S′ is

an answer set of Π′′ union rule (A5) minus rule (A1). Since rules (A3), (A4), (A6)
are satisfied by S′, by Lemma 1 (d), S′ is an answer set of Π′.

Consequently, φ(S) is an answer set ofAPΠ(x1, . . . , xm), which is obtained from Π(k1, . . . , km)

by replacing each option of rule i of Π with Oi(xi) for 1 ≤ i ≤ m.
(b) Let S′ be an answer set of program APΠ(x1, . . . , xm). Let’s consider any LPOD rule i in

Π. Let’s obtain Π′ from APΠ(x1, . . . , xm) by replacing Oi(xi) with the ki-th option of
rule i where ki = xi if xi > 0, ki = 1 if xi = 0. We first prove S = S′ \ {bodyi} is an
answer set of Π′.
Since S′ must satisfy rules (A3), (A4), (A6), by Lemma 1 (e), S′ is an answer set of
APΠ(x1, . . . , xm) minus rules (A3), (A4), (A6). By Lemma 1 (c), S′ is an answer set of
APΠ(x1, . . . , xm)∪{Cxi

i ← bodyi}minus rules (A3), (A4), (A5), (A6). Note that by rule
(A2), S′ satisfies bodyi iff S′ satisfies Bodyi. There are 2 cases as follows.

— If S′ � Bodyi, S
′ � bodyi. Since S′ satisfies rules (A3) and (A5), we know xi > 0 and

S′ satisfies Cxi
i . Thus ki equals to xi. Assume for the sake of contradiction that the

first atom among {C1
i , . . . , C

ni
i } that is true in S′ is Cji and j < xi. Since S′ satisfies

rule (A6), S′ satisfies xi = j. Contradiction. Thus S′ satisfies Cxi
i and doesn’t satisfy

Cji for j ∈ {1, . . . , xi − 1}. By Lemma 2, S′ is an answer set of APΠ(x1, . . . , xm)

union rule (A1) minus rules (A3), (A4), (A5), (A6). By Lemma 3, S is an answer set
of Π′.

— If S′ 6� Bodyi, S
′ 6� bodyi. By lemma 1 (c), S′ is an answer set of APΠ(x1, . . . , xm)

minus rules (A2), (A3), (A4), (A5), (A6). By Lemma 1 (b), S = S′ is an answer set of
Π′.

So S is an answer set of Π′. Consequently, S′|σ is an answer set of Π(k1, . . . , km), where
ki = xi if xi > 0, ki = 1 if xi = 0. In other words, S′|σ is a candidate answer set of Π.

Appendix B Proof of Proposition 2

For any answer set program Π, let gr(Π, x1, . . . , xm) be a partial grounded program obtained
from Π by replacing variables X1, . . . , Xm in Π with x1, . . . , xm.

5 For example, suppose ki = 2, and xi = 3 is the index of the first atom in {C1
i , . . . , C

n1
i } that is true in S. Since

S satisfies the ki-th option of rule i — “C2 ← body, not C1”, and S � body, then either C1 is true or C2 is true,
which contradicts with the fact that C3 is the first atom to be true in S.
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Let Π be an LPOD of signature σ. In the following proofs, let lpod2asp(Π) be Π1 ∪Π2 ∪Π3,
where Π1 consists of the rules in bullets 1 and 2 in section Generate Candidate Answer Sets,
Π2 consists of the rules in bullet 3 in the same section, and Π3 consists of the rules in section
Find Preferred Answer Sets. Note that lpod2asp(Π)base is Π1 ∪Π2.

The proof of Proposition 2 will use a restricted version of the splitting theorem from (Ferraris
et al. 2009), which is reformulated as follows:
Splitting Theorem Let Π1, Π2 be two answer set programs, p, q be disjoint tuples of distinct
atoms. If

• each strongly connected component of the dependency graph of Π1 ∪ Π2 w.r.t. p ∪ q is a
subset of p or a subset of q,

• no atom in p has a strictly positive occurrence in Π2, and
• no atom in q has a strictly positive occurrence in Π1,

then an interpretation I of Π1 ∪Π2 is an answer set of Π1 ∪Π2 relative to p ∪ q if and only if I
is an answer set of Π1 relative to p and I is an answer set of Π2 relative to q.

Proposition 2 The candidate answer sets of an LPOD Π of signature σ are exactly the candidate
answer sets on σ of lpod2asp(Π)base. In other words, (for any set S, let φ(S) be S ∪ {bodyi | S
satisfies the body of rule i in Πod })

(a) for any candidate answer set S of Π, there are x1, . . . , xm such that φ(S) is an answer
set of APΠ(x1, . . . , xm), and there exists an optimal answer set S′ of Π1 ∪ Π2 such that
S′ � ap(x1, . . . , xm) and S = shrink(S′, x1, . . . , xm);

(b) for any optimal answer set S′ of Π1∪Π2 and any x1, . . . , xm such that S′ � ap(x1, . . . , xm),
S = shrink(S′, x1, . . . , xm) is a candidate answer set of Π, and φ(S) is an answer set of
APΠ(x1, . . . , xm).

Proof. Let Π1,2 be Π1 ∪ Π2. According to the translation, the empty set is always an answer
set of Π1,2 (since the empty set doesn’t satisfy the body of any rule in Π1,2), thus there must
exist at least one optimal answer set of Π1,2. Furthermore, by rule (11), the optimal answer set
should contain as many ap(∗) as possible. Then gr(Π1,2, x1, . . . , xm) is gr(Π1, x1, . . . , xm) ∪
gr(Π2, x1, . . . , xm). Let Πgr

1,2 be
⋃
yi∈{0,...,ni} gr(Π1,2, y1, . . . , ym). Let σΠgr

1,2 be the signature
of Πgr

1,2, let σgr(Π1,2,x1,...,xm) be the signature of gr(Π1,2, x1, . . . , xm), let σgr(Π1,x1,...,xm) be the
signature of gr(Π1, x1, . . . , xm), and let σgr(Π2,x1,...,xm) be σgr(Π1,2,x1,...,xm)\σgr(Π1,x1,...,xm).
We then prove bullets (a) and (b) as follows.

(a) Let S be a candidate answer set of Π. By Proposition 1, φ(S) must be an answer set of
some APΠ(x1, . . . , xm) of Π. Let ψ(S) be

{a(v, x1, . . . , xm) | a(v) ∈ S} ∪ {bodyi(x1, . . . , xm) | S satisfies the body of rule i in Πod}
∪{ap(x1, . . . , xm), degree(ap(x1, . . . , xm), d1, . . . , dm)},

where di = 1 if xi = 0, di = xi if xi > 0. Our target is to construct an S′ from
ψ(S) and prove S′ is an optimal answer set of Π1,2 such that S′ � ap(x1, . . . , xm), and
S = shrink(S′, x1, . . . , xm).
First, we prove ψ(S) is an optimal answer set of gr(Π1,2, x1, . . . , xm).

1. By the construction of ψ(S), ψ(S) satisfies the reduct of gr(Π2, x1, . . . , xm) relative
to ψ(S), and is minimal with respect to σgr(Π2,x1,...,xm). So ψ(S) is an answer set of
gr(Π2, x1, . . . , xm) with respect to σgr(Π2,x1,...,xm).
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2. Since φ(S) is a minimal model of the reduct ofAPΠ(x1, . . . , xm) relative to φ(S), and
ψ(S) � ap(x1, . . . , xm), it’s easy to check that ψ(S) is a minimal model of the reduct
of gr(Π1, x1, . . . , xm) relative to ψ(S) with respect to σgr(Π1,x1,...,xm). So ψ(S) is an
answer set of gr(Π1, x1, . . . , xm) with respect to σgr(Π1,x1,...,xm).

By the splitting theorem, ψ(S) is an answer set of gr(Π1,2, x1, . . . , xm). Since ψ(S) sat-
isfies ap(x1, . . . , xm), which is the only ap(∗) occurring in gr(Π1,2, x1, . . . , xm), ψ(S)

must be an optimal answer set of gr(Π1,2, x1, . . . , xm).
Then, we construct an optimal answer set S′ of Π1,2 from any optimal answer set S′′ of
Π1,2 such that S′ � ap(x1, . . . , xm) and S = shrink(S′, x1, . . . , xm).
We first show that S′′ must satisfy ap(x1, . . . , xm). Assume for the sake of contradic-
tion that S′′ does not satisfy ap(x1, . . . , xm). Since each partial grounded program of
Π1,2 is disjoint from each other, by the splitting theorem, S′′|

σgr(Π1,2,x1,...,xm) is an an-
swer set of gr(Π1,2, x1, . . . , xm) and S′′ \ S′′|

σgr(Π1,2,x1,...,xm) is an answer set of Πgr
1,2 \

gr(Π1,2, x1, . . . , xm). Let S′ be the union of ψ(S) and S′′ \ S′′|
σgr(Π1,2,x1,...,xm) , since

ψ(S) is an answer set of gr(Π1,2, x1, . . . , xm), by the splitting theorem, S′ is an answer
set of Π1,2. Since S′ has a lower penalty than S′′, S′′ is not an optimal answer set of Π1,2,
which contradicts with our initial assumption. So S′′ must satisfy ap(x1, . . . , xm). Indeed,
if there exists an answer set of APΠ(x1, . . . , xm),

any optimal answer set of Π1,2 must satisfy ap(x1, . . . , xm). (B1)

Consequently, S′ has the same penalty as S′′ in Π1,2, which means that S′ is an opti-
mal answer set of Π1,2. Besides, S equals to shrink(ψ(S), x1, . . . , xm), which equals to
shrink(S′, x1, . . . , xm).

(b) Let S′ be an optimal answer set of Π1,2 and x1, . . . , xm a list of integers such that S′ �
ap(x1, . . . , xm). Our target is to prove S = shrink(S′, x1, . . . , xm) is a candidate an-
swer set of Π. By Proposition 1, it is sufficient to prove that φ(S) is an answer set of
APΠ(x1, . . . , xm).
We first split Πgr

1,2 into gr(Π1, x1, . . . , xm) and the remaining part Πgr
1,2\gr(Π1, x1, . . . , xm).

Since

1. no atom in σgr(Π1,x1,...,xm) has a strictly positive occurrence in Πgr
1,2\gr(Π1, x1, . . . , xm),

2. no atom in σΠgr
1,2\σgr(Π1,x1,...,xm) has a strictly positive occurrence in gr(Π1, x1, . . . , xm),

and
3. each strongly connected component of the dependency graph of Π1,2 w.r.t. σΠgr

1,2 is a
subset of σgr(Π1,x1,...,xm) or σΠgr

1,2 \ σgr(Π1,x1,...,xm),

by the splitting theorem, S′ is an answer set of gr(Π1, x1, . . . , xm) with respect to σgr(Π1,x1,...,xm).
So S′|σgr(Π1,x1,...,xm) is a minimal model of the reduct of gr(Π1, x1, . . . , xm) relative to
S′|σgr(Π1,x1,...,xm) . Since S′|σgr(Π1,x1,...,xm) � ap(x1, . . . , xm), it’s easy to check that φ(S)

is a minimal model of the reduct of APΠ(x1, . . . , xm) relative to φ(S), where the reduct
can be obtained from the reduct of gr(Π1, x1, . . . , xm) relative to S′|σgr(Π1,x1,...,xm) by
replacing each occurrence of ap(x1, . . . , xm) with >, and replacing each occurrence of
a(v, x1, . . . , xm) by a(v) where a(v) ∈ σ. Thus φ(S) is an answer set ofAPΠ(x1, . . . , xm).
By Proposition 1, S is a candidate answer set of Π.
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Appendix C Proof of Theorem 1

Let Π be an LPOD of signature σ. Recall that we let lpod2asp(Π) be Π1 ∪ Π2 ∪ Π3, where Π1

consists of the rules in bullets 1 and 2 in section Generate Candidate Answer Sets, Π2 consists
of the rules in bullet 3 in the same section, and Π3 consists of the rules in section Find Preferred
Answer Sets.

Lemma 4
Let Π be an LPOD. There is a 1-1 correspondence between the answer sets of lpod2asp(Π) and
the answer sets of Π1 ∪ Π2, and any answer set of lpod2asp(Π) agrees with the corresponding
answer set of Π1 ∪Π2 on the signature of Π1 ∪Π2.

Proof. Let Π1,2 be Π1 ∪ Π2. Let’s take Π1,2 as our current program, Πcur, and consider
including the translation rules in Π3 (rules (22) — (36) under each preference criterion) into
Πcur. For each criterion, let’s include the first rule, e.g., rule (22), into Πcur, it’s easy to see that
this rule satisfies the condition of Lemma 3. By Lemma 3, there is a 1-1 correspondence between
the answer sets of Πcur and the answer sets of Π1,2. Similarly, if we further include the second
rule, e.g., rule (23), into Πcur, there is still a 1-1 correspondence between the answer sets of
Πcur and the answer sets of Π1,2. Similarly, we can include more rules from Π3 into the current
program Πcur in order, and consequently, there is a 1-1 correspondence between the answer sets
of Π1,2 ∪ Π3 and the answer sets of Π1,2. Since all the atoms introduced by Π3 are not in the
signature of Π1,2, any answer set of lpod2asp(Π) agrees with the corresponding answer set of
Π1,2 on the signature of Π1,2.

Lemma 5
Let S be a candidate answer set of an LPOD Π. If φ(S) = S ∪ {bodyi | S satisfies the body of
rule i in Πod} is an answer set of APΠ(x1, . . . , xm) for some x1, . . . , xm, then for 1 ≤ i ≤ m,
S satisfies rule i of Πod to degree 1 if xi = 0, to degree xi if xi > 0. 6

Proof. Since φ(S) is an answer set of APΠ(x1, . . . , xm), for 1 ≤ i ≤ m, S satisfies rules
(A3), (A4), which are equivalent to:

xi = 0↔ ¬bodyi
xi > 0↔ bodyi

If xi = 0, φ(S) 6� bodyi. So the body of rule i is not satisfied by S, which means rule i is satisfied
at (i.e., satisfied to) degree 1. If xi > 0, φ(S) � bodyi. By rule (A6), the first atom in the head of
rule i that is true in φ(S), and also S, is Cxi , which means that rule i is satisfied by S at degree
xi.

Lemma 6
Let Π be an LPOD (9). Let APΠ(x1, . . . , xm) and APΠ(y1, . . . , ym) be two programs that are
consistent, where the list x1, . . . , xm is different from y1, . . . , ym. Let S1 be an answer set of
APΠ(x1, . . . , xm), S2 be an answer set of APΠ(y1, . . . , ym). Then

(a) there exists an optimal answer set K of lpod2asp(Π) such that K � ap(x1, . . . , xm), K �
ap(y1, . . . , ym), S1|σ = shrink(K,x1, . . . , xm), and S2|σ = shrink(K, y1, . . . , ym);

(b) any optimal answer setK of lpod2asp(Π) must satisfy ap(x1, . . . , xm) and ap(y1, . . . , ym).

6 This lemma won’t hold if APΠ(x1, . . . , xm) is replaced by Π(k1, . . . , km).
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Proof. (a) Let lpod2asp(Π) be Π1 ∪ Π2 ∪ Π3 as defined before. By Lemma 4, it is sufficient
to prove that there exists an optimal answer set L of Π1 ∪ Π2 such that L � ap(x1, . . . , xm),
L � ap(y1, . . . , ym), S1|σ = shrink(L, x1, . . . , xm), and S2|σ = shrink(L, y1, . . . , ym).

Let Π1,2 be Π1∪Π2. By Proposition 2, there exists an optimal answer set L2 of Π1,2 such that
L2 � ap(y1, . . . , ym), and S2|σ = shrink(L2, y1, . . . , ym). Let ψ(S1) be {a(v, x1, . . . , xm) |
a(v) ∈ S1} ∪ {bodyi(x1, . . . , xm) | S1 satisfies the body of rule i in Πod} ∪ {ap(x1, . . . , xm),

degree(ap(x1, . . . , xm), d1, . . . , dm)}, where di = 1 if xi = 0, di = xi if xi > 0. Let L be
the union of ψ(S1) and L2 \ L2|σgr(Π1,2,x1,...,xm) . It’s easy to see that L � ap(x1, . . . , xm),
L � ap(y1, . . . , ym), S1|σ = shrink(L, x1, . . . , xm), and S2|σ = shrink(L, y1, . . . , ym). Be-
sides, L has the same penalty as L2. So to prove Lemma 6 (a), it is sufficient to prove that L is
an answer set of Π1 ∪Π2.

First, we prove ψ(S1) is an answer set of gr(Π1,2, x1, . . . , xm).

1. By the construction of ψ(S1), ψ(S1) satisfies the reduct of gr(Π2, x1, . . . , xm) relative
to ψ(S1), and is minimal with respect to σgr(Π2,x1,...,xm). So ψ(S1) is an answer set of
gr(Π2, x1, . . . , xm) relative to σgr(Π2,x1,...,xm).

2. Since S1 is a minimal model of the reduct ofAPΠ(x1, . . . , xm) relative to S1, and ψ(S1) �
ap(x1, . . . , xm), it’s easy to check thatψ(S1) is a minimal model of the reduct of gr(Π1, x1, . . . , xm)

relative toψ(S1) with respect to σgr(Π1,x1,...,xm). Soψ(S1) is an answer set of gr(Π1, x1, . . . , xm)

relative to σgr(Π1,x1,...,xm).

By the splitting theorem, ψ(S1) is an answer set of gr(Π1,2, x1, . . . , xm).
Second, let Πgr

1,2 be
⋃
yi∈{0,...,ni} gr(Π1,2, y1, . . . , ym). Since each partial grounded program

of Π1,2 is disjoint from each other, by the splitting theorem, L2|σgr(Π1,2,x1,...,xm) is an answer set
of gr(Π1,2, x1, . . . , xm) andL2\L2|σgr(Π1,2,x1,...,xm) is an answer set of Πgr

1,2\gr(Π1,2, x1, . . . , xm).
Finally, by the splitting theorem, L is an answer set of Π1 ∪Π2.
(b) Let lpod2asp(Π) be Π1 ∪Π2 ∪Π3 as defined before. By Lemma 4, it is sufficient to prove

that any optimal answer set L of Π1∪Π2 must satisfy ap(x1, . . . , xm) and ap(y1, . . . , ym). Since
S1 is an answer set of APΠ(x1, . . . , xm), and S2 is an answer set of APΠ(y1, . . . , ym), by (B1),
any optimal answer set L of Π1 ∪Π2 must satisfy ap(x1, . . . , xm) and ap(y1, . . . , ym).

Lemma 7
The candidate answer sets of an LPOD Π of signature σ are exactly the candidate answer sets on
σ of lpod2asp(Π). In other words, (for any set S of atoms, let φ(S) be S ∪ {bodyi | S satisfies
the body of rule i in Πod })

(a) for any candidate answer set S of Π, there are x1, . . . , xm such that φ(S) is an answer set
of APΠ(x1, . . . , xm), and there exists an optimal answer set K of lpod2asp(Π) such that
K � ap(x1, . . . , xm) and S = shrink(K,x1, . . . , xm);

(b) for any optimal answer setK of lpod2asp(Π) and any x1, . . . , xm such thatK � ap(x1, . . . , xm),
S = shrink(K,x1, . . . , xm) is a candidate answer set of Π, and φ(S) is an answer set of
APΠ(x1, . . . , xm).

Proof.

(a) Let S be a candidate answer set of Π. Let lpod2asp(Π) be Π1∪Π2∪Π3 as defined before.
By Proposition 2, there are x1, . . . , xm such that φ(S) is an answer set ofAPΠ(x1, . . . , xm),
and there exists an optimal answer set S′ of Π1 ∪ Π2 such that S′ � ap(x1, . . . , xm) and
S = shrink(S′, x1, . . . , xm). By Lemma 4, there exists an answer set K of lpod2asp(Π)
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such that K agrees with S′ on the signature of Π1 ∪ Π2. Thus K � ap(x1, . . . , xm) and
S = shrink(K,x1, . . . , xm). Since the signature of Π1∪Π2 includes all ap(∗) atoms and
S′ is an optimal answer set of Π1 ∪Π2, K is an optimal answer set of lpod2asp(Π).

(b) Let K be an optimal answer set of lpod2asp(Π) such that K � ap(x1, . . . , xm) for
some x1, . . . , xm. By Lemma 4, there exists an answer set S′ of Π1 ∪ Π2 such that S′

and K agrees on the signature of Π1 ∪ Π2, which means shrink(S′, x1, . . . , xm) =

shrink(K,x1, . . . , xm), and S′ � ap(x1, . . . , xm). Besides, since K and S′ satisfy the
same set of ap(∗) atoms, and K is an optimal answer set of lpod2asp(Π), S′ is an optimal
answer set of Π1 ∪ Π2. By Proposition 2, S = shrink(S′, x1, . . . , xm) is a candidate
answer set of Π, and φ(S) is an answer set of APΠ(x1, . . . , xm).

Lemma 8
Under each of the four preference criteria, the preferred answer sets of an LPOD Π of signature
σ are exactly the preferred answer sets on σ of lpod2asp(Π). In other words,

(a) for any preferred answer set S of Π, there exists an optimal answer set K of lpod2asp(Π)

and there are x1, . . . , xm such thatK � pAS(x1, . . . , xm) and S = shrink(K,x1, . . . , xm);
(b) for any optimal answer setK of lpod2asp(Π) and any x1, . . . , xm such thatK � pAS(x1, . . . , xm),

S = shrink(K,x1, . . . , xm) is a preferred answer set of Π.

Proof. (a) Let Π be an LPOD (9) of signature σ. Let S be a preferred answer set of Π; and
let S2 be any candidate answer set of Π with different satisfaction degrees compared to S. For
any set of atoms S′, let φ(S′) = S′ ∪ {bodyi | S′ satisfies the body of rule i in Πod}. By
Proposition 1, we know φ(S) is an answer set of APΠ(x1, . . . , xm) for some x1, . . . , xm, and
φ(S2) = S2 ∪ {bodyi | S2 satisfies the body of rule i for some 1 ≤ i ≤ m } is an answer set of
APΠ(y1, . . . , ym) for some y1, . . . , ym, where by Lemma 5, the list x1, . . . , xm is not the same
as y1, . . . , ym.

By Lemma 6 (a), there exists an optimal answer set K of lpod2asp(Π) such that K �
ap(x1, . . . , xm),K � ap(y1, . . . , ym), S = shrink(K,x1, . . . , xm), and S2 = shrink(K, y1, . . . , ym).

Then it is sufficient to prove K � pAS(x1, . . . , xm), which by rules (26), (31), (34), (37), suf-
fices to proving K 6� prf(ap(y1, . . . , ym), ap(x1, . . . , xm)) no matter what S2 we are choosing.
Assume for the sake of contradiction that K � prf(ap(y1, . . . , ym), ap(x1, . . . , xm)), we will
derive a contradiction for each preference criterion. Note that

• K � degree(ap(x1, . . . , xm), d1, . . . , dm)

iff (by rules (18), (19), (20), and given K � ap(x1, . . . , xm))

• for 1 ≤ i ≤ m, di = 1 if xi = 0, di = xi if xi > 0

iff (by Lemma 5, and given S is a candidate answer set of Π, and given φ(S) is an answer set of
APΠ(x1, . . . , xm))

• the satisfaction degrees of S are d1, . . . , dm.

Similarly,

• K � degree(ap(y1, . . . , ym), e1, . . . , em)

iff
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• the satisfaction degrees of S2 are e1, . . . , em.

1. Cardinality-preferred:
• K � prf(ap(y1, . . . , ym), ap(x1, . . . , xm))

iff (by rule (25))

• there exists a number d such that 0 ≤ d ≤ maxdegree− 1 and

— K � prf2degree(ap(y1, . . . , ym), ap(x1, . . . , xm), d+ 1)

— K � equ2degree(ap(y1, . . . , ym), ap(x1, . . . , xm), Y ) for 1 ≤ Y ≤ d
iff (by rules (23), (24))

• there exists a number d such that 0 ≤ d ≤ maxdegree− 1 and

— there exist n1 and n2 such that K � card(ap(y1, . . . , ym), d+ 1, n1),
K � card(ap(x1, . . . , xm), d+ 1, n2), and n1 > n2

— for each 1 ≤ Y ≤ d, there exists a number n such thatK � card(ap(y1, . . . , ym), Y, n)

and K � card(ap(x1, . . . , xm), Y, n)

iff (by rule (22))

• there exists a number d such that 0 ≤ d ≤ maxdegree− 1 and

— there exist n1 and n2 such that S2 satisfies n1 rules at degree d, S satisfies n2 rules
at degree d+ 1, and n1 > n2

— for each 1 ≤ Y ≤ d, there exists a number n such that both S2 and S satisfy n
rules at degree Y

iff (by the semantics of LPOD)

• S2 is cardinality-preferred to S

which violates the fact that S is a preferred answer set.
2. Inclusion-preferred:
• K � prf(ap(y1, . . . , ym), ap(x1, . . . , xm))

iff (by rule (30))

• there exists a number d such that 0 ≤ d ≤ maxdegree− 1 and

— K � prf2degree(ap(y1, . . . , ym), ap(x1, . . . , xm), d+ 1)

— K � equ2degree(ap(y1, . . . , ym), ap(x1, . . . , xm), Y ) for 1 ≤ Y ≤ d
iff (by rules (27), (28), (29))

• there exists a number d such that 0 ≤ d ≤ maxdegree− 1 and

— K 6� equ2degree(ap(y1, . . . , ym), ap(x1, . . . , xm), d + 1) and for 1 ≤ i ≤ m,
whenever S satisfies rule i at degree d + 1, S2 must also satisfy rule i at degree
d+ 1; 7

— for each 1 ≤ Y ≤ d, S satisfies rule i at degree Y iff S2 satisfies rule i at degree Y
for 1 ≤ i ≤ m 8

7 The atom {D11 6= X;D21 = X}1 is true in K iff the number of atoms in this set that is satisfied by K is smaller or
equal to 1, which means that this atom is true iff K � ¬({D11 6= X ∧D21 = X) iff K � (D21 = X → {D11 =
X). In the case X = d + 1, this atom is true iff “whenever S2 satisfies rule 1 at degree d + 1, S must satisfies rule 1
at degree d + 1”.

8 The atom C1 = {D11 = X;D21 = X} is true in K iff C1 is the number of atoms in this set that is satisfied by K.
Then C1 = 0 ∨ C1 = 2 iff D11 = X ↔ D21 = X , which can be read as “S satisfies rule 1 at degree X iff S2

satisfies rule 1 at degree X”.
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iff

• there exists a number d such that 0 ≤ d ≤ maxdegree− 1 and

— the rules satisfied by S is a proper subset of the rules satisfied by S2 at degree d+1

— the rules satisfied by S is exactly the rules satisfied by S2 at degrees {1, . . . , d}
iff (by the semantics of LPOD)

• S2 is inclusion-preferred to S

which violates the fact that S is a preferred answer set.
3. Pareto-preferred:
• K � prf(ap(y1, . . . , ym), ap(x1, . . . , xm))

iff (by rule (33))

• there exists 2 lists e1, . . . , em and d1, . . . , dm such that

— K � degree(ap(y1, . . . , ym), e1, . . . , em)

— K � degree(ap(x1, . . . , xm), d1, . . . , dm)

— K 6� equ(ap(y1, . . . , ym), ap(x1, . . . , xm)), and

— e1 ≤ d1, . . . , em ≤ dm
iff (by rule (32))

• there exists 2 lists e1, . . . , em and d1, . . . , dm such that

— K � degree(ap(y1, . . . , ym), e1, . . . , em)

— K � degree(ap(x1, . . . , xm), d1, . . . , dm)

— e1 ≤ d1, . . . , em ≤ dm, and there exists an i such that ei < di

iff (by the semantics of LPOD)

• S2 is Pareto-preferred to S

which violates the fact that S is a preferred answer set.
4. Penalty-Sum-preferred:
• K � prf(ap(y1, . . . , ym), ap(x1, . . . , xm))

iff (by rule (36))

• there exist n1 and n2 such that

— K � sum(ap(y1, . . . , ym), n1)

— K � sum(ap(x1, . . . , xm), n2), and

— n1 < n2

iff (by rule (35))

• there exist n1 and n2 such that

— the sum of the satisfaction degrees of all rules for S2 is n1

— the sum of the satisfaction degrees of all rules for S is n2, and

— n1 < n2

iff (by the semantics of LPOD)

• S2 is penalty-sum-preferred to S

which violates the fact that S is a preferred answer set.
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(b) Let Π be an LPOD (9) of signature σ; let K be an optimal answer set of lpod2asp(Π); and
letK satisfy pAS(x1, . . . , xm). By rules (26), (31), (34), (37),K � ap(x1, . . . , xm). By Lemma
7, S = shrink(K,x1, . . . , xm) is an answer set of APΠ(x1, . . . , xm). We will prove that S is a
preferred answer set of Π.

Assume for the sake of contradiction that there exists a candidate answer set S2 of Π and
S2 is preferred to S. By Proposition 1, S2 is also an answer set of APΠ(y1, . . . , ym) for some
y1, . . . , ym, where by Lemma 5, the list y1, . . . , ym is not the same as x1, . . . , xm. By Lemma 6
(b),K must satisfy ap(y1, . . . , ym). SinceK � pAS(x1, . . . , xm), by rules (26), (31), (34), (37),
to prove a contradiction, it is sufficient to prove K � prf(ap(y1, . . . , ym), ap(x1, . . . , xm)).

By Lemma 7, shrink(K, y1, . . . , ym) is a candidate answer set of Π. By Lemma 7 and Lemma
5, shrink(K, y1, . . . , ym) has the same satisfaction degrees as S2. So shrink(S′, y1, . . . , ym) is
preferred to S. As we proved in bullet (a), under any of the four criterion, shrink(S′, y1, . . . , ym)

is preferred to S iff K � prf(ap(y1, . . . , ym), ap(x1, . . . , xm)). Since shrink(S′, y1, . . . , ym)

is preferred to S, K � prf(ap(y1, . . . , ym), ap(x1, . . . , xm)).

Theorem 1 Under any of the four preference criteria, the candidate (preferred, respectively)
answer sets of an LPOD Π of signature σ are exactly the candidate (preferred, respectively)
answer sets on σ of lpod2asp(Π).
Proof. The proof follows from Lemma 7 and Lemma 8.

Appendix D Proof of Proposition 3

Let’s review the definition of APΠ(x1, . . . , xm). Let Π be a CR-Prolog2 program of signature σ,
where its rules are rearranged such that the cr-rules are of indices 1, . . . , k, the ordered cr-rules
are of indices k + 1, . . . , l, and the ordered rules are of indices l + 1, . . . ,m. These 3 sets of
rules are called Πcr, Πocr, Πor respectively, and the remaining part in Π is called Πr. For each
rule i in Πocr ∪ Πor, let ni denote the number of atoms in head(i). Let Di be the set {0, 1} for
1 ≤ i ≤ k; {0, . . . , ni} for k + 1 ≤ i ≤ l; {1, . . . , ni} for l + 1 ≤ i ≤ m. APΠ(x1, . . . , xm)

denotes an assumption program obtained from Π as follows, where xi ∈ Di.

• APΠ(x1, . . . , xm) contains Πr

• for each cr-rule i : Headi
+← Bodyi in Πcr, APΠ(x1, . . . , xm) contains

Headi ← Bodyi, xi = 1 (D1)

• for each ordered rule or ordered cr-rule i : C1
i × · · · × C

ni
i

(+)← Bodyi in Πor ∪ Πocr, for
1 ≤ j ≤ ni, APΠ(x1, . . . , xm) contains

Cji ← Bodyi, xi = j (D2)

• APΠ(x1, . . . , xm) also contains the following rules:

isPreferred(R1, R2)← prefer(R1, R2).

isPreferred(R1, R3)← prefer(R1, R2), isPreferred(R2, R3).

← isPreferred(R,R).

← xr1 > 0, xr2 > 0, isPreferred(r1, r2). (1 ≤ r1, r2 ≤ l)

Proposition 3 For any CR-Prolog2 program Π of signature σ, a set X of atoms is the projection
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of a generalized answer set of Π onto σ iff X is the projection of an answer set of an assumption
program of Π onto σ. In other words,

(a) for any generalized answer set S of Π, there exists an assumption programAPΠ(x1, . . . , xm)

of Π and one of its answer set S′ such that S|σ = S′|σ;
(b) for any answer set S′ of any assumption program APΠ(x1, . . . , xm) of Π, there exists a

generalized answer set S of Π such that S′|σ = S|σ .

Proof. Let Π be a CR-Prolog2 program. According to the semantics of CR-Prolog2, S is a
generalized answer set of Π iff S is an answer set of H ′Π, where H ′Π is obtained from Π as
follows. 9

• H ′Π contains Πr

• for each cr-rule i : Headi
+← Bodyi in Πcr, H ′Π contains

Headi ← Bodyi, appl(i) (D3)

• for each ordered cr-rule i : C1
i ×· · ·×C

ni
i

+← Bodyi in Πocr, for 1 ≤ j ≤ ni,H ′Π contains

Cj ← Bodyi, appl(i), appl(choice(i, j)) (D4)

fired(i)← appl(choice(i, j)) (D5)

prefer(choice(i, j), choice(i, j + 1)) (1 ≤ j ≤ ni − 1) (D6)

← Bodyi, appl(i), not fired(i) (D7)

• for each ordered rule i : C1
i × · · · × C

ni
i ← Bodyi in Πor, for 1 ≤ j ≤ ni, H ′Π contains

Cj ← Bodyi, appl(choice(i, j)) (D8)

fired(i)← appl(choice(i, j)) (D9)

prefer(choice(i, j), choice(i, j + 1)) (1 ≤ j ≤ ni − 1) (D10)

← Bodyi, not fired(i) (D11)

• H ′Π also contains:

isPreferred(R1, R2)← prefer(R1, R2). (D12)

isPreferred(R1, R3)← prefer(R1, R2), isPreferred(R2, R3). (D13)

← isPreferred(R,R). (D14)

← appl(R1), appl(R2), isPreferred(R1, R2). (D15)

• and for each A ∈ atoms(HΠ, {appl}), H ′Π also contains

{A}. (D16)

Note that rule (D12) can be considered as two rules: (D12r), in which each variable is grounded
by an index of a cr-rule; and (D12a), in which each variable is grounded by a term choice(∗).
Similarly, each of the rules (D13), (D14), (D15) can be considered as two rules.

The (propositional) signature ofH ′Π is σ∪atoms(H ′Π, {appl, fired, prefer, isPreferred}),
while the (propositional) signature ofAPΠ(x1, . . . , xm) is σ∪atoms(APΠ(x1, . . . , xm), {isPreferred}),
which is a subset of the signature of H ′Π.

9 Note that H′
Π is similar to HΠ (which is defined in Section 3.1 of the paper) except that H′

Π contains a choice rule
{A} for each A ∈ atoms(HΠ, {appl}).
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(a) Let S be a generalized answer set of Π. Then S is an answer set of H ′Π. We obtain
x1, . . . , xm such that

— for 1 ≤ i ≤ k: xi = 0 if S 6� appl(i),
xi = 1 if S � appl(i);

— for k + 1 ≤ i ≤ l: xi = 0 if S 6� appl(i),
xi = j if S � appl(i) and S � appl(choice(i, j)), 10

xi = 1 if S � appl(i) and S 6� appl(choice(i, j)) for all j (in the
case when S 6� Bodyi);

— for l + 1 ≤ i ≤ m: xi = j if S � appl(choice(i, j)),
xi = 1 if S 6� appl(choice(i, j)) for all j.

Then it is sufficient to prove that the projection of S onto

σ ∪ atoms(APΠ(x1, . . . , xm), {isPreferred})

is an answer set of APΠ(x1, . . . , xm). This is equivalent to proving S is a minimal model
of the reduct ofAPΠ(x1, . . . , xm) relative to σ∪atoms(APΠ(x1, . . . , xm), {isPreferred}).
The assumption program APΠ(x1, . . . , xm) is similar to H ′Π except that

1. APΠ(x1, . . . , xm) does not contain the constraints: (D7), (D11), (D14a,) (D15a)
2. APΠ(x1, . . . , xm) does not contain the definitions for fired(∗), prefer(choice(∗), choice(∗)),

and isPreferred(choice(∗), choice(∗)): (D5), (D6), (D9), (D10), (D12a), (D13a)
3. APΠ(x1, . . . , xm) uses the value assignments for xi to represent appl(∗) in H ′Π

Let (H ′Π)i,...,j denote the set of rules in H ′Π translated by rules (i), . . . , (j).
First, let’s obtain Π1 from H ′Π by removing the constraints (D7), (D11), (D14a,) (D15a).
In other words, Π1 is H ′Π \ (H ′Π)D7,D11,D14a,D15a. By Lemma 1 (e), S is an answer set
of Π1.
Second, let’s obtain Π2 from Π1 by removing the definitions for fired(∗),
prefer(choice(∗), choice(∗)), and isPreferred(choice(∗), choice(∗)). In other words,
Π2 is Π1 \ (H ′Π)D5,D6,D9,D10,D12a,D13a. Let σ1 be the propositional signature of Π1 and
let σ2 be the propositional signature of Π2. We will use the splitting theorem to split Π1

into Π2 and (H ′Π)D5,D6,D9,D10,D12a,D13a. Since

1. no atom in σ2 has a strictly positive occurrence in (H ′Π)D5,D6,D9,D10,D12a,D13a,
2. no atom in σ1 \ σ2 has a strictly positive occurrence in Π2, and
3. each strongly connected component of the dependency graph of Π1 w.r.t. σ1 is a subset

of σ2 or σ1 \ σ2,

by the splitting theorem, S is an answer set of Π2 relative to σ2, where σ2 equals to σ ∪
atoms(Π2, {appl}) ∪ atoms(Π2, {isPreferred}).
Third, by the assignments of xi, . . . , xm, we know

— for 1 ≤ i ≤ k: S � appl(i) iff xi = 1,
— for k + 1 ≤ i ≤ l: S � Bodyi ∧ appl(i) ∧ appl(choice(i, j)) iff S � Bodyi and xi = j

— for l + 1 ≤ i ≤ m: S � Bodyi ∧ appl(choice(i, j)) iff S � Bodyi and xi = j.

Note that we can obtain APΠ(x1, . . . , xm) from Π2 by

— for 1 ≤ i ≤ k, replacing appl(i) with xi = 1 in rule (D3);

10 Since S is an answer set of H′
Π, by rules (D6), (D12), (D13), and (D15), S cannot satisfy appl(choice(i, j)) for two

different j.



14 Lee & Yang

— for k + 1 ≤ i ≤ l, replacing appl(i) ∧ appl(choice(i, j)) with xi = j in rule (D4);
— for l + 1 ≤ i ≤ m, replacing appl(choice(i, j)) with xi = j in rule (D8)
— for 1 ≤ i ≤ l, replacing appl(i) with xi > 0 in (grounded) rule (D15).

Since S is a minimal model of the reduct of Π2 relative to σ ∪ atoms(HΠ, appl) ∪
atoms(Π2, {isPreferred}), S is a minimal model of the reduct of APΠ(x1, . . . , xm) rela-
tive to σ ∪ atoms(Π2, {isPreferred}). Since

atoms(Π2, {isPreferred}) = atoms(APΠ(x1, . . . , xm), {isPreferred}),

S is a minimal model of the reduct of APΠ(x1, . . . , xm) relative to

σ ∪ atoms(APΠ(x1, . . . , xm), {isPreferred}).

(b) Let APΠ(x1, . . . , xm) be an assumption program of Π, and Ssp be an answer set of
APΠ(x1, . . . , xm).

Let S = Ssp ∪{appl(i) | 1 ≤ i ≤ k, xi = 1}
∪{appl(i), appl(choice(i, j)), fired(i) | k + 1 ≤ i ≤ l, xi = j, j > 0}
∪{appl(choice(i, j)), fired(i) | l + 1 ≤ i ≤ m,xi = j}
∪{prefer(choice(i, j), choice(i, j + 1)) | k + 1 ≤ i ≤ m, 1 ≤ j ≤ ni}
∪{isPreferred(choice(i, j1), choice(i, j2)) | k + 1 ≤ i ≤ m, 1 ≤ j1 < j2 ≤ ni}

It is sufficient to prove S is an answer set of H ′Π.
Let Π1 be H ′Π \ (H ′Π)D7,D11,D14a,D15a. Let Π2 be Π1 \ (H ′Π)D5,D6,D9,D10,D12a,D13a.
First, we prove

Ssp ∪{appl(i) | 1 ≤ i ≤ k, xi = 1}
∪{appl(i), appl(choice(i, j)) | k + 1 ≤ i ≤ l, xi = j, j > 0}
∪{appl(choice(i, j)) | l + 1 ≤ i ≤ m,xi = j},

denoted by S2, is an answer set of Π2. Let’s compare the reduct of APΠ(x1, . . . , xm)

relative to Ssp and the reduct of Π2 relative to S2. The reduct of Π2 relative to S2 can be
obtained from the reduct of APΠ(x1, . . . , xm) relative to Ssp by adding the facts

1. appl(i) for 1 ≤ i ≤ k and xi = 1,
2. appl(i) and appl(choice(i, j)) for k + 1 ≤ i ≤ l, and xi = j, j > 0,
3. appl(choice(i, j)) for l + 1 ≤ i ≤ m, and xi = j;

and replacing

1. xi = 1 by appl(i) for 1 ≤ i ≤ k,
2. xi = j, where j > 0, by appl(i) ∧ appl(choice(i, j)) for k + 1 ≤ i ≤ l,
3. xi = j by appl(choice(i, j)) for l + 1 ≤ i ≤ m.

Since Ssp is a minimal model of the reduct of APΠ(x1, . . . , xm) relative to Ssp, and since

1. for 1 ≤ i ≤ k, S2 � appl(i) iff xi = 1,
2. for k + 1 ≤ i ≤ l, S2 � appl(i) ∧ appl(choice(i, j)) iff xi = j ∧ j > 0,
3. for l + 1 ≤ i ≤ m, appl(choice(i, j)) iff xi = j;

S2 is a minimal model of the reduct of Π2 relative to S2.
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Second, we prove S is an answer set of Π1. Note that S equals

S2 ∪{fired(i) | k + 1 ≤ i ≤ l, xi = j, j > 0}
∪{fired(i) | l + 1 ≤ i ≤ m,xi = j}
∪{prefer(choice(i, j), choice(i, j + 1)) | k + 1 ≤ i ≤ m, 1 ≤ j ≤ ni}
∪{isPreferred(choice(i, j1), choice(i, j2)) | k + 1 ≤ i ≤ m, 1 ≤ j1 < j2 ≤ ni}.

Let σ1 be the propositional signature of Π1 and let σ2 be the propositional signature of Π2.
We will use the splitting theorem to construct Π1 from Π2 and (H ′Π)D5,D6,D9,D10,D12a,D13a.
Note that

1. no atom in σ2 has a strictly positive occurrence in (H ′Π)D5,D6,D9,D10,D12a,D13a,
2. no atom in σ1 \ σ2 has a strictly positive occurrence in Π2, and
3. each strongly connected component of the dependency graph of Π1 w.r.t. σ1 is a subset

of σ2 or σ1 \ σ2,

Since S is an answer set of Π2 relative to σ2, and it’s easy to check that S is an answer set
of (H ′Π)D5,D6,D9,D10,D12a,D13a relative to σ1 \ σ2, S is an answer set of Π1.
Third, since S satisfies rules (D7), (D11), (D14a), (D15a), by Lemma 1 (d), S is an answer
set of H ′Π.

Appendix E Proof of Theorem 2

We first review some definitions. Let Π be a CR-Prolog2 program. Let S be an optimal answer set
of crp2asp(Π). Let x1, . . . , xm be a list of integers such that xi ∈ Di. If S � ap(x1, . . . , xm),
we define the set shrink(S, x1, . . . , xm) as a generalized answer set on σ of crp2asp(Π); if
S � candidate(x1, . . . , xm), we define the set shrink(S, x1, . . . , xm) as a candidate answer
set on σ of crp2asp(Π); if S � pAS(x1, . . . , xm), we define the set shrink(S, x1, . . . , xm) as a
preferred answer set on σ of crp2asp(Π).

Theorem 2 For any CR-Prolog2 program Π of signature σ,

(a) The projections of the generalized answer sets of Π onto σ are exactly the generalized
answer sets on σ of crp2asp(Π).

(b) The projections of the candidate answer sets of Π onto σ are exactly the candidate answer
sets on σ of crp2asp(Π).

(c) The preferred answer sets of Π are exactly the preferred answer sets on σ of crp2asp(Π).

Proof. (a): Let Π be a CR-Prolog2 program of signature σ. By Proposition 3, it is suf-
ficient to prove that the projections (onto σ) of the answer sets of all assumption programs
APΠ(x1, . . . , xm) of Π are exactly the generalized answer sets on σ of crp2asp(Π) such that

• for any answer set S of any APΠ(x1, . . . , xm), there exists an optimal answer set S′ of
crp2asp(Π) such that S′ � ap(x1, . . . , xm) and Sσ = shrink(S′, x1, . . . , xm);

• for any generalized answer set on σ, shrink(S′, x1, . . . , xm), of crp2asp(Π) (where S′ is
an optimal answer set of crp2asp(Π) and S′ � ap(x1, . . . , xm)), there exists an answer set
S of APΠ(x1, . . . , xm) such that Sσ = shrink(S′, x1, . . . , xm).
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Let crp2asp(Π) = Πbase ∪ Πpref , where Πpref is the set of rules translated from rules (48),
(53), (54), (55), (56). We use Lemma 3 to prove that there is a 1-1 correspondence between the
answer sets of crp2asp(Π) and the answer sets of Πbase, while an answer set of crp2asp(Π)

agrees with the corresponding answer set of Πbase on the signature of Πbase. Let’s take Πbase as
our current program, Πcur, and consider including the translation rules in Πpref into Πcur. If we
include rules (48) and (53), by Lemma 3, there is a 1-1 correspondence between the answer sets
of Πcur and the answer sets of Πbase. Similarly, we can include rules (54), (55), (56) in order into
Πcur, and find that there is a 1-1 correspondence between the answer sets of Πbase ∪ Πpref and
the answer sets of Πbase, while an answer set of Πbase ∪ Πpref agrees with the corresponding
answer set of Πbase on the signature of Πbase. Since the predicates introduced by Πpref are not
in σ, it is sufficient to prove that the projections of the answer sets of all assumption programs
APΠ(x1, . . . , xm) of Π onto σ are exactly the generalized answer sets on σ of Πbase.

According to the translation, the empty set is always an answer set of Πbase, thus there must
exist at least one optimal answer set of Πbase. Furthermore, by rule (44), the optimal answer
set should contain as many ap(∗) as possible. Let gr(Πbase, x1, . . . , xm) be a partial grounded
program obtained from Πbase by replacing variables X1, . . . , Xm with x1, . . . , xm. Since each
partial grounded program is disjoint from each other, by the splitting theorem, it is sufficient
to prove a 1-1 correspondence φ between the answer sets of APΠ(x1, . . . , xm) and the optimal
answer sets of gr(Πbase, x1, . . . , xm) such that

(a.1) For any answer set S of APΠ(x1, . . . , xm), φ(S) = {a(v, x1, . . . , xm) | a(v) ∈ S} ∪
{ap(x1, . . . , xm)} is an optimal answer set of gr(Πbase, x1, . . . , xm).

(a.2) For any optimal answer set S′ of gr(Πbase, x1, . . . , xm), if S′ 6� ap(x1, . . . , xm), then
APΠ(x1, . . . , xm) has no answer set; if S′ � ap(x1, . . . , xm), then

S = {a(v) | a(v, x1, . . . , xm) ∈ S′} \ {sp}

is an answer set of APΠ(x1, . . . , xm).

To prove bullet (a.1), let S be an answer set ofAPΠ(x1, . . . , xm), and let φ(S) be {a(v, x1, . . . , xm) |
a(v) ∈ S}∪{ap(x1, . . . , xm)}. Since φ(S) satisfies ap(x1, . . . , xm), which is the only ap(∗) in
gr(Πbase, x1, . . . , xm), if we prove φ(S) is an answer set of gr(Πbase, x1, . . . , xm), φ(S) must
be an optimal answer set of gr(Πbase, x1, . . . , xm). Note that, if we ignore the suffix x1, . . . , xm
in the reduct of gr(Πbase, x1, . . . , xm) relative to φ(S), it is almost the same as the reduct of
APΠ(x1, . . . , xm) relative to S except that the former has one more atom sp. Since S is a min-
imal model of the reduct of APΠ(x1, . . . , xm) relative to S, and φ(S) � ap(x1, . . . , xm), φ(S)

is a minimal model of the reduct of gr(Πbase, x1, . . . , xm) relative to φ(S). Thus φ(S) is an
answer set of gr(Πbase, x1, . . . , xm).

To prove bullet (a.2), let S′ be an optimal answer set of gr(Πbase, x1, . . . , xm). There are 2
cases as follows.

1. ap(x1, . . . , xm) 6∈ S′. We will prove APΠ(x1, . . . , xm) has no answer set. Assume for
the sake of contradiction that there exists an answer set S of APΠ(x1, . . . , xm), by the
bullet (a.1) that we just proved, φ(S) is an optimal answer set of gr(Πbase, x1, . . . , xm).
Since φ(S) � ap(x1, . . . , xm), by rule (44), it has lower penalty than S′, thus S′ is not an
optimal answer set, which is not the case. So APΠ(x1, . . . , xm) has no answer set.

2. ap(x1, . . . , xm) ∈ S′. Since S′ is a minimal model of the reduct of gr(Πbase, x1, . . . , xm),
if we remove all occurrence of ap(x1, . . . , xm) and x1, . . . , xm in both S′ and the reduct



Appendix: Translating LPOD and CR-Prolog2 into Standard Answer Set Programs 17

of gr(Πbase, x1, . . . , xm) relative to S′, the set of atoms S = {a(v) | a(v, x1, . . . , xm) ∈
S′}\{sp} should be a minimal model of the new program, which is the reduct ofAPΠ(x1, . . . , xm).
Thus S is an answer set of APΠ(x1, . . . , xm).

(b): To prove Theorem 2 (b), it is sufficient to prove

(b.1) for any candidate answer set S of Π, there exist an optimal answer set S′ of crp2asp(Π) and
a list x1, . . . , xm such that S′ � candidate(x1, . . . , xm), and Sσ = shrink(S′, x1, . . . , xm);

(b.2) for any optimal answer set S′ of crp2asp(Π), if S′ � candidate(x1, . . . , xm), there exists
a candidate answer set S of Π such that Sσ = shrink(S′, x1, . . . , xm).

Let Π be a CR-Prolog2 program with signature σ; Π′ be its translation crp2asp(Π).
To prove bullet (b.1), let S be a candidate answer set of Π, then by the semantics of CR-Prolog2,

S must be a generalized answer set of Π. We obtain x1, . . . , xm such that,

• for 1 ≤ i ≤ k: xi = 0 if S 6� appl(i),
xi = 1 if S � appl(i);

• for k + 1 ≤ i ≤ l: xi = 0 if S 6� appl(i),
xi = j if S � appl(i) and S � appl(choice(i, j)),
xi = 1 if S � appl(i) and S 6� appl(choice(i, j)) for any j;

• for l + 1 ≤ i ≤ m: xi = j if S � appl(choice(i, j)),
xi = 1 if S 6� appl(choice(i, j)) for any j.

Note that the signature ofAPΠ(x1, . . . , xm) is σ′ = σ∪atoms(APΠ(x1, . . . , xm), {isPreferred}).
As we proved in the proof of Proposition 3, S is an answer set of APΠ(x1, . . . , xm) with respect
to σ′. Then Sσ′ is an answer set of APΠ(x1, . . . , xm). By the first bullet in the proof for The-
orem 2 (a), φ(Sσ′) = {a(v, x1, . . . , xm) | a(v) ∈ Sσ′} ∪ {ap(x1, . . . , xm)} is an optimal
answer set of gr(Πbase, x1, . . . , xm). Then there exists an optimal answer set S′ of Π′ such that
S′ � ap(x1, . . . , xm) and Sσ = shrink(S′, x1, . . . , xm).

Then, it suffices to proving S′ � candidate(x1, . . . , xm). Assume for the sake of contradiction
that S′ 6� candidate(x1, . . . , xm).

• S′ 6� candidate(x1, . . . , xm)

iff (by rule (54))

• there exists an AP such that S′ � dominate(AP, ap(x1, . . . , xm))

iff (by rule (48) and (53))

• there exist i ∈ {k + 1, . . . ,m} and a list x′1, . . . , x
′
m such that S′ � ap(x′1, . . . , x

′
m),

0 < x′i, and x′i < xi, or
• there exist r1, r2 ∈ {1, . . . , l} and a list x′1, . . . , x

′
m such that S′ � ap(x′1, . . . , x

′
m), S′ �

isPreferred(r1, r2, x
′
1, . . . , x

′
m), S′ � isPreferred(r1, r2, x1, . . . , xm), x′r1 > 0, and

xr2 > 0

iff (by the first 2 bullets in the proof for Theorem 2 (a) and by the assignments of xi)

• there exists i ∈ {k+1, . . . ,m}, a generalized answer setA, and xi, x′i ∈ {1, . . . , ni} such
that A � appl(choice(i, x′i)), S � appl(choice(i, xi)), and x′i < xi

• there exist r1, r2 ∈ {1, . . . , l}, and a generalized answer setA such thatA � isPreferred(r1, r2),
S � isPreferred(r1, r2), A � appl(r1), and S � appl(r2)



18 Lee & Yang

iff (by the definition of dominate)

• there exists a generalized answer set A that dominates S

which contradicts with the fact that S is a candidate answer set. Thus S′ � candidate(x1, . . . , xm)

and Sσ = shrink(S′, x1, . . . , xm).
To prove bullet (b.2), let S′ be an optimal answer set of Π′ and S′ � candidate(x1, . . . , xm)

for some list x1 . . . , xm. By rule (54), S′ � ap(x1, . . . , xm). Then by bullet (a), there exists a
generalized answer set S of Π such that Sσ = shrink(S′, x1, . . . , xm). Then it is sufficient to
prove S is a candidate answer set of Π.

Assume for the sake of contradiction that S is not a candidate answer set of Π, then there must
exists a generalized answer set A that dominates S. By the “iff” statements above, we can derive
S′ 6� candidate(x1, . . . , xm), which leads to a contradiction.

(c): Let Π be a CR-Prolog2 program with signature σ; Π′ be its translation crp2asp(Π). To prove
Theorem 2 (c), it is sufficient to prove

(c.1) for any preferred answer set S of Π, there exists an optimal answer set S′ of Π′ such that
S′ � pAS(x1, . . . , xm) for some x1, . . . , xm, and Sσ = shrink(S′, x1, . . . , xm)

(c.2) for any optimal answer set S′ of Π′, if S′ � pAS(x1, . . . , xm) for some x1, . . . , xm, there
exists a preferred answer set S of Π such that Sσ = shrink(S′, x1, . . . , xm).

To prove bullet (c.1), let S be a preferred answer set of Π, then S must be a candidate answer
set of Π. By Theorem 2 (b), there exists an optimal answer set S′ of Π′ and a list x1, . . . , xm
such that S′ � candidate(x1, . . . , xm) and Sσ = shrink(S′, x1, . . . , xm). Then it is sufficient
to prove S′ � pAS(x1, . . . , xm).

Assume for the sake of contradiction that S′ 6� pAS(x1, . . . , xm).

• S′ 6� pAS(x1, . . . , xm)

iff (since S′ � candidate(x1, . . . , xm), and by rule (56))

• there exists a AP such that S′ � lessCrRulesApplied(AP, ap(x1, . . . , xm))

iff (by rule (55))

• there exist a list x′1, . . . , x
′
m such that S′ � candidate(x′1, . . . , x

′
m), x′i ≤ xi for 1 ≤ i ≤

m, and there exists a j such that x′j < xj

iff (since S′ 6� dominate(ap(x′1, . . . , x′m), ap(x1, . . . , xm)), by rule (48))

• there exist a list x′1, . . . , x
′
m such that S′ � candidate(x′1, . . . , x

′
m), x′i ≤ xi for 1 ≤ i ≤

m, there exists a j such that x′j < xj , and for any x′i < xi, x′i = 0

iff (by the assignments of xi)

• there exist a candidate answer set A such that the atoms of the form appl(∗) in A is a
proper subset of those in S

which contradicts with the fact that S is a preferred answer set.
To prove bullet (c.2), let S′ be an optimal answer set of Π′ and S′ � pAS(x1, . . . , xm)

for some list x1, . . . , xm. By rules (56) and (54), S′ � candidate(x1, . . . , xm) and S′ �
ap(x1, . . . , xm). Then by Theorem 2 (b), there exists a candidate answer set S of Π such that
Sσ = shrink(S′, x1, . . . , xm). Then it is sufficient to prove S is a preferred answer set of Π.
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Assume for the sake of contradiction that S is not a preferred answer set of Π, then there must
exists a candidate answer set A such that the atoms of the form appl(∗) in A is a proper subset
of those in S. By the “iff” statements above, we can derive S′ 6� pAS(x1, . . . , xm), which leads
to a contradiction.


