Online appendix for the paper Translating LPOD and CR-Prolog₂ into Standard Answer Set Programs

published in Theory and Practice of Logic Programming

Joohyung Lee and Zhun Yang School of Computing, Informatics and Decision Systems Engineering Arizona State University, Tempe, AZ, USA (e-mail: {joolee, zyang90}@asu.edu)

Appendix A Proof of Proposition 1

Let S be a set of atoms and let σ be a signature. By $S|_{\sigma}$, we denote the projection of S onto σ . Let S' be a set of atoms. We say S agrees with S' onto σ if $S|_{\sigma} = S'|_{\sigma}$.

In the following proofs, whenever we talk about an LPOD program Π , we refer to (9) as its ordered disjunction part Π_{od} .

Lemma 1

Let Π be an answer set program, S an answer set of Π , and A an atom in S.

- (a) S is an answer set of $\Pi \cup \{A \leftarrow body\}$.
- (b) S is an answer set of $\Pi \cup \{head \leftarrow body\}$ if $S \not\models body$.
- (c) S is an answer set of $\Pi \setminus \{head \leftarrow body\}$ if $S \not\models body$.
- (d) S is an answer set of $\Pi \cup \{constraint\}$ if $S \vDash constraint$.
- (e) S is an answer set of $\Pi \setminus \{constraint\}$ if $S \vDash constraint$.

Here, *body* is a conjunction of atoms in Π where each atom is possibly preceded by *not*, *head* is a disjunction of atoms in Π , and *constraint* is a rule of the form \leftarrow *body*.

Lemma 2

Let Π be an answer set program. Let r be a rule of the form $A \leftarrow B_1, \ldots, B_m, not C_1, \ldots, not C_n$ where A, B_i, C_j are atoms. Let S be a set of atoms such that $S \cap \{C_1, \ldots, C_n\} = \phi$. Then S is an answer set of $\Pi \cup \{r\}$ iff S is an answer set of $\Pi \cup \{A \leftarrow B_1, \ldots, B_m\}$.

Lemma 3

(Proposition 8 in (Ferraris 2011)) Let Π be an ASP program, Q be a set of atoms not occurring in Π . For each $q \in Q$, let Def(q) be a formula that doesn't contain any atoms from Q. Then $X \mapsto X \setminus Q$ is a 1-1 correspondence between the answer sets of $\Pi \cup \{Def(q) \rightarrow q : q \in Q\}$ and the answer sets of Π .

Let Π be an LPOD with signature σ . By the definition of a split program of LPOD, there are $n_1 \times \cdots \times n_m$ split programs of Π . Let $\Pi(k_1, \ldots, k_m)$ denote a split program of Π , where for $1 \le i \le m, k_i \in \{1, \ldots, n_i\}$ and rule i in Π is replaced by its k_i -th option:

$$C_i^{k_i} \leftarrow Body_i, not \ C_i^1, \dots, not \ C_i^{k_i-1}$$
 (A1)

where $Body_i$ is the body of rule *i*.

Let $AP_{\Pi}(x_1, \ldots, x_m)$, where $x_i \in [0, n_i]$, denote the assumption program obtained from Π by replacing each LPOD rule *i* with its x_i -th assumption, $O_i(x_i)$:

$$body_i \leftarrow Body_i$$
 (A2)

$$\perp \leftarrow x_i = 0, \ body_i \tag{A3}$$

$$\perp \quad \leftarrow \quad x_i > 0, \ not \ body_i \tag{A4}$$

$$C_i^j \leftarrow body_i, x_i = j$$
 (for $1 \le j \le n_i$) (A5)

$$\perp \leftarrow body_i, \ x_i \neq j, \ not \ C_i^1, \dots, not \ C_i^{j-1}, \ C_i^j \qquad (\text{for } 1 \le j \le n_i)$$
(A6)

where $Body_i$ is the body of rule *i*, and $body_i$ is an atom not occurring in Π .

Proposition 1 For any LPOD Π of signature σ and any set S of atoms of σ , S is a candidate answer set of Π iff $S \cup \{body_i \mid S \text{ satisfies the body of rule } i \text{ in } \Pi_{od}\}$ is an answer set of some assumption program of Π . More specifically,

- (a) for any candidate answer set S of Π , let's obtain x_1, \ldots, x_m such that, for $1 \le i \le m$,
 - $\begin{array}{l} x_i = 0 \text{ if } S \not\vDash Body_i, \\ x_i = k \text{ if } S \vDash Body_i, \text{ and } C_i^k \in S, \text{ and } C_i^j \notin S \text{ for } 1 \leq j \leq k-1, \\ \text{then } \phi(S) = S \cup \{body_i \mid S \text{ satisfies the body of rule } i \text{ in } \Pi_{od}\} \text{ is an answer set of } \\ AP_{\Pi}(x_1, \ldots, x_m); \end{array}$
- (b) for any answer set S' of any assumption program $AP_{\Pi}(x_1, \ldots, x_m)$, S'| $_{\sigma}$ is a candidate answer set of Π .

Proof.

- (a) Let S be a candidate answer set of Π . We obtain x_1, \ldots, x_m such that, for $1 \le i \le m$,
 - $x_i = 0$ if $S \not\models Body_i$,
 - $x_i = k$ if $S \vDash Body_i$, and $C_i^k \in S$, and $C_i^j \notin S$ for $1 \le j \le k 1$.

We will prove that $\phi(S)$ is an answer set of $AP_{\Pi}(x_1, \ldots, x_m)$. Since S is a candidate answer set of Π , S must be an answer set of some $\Pi(k_1, \ldots, k_m)$. Let's consider any LPOD rule *i* in Π . We know rule *i* is replaced by one of its options (A1) in $\Pi(k_1, \ldots, k_m)$. Let's obtain Π' from $\Pi(k_1, \ldots, k_m)$ by replacing the option of rule *i* with $O_i(x_i)$. Recall that $Body_i$ represent the body of rule *i*. Let S' be $S \cup \{body_i \mid S \models Body_i\}$. We are going to prove S' is an answer set of Π' .

Since $x_i = j$ is not an atom, rule (A6) is strong equivalent to the following constraint

$$\leftarrow$$
 body_i, C_i^j , not C_i^1 , ..., not C_i^{j-1} , not $x_i = j$

thus Lemma 1 (d) applies to this rule. According to the assignments for x_1, \ldots, x_m , it's obvious that rules (A3), (A4), (A6) are satisfied by $\phi(S)$.

- If $S \not\models Body_i$, $S' \not\models body_i$. By Lemma 1 (c), S is an answer set of $\Pi(k_1, \ldots, k_m)$ minus the option of rule *i*. Since rules (A3), (A4), (A6) are satisfied by S, and the bodies of rules (A2), (A5) are not satisfied by S, by Lemma 1 (d) and Lemma 1 (b), S' = S is an answer set of Π' .
- If $S \models Body_i$, then $S' \models body_i$, and $x_i > 0$, and at least one of the atoms in $\{C_i^1, \ldots, C_i^{n_i}\}$ must be true, and the first atom among them that is true in S is $C_i^{x_i}$ (S satisfies $C_i^{x_i}$ and S doesn't satisfy C_i^j for $j \in \{1, \ldots, x_i 1\}$). Let Π'' be the union of $\Pi(k_1, \ldots, k_m)$ and the rule (A2), then by Lemma 3, S' is an answer set of

 Π'' . Assume for the sake of contradiction that $k_i < x_i$. By rule (A1), at least one of $\{C_i^1, \ldots, C_i^{k_i}\}$ must be true in *S*, which contradicts with the fact that the first atom that is true in *S* is $C_i^{x_i}$. ⁵ Then there are 2 cases for k_i :

- if k_i = x_i, by Lemma 2, S' is an answer set of Π" ∪ {C_i^{x_i} ← body_i} minus rule (A1). Consequently, by Lemma 1 (b), S' is an answer set of Π" union rule (A5) minus rule (A1). Since rules (A3), (A4), (A6) are satisfied by S', by Lemma 1 (d), S' is an answer set of Π';
- if k_i > x_i, "not C_i^{x_i}" is in the body of rule (A1), then by Lemma 1 (c), S' is an answer set of Π" minus rule (A1). Since S ⊨ C_i^{x_i}, by Lemma 1 (a), S' is an answer set of Π" ∪ {C_i<sup>x_i</sub> ← body_i} minus rule (A1). Consequently, by Lemma 1 (b), S' is an answer set of Π" union rule (A5) minus rule (A1). Since rules (A3), (A4), (A6) are satisfied by S', by Lemma 1 (d), S' is an answer set of Π'.
 </sup>

Consequently, $\phi(S)$ is an answer set of $AP_{\Pi}(x_1, \ldots, x_m)$, which is obtained from $\Pi(k_1, \ldots, k_m)$ by replacing each option of rule *i* of Π with $O_i(x_i)$ for $1 \le i \le m$.

(b) Let S' be an answer set of program AP_Π(x₁,...,x_m). Let's consider any LPOD rule i in Π. Let's obtain Π' from AP_Π(x₁,...,x_m) by replacing O_i(x_i) with the k_i-th option of rule i where k_i = x_i if x_i > 0, k_i = 1 if x_i = 0. We first prove S = S' \ {body_i} is an answer set of Π'.

Since S' must satisfy rules (A3), (A4), (A6), by Lemma 1 (e), S' is an answer set of $AP_{\Pi}(x_1, \ldots, x_m)$ minus rules (A3), (A4), (A6). By Lemma 1 (c), S' is an answer set of $AP_{\Pi}(x_1, \ldots, x_m) \cup \{C_i^{x_i} \leftarrow body_i\}$ minus rules (A3), (A4), (A5), (A6). Note that by rule (A2), S' satisfies $body_i$ iff S' satisfies $Body_i$. There are 2 cases as follows.

- If $S' \models Body_i$, $S' \models body_i$. Since S' satisfies rules (A3) and (A5), we know $x_i > 0$ and S' satisfies $C_i^{x_i}$. Thus k_i equals to x_i . Assume for the sake of contradiction that the first atom among $\{C_i^1, \ldots, C_i^{n_i}\}$ that is true in S' is C_i^j and $j < x_i$. Since S' satisfies rule (A6), S' satisfies $x_i = j$. Contradiction. Thus S' satisfies $C_i^{x_i}$ and doesn't satisfy C_i^j for $j \in \{1, \ldots, x_i 1\}$. By Lemma 2, S' is an answer set of $AP_{\Pi}(x_1, \ldots, x_m)$ union rule (A1) minus rules (A3), (A4), (A5), (A6). By Lemma 3, S is an answer set of Π' .
- If S' ⊭ Body_i, S' ⊭ body_i. By lemma 1 (c), S' is an answer set of AP_Π(x₁,...,x_m) minus rules (A2), (A3), (A4), (A5), (A6). By Lemma 1 (b), S = S' is an answer set of Π'.

So S is an answer set of Π' . Consequently, $S'|_{\sigma}$ is an answer set of $\Pi(k_1, \ldots, k_m)$, where $k_i = x_i$ if $x_i > 0$, $k_i = 1$ if $x_i = 0$. In other words, $S'|_{\sigma}$ is a candidate answer set of Π .

Appendix B Proof of Proposition 2

For any answer set program Π , let $gr(\Pi, x_1, \ldots, x_m)$ be a partial grounded program obtained from Π by replacing variables X_1, \ldots, X_m in Π with x_1, \ldots, x_m .

⁵ For example, suppose $k_i = 2$, and $x_i = 3$ is the index of the first atom in $\{C_i^1, \ldots, C_i^{n_1}\}$ that is true in S. Since S satisfies the k_i -th option of rule $i - C^2 \leftarrow body$, not C^1 , and $S \models body$, then either C^1 is true or C^2 is true, which contradicts with the fact that C^3 is the first atom to be true in S.

Let Π be an LPOD of signature σ . In the following proofs, let $|\text{pod2asp}(\Pi)|$ be $\Pi_1 \cup \Pi_2 \cup \Pi_3$, where Π_1 consists of the rules in bullets 1 and 2 in section **Generate Candidate Answer Sets**, Π_2 consists of the rules in bullet 3 in the same section, and Π_3 consists of the rules in section **Find Preferred Answer Sets**. Note that $|\text{pod2asp}(\Pi)_{base}$ is $\Pi_1 \cup \Pi_2$.

The proof of **Proposition 2** will use a restricted version of the splitting theorem from (Ferraris et al. 2009), which is reformulated as follows:

Splitting Theorem Let Π_1 , Π_2 be two answer set programs, **p**, **q** be disjoint tuples of distinct atoms. If

- each strongly connected component of the dependency graph of Π₁ ∪ Π₂ w.r.t. p ∪ q is a subset of p or a subset of q,
- no atom in **p** has a strictly positive occurrence in Π_2 , and
- no atom in q has a strictly positive occurrence in Π_1 ,

then an interpretation I of $\Pi_1 \cup \Pi_2$ is an answer set of $\Pi_1 \cup \Pi_2$ relative to $\mathbf{p} \cup \mathbf{q}$ if and only if I is an answer set of Π_1 relative to \mathbf{p} and I is an answer set of Π_2 relative to \mathbf{q} .

Proposition 2 The candidate answer sets of an LPOD Π of signature σ are exactly the candidate answer sets on σ of lpod2asp $(\Pi)_{base}$. In other words, (for any set *S*, let $\phi(S)$ be $S \cup \{body_i \mid S \text{ satisfies the body of rule } i \text{ in } \Pi_{od} \}$)

- (a) for any candidate answer set S of Π, there are x₁,..., x_m such that φ(S) is an answer set of AP_Π(x₁,..., x_m), and there exists an optimal answer set S' of Π₁ ∪ Π₂ such that S' ⊨ ap(x₁,..., x_m) and S = shrink(S', x₁,..., x_m);
- (b) for any optimal answer set S' of Π₁∪Π₂ and any x₁,..., x_m such that S' ⊨ ap(x₁,..., x_m), S = shrink(S', x₁,..., x_m) is a candidate answer set of Π, and φ(S) is an answer set of AP_Π(x₁,..., x_m).

Proof. Let $\Pi_{1,2}$ be $\Pi_1 \cup \Pi_2$. According to the translation, the empty set is always an answer set of $\Pi_{1,2}$ (since the empty set doesn't satisfy the body of any rule in $\Pi_{1,2}$), thus there must exist at least one optimal answer set of $\Pi_{1,2}$. Furthermore, by rule (11), the optimal answer set should contain as many ap(*) as possible. Then $gr(\Pi_{1,2}, x_1, \ldots, x_m)$ is $gr(\Pi_1, x_1, \ldots, x_m) \cup gr(\Pi_2, x_1, \ldots, x_m)$. Let $\Pi_{1,2}^{gr}$ be $\bigcup_{y_i \in \{0, \ldots, n_i\}} gr(\Pi_{1,2}, y_1, \ldots, y_m)$. Let $\sigma^{\Pi_{1,2}}$ be the signature of $\Pi_{1,2}^{gr}$, let $\sigma^{gr(\Pi_{1,2}, x_1, \ldots, x_m)}$ be the signature of $gr(\Pi_{1,2}, x_1, \ldots, x_m) \setminus \sigma^{gr(\Pi_1, x_1, \ldots, x_m)}$. We then prove bullets (a) and (b) as follows.

(a) Let S be a candidate answer set of Π . By Proposition 1, $\phi(S)$ must be an answer set of some $AP_{\Pi}(x_1, \ldots, x_m)$ of Π . Let $\psi(S)$ be

 $\{a(\mathbf{v}, x_1, \dots, x_m) \mid a(\mathbf{v}) \in S\} \cup \{body_i(x_1, \dots, x_m) \mid S \text{ satisfies the body of rule } i \text{ in } \Pi_{od}\} \cup \{ap(x_1, \dots, x_m), degree(ap(x_1, \dots, x_m), d_1, \dots, d_m)\},$

where $d_i = 1$ if $x_i = 0$, $d_i = x_i$ if $x_i > 0$. Our target is to construct an S' from $\psi(S)$ and prove S' is an optimal answer set of $\Pi_{1,2}$ such that $S' \models ap(x_1, \ldots, x_m)$, and $S = shrink(S', x_1, \ldots, x_m)$.

First, we prove $\psi(S)$ is an optimal answer set of $gr(\Pi_{1,2}, x_1, \ldots, x_m)$.

 By the construction of ψ(S), ψ(S) satisfies the reduct of gr(Π₂, x₁,..., x_m) relative to ψ(S), and is minimal with respect to σ^{gr(Π₂,x₁,...,x_m)}. So ψ(S) is an answer set of gr(Π₂, x₁,...,x_m) with respect to σ^{gr(Π₂,x₁,...,x_m)}. 2. Since $\phi(S)$ is a minimal model of the reduct of $AP_{\Pi}(x_1, \ldots, x_m)$ relative to $\phi(S)$, and $\psi(S) \models ap(x_1, \ldots, x_m)$, it's easy to check that $\psi(S)$ is a minimal model of the reduct of $gr(\Pi_1, x_1, \ldots, x_m)$ relative to $\psi(S)$ with respect to $\sigma^{gr(\Pi_1, x_1, \ldots, x_m)}$. So $\psi(S)$ is an answer set of $gr(\Pi_1, x_1, \ldots, x_m)$ with respect to $\sigma^{gr(\Pi_1, x_1, \ldots, x_m)}$.

By the splitting theorem, $\psi(S)$ is an answer set of $gr(\Pi_{1,2}, x_1, \ldots, x_m)$. Since $\psi(S)$ satisfies $ap(x_1, \ldots, x_m)$, which is the only ap(*) occurring in $gr(\Pi_{1,2}, x_1, \ldots, x_m)$, $\psi(S)$ must be an optimal answer set of $gr(\Pi_{1,2}, x_1, \ldots, x_m)$.

Then, we construct an optimal answer set S' of $\Pi_{1,2}$ from any optimal answer set S'' of $\Pi_{1,2}$ such that $S' \vDash ap(x_1, \ldots, x_m)$ and $S = shrink(S', x_1, \ldots, x_m)$.

We first show that S'' must satisfy $ap(x_1, \ldots, x_m)$. Assume for the sake of contradiction that S'' does not satisfy $ap(x_1, \ldots, x_m)$. Since each partial grounded program of $\Pi_{1,2}$ is disjoint from each other, by the splitting theorem, $S''|_{\sigma^{gr(\Pi_{1,2},x_1,\ldots,x_m)}}$ is an answer set of $gr(\Pi_{1,2}, x_1, \ldots, x_m)$ and $S'' \setminus S''|_{\sigma^{gr(\Pi_{1,2},x_1,\ldots,x_m)}}$ is an answer set of $\Pi_{1,2}^{gr} \setminus S''|_{\sigma^{gr(\Pi_{1,2},x_1,\ldots,x_m)}}$, since $\psi(S)$ is an answer set of $gr(\Pi_{1,2}, x_1, \ldots, x_m)$, by the splitting theorem, $S''|_{\sigma^{gr(\Pi_{1,2},x_1,\ldots,x_m)}}$, since $\psi(S)$ is an answer set of $gr(\Pi_{1,2}, x_1, \ldots, x_m)$, by the splitting theorem, S' is an answer set of $\Pi_{1,2}$. Since S' has a lower penalty than S'', S'' is not an optimal answer set of $\Pi_{1,2}$, which contradicts with our initial assumption. So S'' must satisfy $ap(x_1, \ldots, x_m)$. Indeed, if there exists an answer set of $AP_{\Pi}(x_1, \ldots, x_m)$,

any optimal answer set of
$$\Pi_{1,2}$$
 must satisfy $ap(x_1, \ldots, x_m)$. (B1)

Consequently, S' has the same penalty as S'' in $\Pi_{1,2}$, which means that S' is an optimal answer set of $\Pi_{1,2}$. Besides, S equals to $shrink(\psi(S), x_1, \ldots, x_m)$, which equals to $shrink(S', x_1, \ldots, x_m)$.

(b) Let S' be an optimal answer set of Π_{1,2} and x₁,..., x_m a list of integers such that S' ⊨ ap(x₁,...,x_m). Our target is to prove S = shrink(S', x₁,...,x_m) is a candidate answer set of Π. By Proposition 1, it is sufficient to prove that φ(S) is an answer set of AP_Π(x₁,...,x_m).

We first split $\Pi_{1,2}^{gr}$ into $gr(\Pi_1, x_1, \ldots, x_m)$ and the remaining part $\Pi_{1,2}^{gr} \setminus gr(\Pi_1, x_1, \ldots, x_m)$. Since

- 1. no atom in $\sigma^{gr(\Pi_1, x_1, \dots, x_m)}$ has a strictly positive occurrence in $\Pi_{1,2}^{gr} gr(\Pi_1, x_1, \dots, x_m)$,
- 2. no atom in $\sigma^{\Pi_{1,2}^{gr}} \setminus \sigma^{gr(\Pi_1, x_1, \dots, x_m)}$ has a strictly positive occurrence in $gr(\Pi_1, x_1, \dots, x_m)$, and
- 3. each strongly connected component of the dependency graph of $\Pi_{1,2}$ w.r.t. $\sigma^{\Pi_{1,2}^{gr}}$ is a subset of $\sigma^{gr(\Pi_1,x_1,...,x_m)}$ or $\sigma^{\Pi_{1,2}^{gr}} \setminus \sigma^{gr(\Pi_1,x_1,...,x_m)}$,

by the splitting theorem, S' is an answer set of $gr(\Pi_1, x_1, \ldots, x_m)$ with respect to $\sigma^{gr(\Pi_1, x_1, \ldots, x_m)}$. So $S'|_{\sigma^{gr(\Pi_1, x_1, \ldots, x_m)}}$ is a minimal model of the reduct of $gr(\Pi_1, x_1, \ldots, x_m)$ relative to $S'|_{\sigma^{gr(\Pi_1, x_1, \ldots, x_m)}}$. Since $S'|_{\sigma^{gr(\Pi_1, x_1, \ldots, x_m)}} \vDash ap(x_1, \ldots, x_m)$, it's easy to check that $\phi(S)$ is a minimal model of the reduct of $AP_{\Pi}(x_1, \ldots, x_m)$ relative to $\phi(S)$, where the reduct can be obtained from the reduct of $gr(\Pi_1, x_1, \ldots, x_m)$ relative to $S'|_{\sigma^{gr(\Pi_1, x_1, \ldots, x_m)}}$ by replacing each occurrence of $ap(x_1, \ldots, x_m)$ with \top , and replacing each occurrence of $a(\mathbf{v}, x_1, \ldots, x_m)$ by $a(\mathbf{v})$ where $a(\mathbf{v}) \in \sigma$. Thus $\phi(S)$ is an answer set of $AP_{\Pi}(x_1, \ldots, x_m)$. By Proposition 1, S is a candidate answer set of Π .

Appendix C Proof of Theorem 1

Let Π be an LPOD of signature σ . Recall that we let $|\text{pod2asp}(\Pi)|$ be $\Pi_1 \cup \Pi_2 \cup \Pi_3$, where Π_1 consists of the rules in bullets 1 and 2 in section **Generate Candidate Answer Sets**, Π_2 consists of the rules in bullet 3 in the same section, and Π_3 consists of the rules in section **Find Preferred Answer Sets**.

Lemma 4

Let Π be an LPOD. There is a 1-1 correspondence between the answer sets of $\text{Ipod2asp}(\Pi)$ and the answer sets of $\Pi_1 \cup \Pi_2$, and any answer set of $\text{Ipod2asp}(\Pi)$ agrees with the corresponding answer set of $\Pi_1 \cup \Pi_2$ on the signature of $\Pi_1 \cup \Pi_2$.

Proof. Let $\Pi_{1,2}$ be $\Pi_1 \cup \Pi_2$. Let's take $\Pi_{1,2}$ as our current program, Π_{cur} , and consider including the translation rules in Π_3 (rules (22) — (36) under each preference criterion) into Π_{cur} . For each criterion, let's include the first rule, e.g., rule (22), into Π_{cur} , it's easy to see that this rule satisfies the condition of Lemma 3. By Lemma 3, there is a 1-1 correspondence between the answer sets of Π_{cur} and the answer sets of $\Pi_{1,2}$. Similarly, if we further include the second rule, e.g., rule (23), into Π_{cur} , there is still a 1-1 correspondence between the answer sets of Π_{cur} and the answer sets of $\Pi_{1,2}$. Similarly, we can include more rules from Π_3 into the current program Π_{cur} in order, and consequently, there is a 1-1 correspondence between the answer sets of $\Pi_{1,2} \cup \Pi_3$ and the answer sets of $\Pi_{1,2}$. Since all the atoms introduced by Π_3 are not in the signature of $\Pi_{1,2}$, any answer set of lpod2asp(Π) agrees with the corresponding answer set of $\Pi_{1,2}$ on the signature of $\Pi_{1,2}$.

Lemma 5

Let S be a candidate answer set of an LPOD II. If $\phi(S) = S \cup \{body_i \mid S \text{ satisfies the body of rule } i \text{ in } \prod_{od} \}$ is an answer set of $AP_{\Pi}(x_1, \ldots, x_m)$ for some x_1, \ldots, x_m , then for $1 \le i \le m$, S satisfies rule i of \prod_{od} to degree 1 if $x_i = 0$, to degree x_i if $x_i > 0$.⁶

Proof. Since $\phi(S)$ is an answer set of $AP_{\Pi}(x_1, \ldots, x_m)$, for $1 \le i \le m$, S satisfies rules (A3), (A4), which are equivalent to:

$$x_i = 0 \leftrightarrow \neg body_i$$
$$x_i > 0 \leftrightarrow body_i$$

If $x_i = 0$, $\phi(S) \not\vDash body_i$. So the body of rule *i* is not satisfied by *S*, which means rule *i* is satisfied at (i.e., satisfied to) degree 1. If $x_i > 0$, $\phi(S) \vDash body_i$. By rule (A6), the first atom in the head of rule *i* that is true in $\phi(S)$, and also *S*, is C^{x_i} , which means that rule *i* is satisfied by *S* at degree x_i . \Box

Lemma 6

Let Π be an LPOD (9). Let $AP_{\Pi}(x_1, \ldots, x_m)$ and $AP_{\Pi}(y_1, \ldots, y_m)$ be two programs that are consistent, where the list x_1, \ldots, x_m is different from y_1, \ldots, y_m . Let S_1 be an answer set of $AP_{\Pi}(x_1, \ldots, x_m)$, S_2 be an answer set of $AP_{\Pi}(y_1, \ldots, y_m)$. Then

- (a) there exists an optimal answer set K of $|pod2asp(\Pi)|$ such that $K \models ap(x_1, \ldots, x_m), K \models ap(y_1, \ldots, y_m), S_1|_{\sigma} = shrink(K, x_1, \ldots, x_m)$, and $S_2|_{\sigma} = shrink(K, y_1, \ldots, y_m)$;
- (b) any optimal answer set K of $lpod2asp(\Pi)$ must satisfy $ap(x_1, \ldots, x_m)$ and $ap(y_1, \ldots, y_m)$.

⁶ This lemma won't hold if $AP_{\Pi}(x_1, \ldots, x_m)$ is replaced by $\Pi(k_1, \ldots, k_m)$.

Proof. (a) Let $\text{Ipod2asp}(\Pi)$ be $\Pi_1 \cup \Pi_2 \cup \Pi_3$ as defined before. By Lemma 4, it is sufficient to prove that there exists an optimal answer set L of $\Pi_1 \cup \Pi_2$ such that $L \models ap(x_1, \ldots, x_m)$, $L \models ap(y_1, \ldots, y_m), S_1|_{\sigma} = shrink(L, x_1, \ldots, x_m)$, and $S_2|_{\sigma} = shrink(L, y_1, \ldots, y_m)$.

Let $\Pi_{1,2}$ be $\Pi_1 \cup \Pi_2$. By Proposition 2, there exists an optimal answer set L_2 of $\Pi_{1,2}$ such that $L_2 \models ap(y_1, \ldots, y_m)$, and $S_2|_{\sigma} = shrink(L_2, y_1, \ldots, y_m)$. Let $\psi(S_1)$ be $\{a(\mathbf{v}, x_1, \ldots, x_m) \mid a(\mathbf{v}) \in S_1\} \cup \{body_i(x_1, \ldots, x_m) \mid S_1$ satisfies the body of rule i in $\Pi_{od}\} \cup \{ap(x_1, \ldots, x_m), d_1, \ldots, d_m)\}$, where $d_i = 1$ if $x_i = 0$, $d_i = x_i$ if $x_i > 0$. Let L be the union of $\psi(S_1)$ and $L_2 \setminus L_2|_{\sigma^{gr(\Pi_{1,2},x_1,\ldots,x_m)}}$. It's easy to see that $L \models ap(x_1, \ldots, x_m)$, $L \models ap(y_1, \ldots, y_m)$, $S_1|_{\sigma} = shrink(L, x_1, \ldots, x_m)$, and $S_2|_{\sigma} = shrink(L, y_1, \ldots, y_m)$. Besides, L has the same penalty as L_2 . So to prove Lemma 6 (a), it is sufficient to prove that L is an answer set of $\Pi_1 \cup \Pi_2$.

First, we prove $\psi(S_1)$ is an answer set of $gr(\Pi_{1,2}, x_1, \ldots, x_m)$.

- 1. By the construction of $\psi(S_1)$, $\psi(S_1)$ satisfies the reduct of $gr(\Pi_2, x_1, \ldots, x_m)$ relative to $\psi(S_1)$, and is minimal with respect to $\sigma^{gr(\Pi_2, x_1, \ldots, x_m)}$. So $\psi(S_1)$ is an answer set of $gr(\Pi_2, x_1, \ldots, x_m)$ relative to $\sigma^{gr(\Pi_2, x_1, \ldots, x_m)}$.
- 2. Since S_1 is a minimal model of the reduct of $AP_{\Pi}(x_1, \ldots, x_m)$ relative to S_1 , and $\psi(S_1) \models ap(x_1, \ldots, x_m)$, it's easy to check that $\psi(S_1)$ is a minimal model of the reduct of $gr(\Pi_1, x_1, \ldots, x_m)$ relative to $\psi(S_1)$ with respect to $\sigma^{gr(\Pi_1, x_1, \ldots, x_m)}$. So $\psi(S_1)$ is an answer set of $gr(\Pi_1, x_1, \ldots, x_m)$ relative to $\sigma^{gr(\Pi_1, x_1, \ldots, x_m)}$.

By the splitting theorem, $\psi(S_1)$ is an answer set of $gr(\Pi_{1,2}, x_1, \ldots, x_m)$.

Second, let $\Pi_{1,2}^{gr}$ be $\bigcup_{y_i \in \{0,\dots,n_i\}} gr(\Pi_{1,2}, y_1, \dots, y_m)$. Since each partial grounded program of $\Pi_{1,2}$ is disjoint from each other, by the splitting theorem, $L_2|_{\sigma^{gr}(\Pi_{1,2}, x_1,\dots, x_m)}$ is an answer set of $gr(\Pi_{1,2}, x_1,\dots, x_m)$ and $L_2 \setminus L_2|_{\sigma^{gr}(\Pi_{1,2}, x_1,\dots, x_m)}$ is an answer set of $\Pi_{1,2}^{gr} \setminus gr(\Pi_{1,2}, x_1,\dots, x_m)$. Finally, by the splitting theorem, L is an answer set of $\Pi_1 \cup \Pi_2$.

(b) Let $lpod2asp(\Pi)$ be $\Pi_1 \cup \Pi_2 \cup \Pi_3$ as defined before. By Lemma 4, it is sufficient to prove that any optimal answer set L of $\Pi_1 \cup \Pi_2$ must satisfy $ap(x_1, \ldots, x_m)$ and $ap(y_1, \ldots, y_m)$. Since S_1 is an answer set of $AP_{\Pi}(x_1, \ldots, x_m)$, and S_2 is an answer set of $AP_{\Pi}(y_1, \ldots, y_m)$, by (B1), any optimal answer set L of $\Pi_1 \cup \Pi_2$ must satisfy $ap(x_1, \ldots, x_m)$ and $ap(y_1, \ldots, y_m)$. \Box

Lemma 7

The candidate answer sets of an LPOD Π of signature σ are exactly the candidate answer sets on σ of lpod2asp(Π). In other words, (for any set S of atoms, let $\phi(S)$ be $S \cup \{body_i \mid S \text{ satisfies the body of rule } i \text{ in } \Pi_{od} \}$)

- (a) for any candidate answer set S of Π, there are x₁,..., x_m such that φ(S) is an answer set of AP_Π(x₁,..., x_m), and there exists an optimal answer set K of lpod2asp(Π) such that K ⊨ ap(x₁,..., x_m) and S = shrink(K, x₁,..., x_m);
- (b) for any optimal answer set K of lpod2asp(Π) and any x₁,..., x_m such that K ⊨ ap(x₁,..., x_m), S = shrink(K, x₁,..., x_m) is a candidate answer set of Π, and φ(S) is an answer set of AP_Π(x₁,..., x_m).

Proof.

(a) Let S be a candidate answer set of Π . Let $lpod2asp(\Pi)$ be $\Pi_1 \cup \Pi_2 \cup \Pi_3$ as defined before. By Proposition 2, there are x_1, \ldots, x_m such that $\phi(S)$ is an answer set of $AP_{\Pi}(x_1, \ldots, x_m)$, and there exists an optimal answer set S' of $\Pi_1 \cup \Pi_2$ such that $S' \models ap(x_1, \ldots, x_m)$ and $S = shrink(S', x_1, \ldots, x_m)$. By Lemma 4, there exists an answer set K of $lpod2asp(\Pi)$

such that K agrees with S' on the signature of $\Pi_1 \cup \Pi_2$. Thus $K \models ap(x_1, \ldots, x_m)$ and $S = shrink(K, x_1, \ldots, x_m)$. Since the signature of $\Pi_1 \cup \Pi_2$ includes all ap(*) atoms and S' is an optimal answer set of $\Pi_1 \cup \Pi_2$, K is an optimal answer set of $|\text{pod}2asp(\Pi)$.

(b) Let K be an optimal answer set of lpod2asp(Π) such that K ⊨ ap(x₁,...,x_m) for some x₁,...,x_m. By Lemma 4, there exists an answer set S' of Π₁ ∪ Π₂ such that S' and K agrees on the signature of Π₁ ∪ Π₂, which means shrink(S', x₁,...,x_m) = shrink(K, x₁,...,x_m), and S' ⊨ ap(x₁,...,x_m). Besides, since K and S' satisfy the same set of ap(*) atoms, and K is an optimal answer set of lpod2asp(Π), S' is an optimal answer set of Π₁ ∪ Π₂. By Proposition 2, S = shrink(S', x₁,...,x_m) is a candidate answer set of Π, and φ(S) is an answer set of AP_Π(x₁,...,x_m).

8

Lemma 8

Under each of the four preference criteria, the preferred answer sets of an LPOD Π of signature σ are exactly the preferred answer sets on σ of lpod2asp(Π). In other words,

- (a) for any preferred answer set S of Π , there exists an optimal answer set K of $\text{lpod2asp}(\Pi)$ and there are x_1, \ldots, x_m such that $K \vDash pAS(x_1, \ldots, x_m)$ and $S = shrink(K, x_1, \ldots, x_m)$;
- (b) for any optimal answer set K of $|pod2asp(\Pi)|$ and any x_1, \ldots, x_m such that $K \models pAS(x_1, \ldots, x_m)$, $S = shrink(K, x_1, \ldots, x_m)$ is a preferred answer set of Π .

Proof. (a) Let Π be an LPOD (9) of signature σ . Let S be a preferred answer set of Π ; and let S_2 be any candidate answer set of Π with different satisfaction degrees compared to S. For any set of atoms S', let $\phi(S') = S' \cup \{body_i \mid S' \text{ satisfies the body of rule } i \text{ in } \Pi_{od}\}$. By Proposition 1, we know $\phi(S)$ is an answer set of $AP_{\Pi}(x_1, \ldots, x_m)$ for some x_1, \ldots, x_m , and $\phi(S_2) = S_2 \cup \{body_i \mid S_2 \text{ satisfies the body of rule } i \text{ for some } 1 \leq i \leq m\}$ is an answer set of $AP_{\Pi}(y_1, \ldots, y_m)$ for some y_1, \ldots, y_m , where by Lemma 5, the list x_1, \ldots, x_m is not the same as y_1, \ldots, y_m .

By Lemma 6 (a), there exists an optimal answer set K of $lpod2asp(\Pi)$ such that $K \models ap(x_1, \ldots, x_m), K \models ap(y_1, \ldots, y_m), S = shrink(K, x_1, \ldots, x_m)$, and $S_2 = shrink(K, y_1, \ldots, y_m)$.

Then it is sufficient to prove $K \vDash pAS(x_1, \ldots, x_m)$, which by rules (26), (31), (34), (37), suffices to proving $K \nvDash prf(ap(y_1, \ldots, y_m), ap(x_1, \ldots, x_m))$ no matter what S_2 we are choosing. Assume for the sake of contradiction that $K \vDash prf(ap(y_1, \ldots, y_m), ap(x_1, \ldots, x_m))$, we will derive a contradiction for each preference criterion. Note that

• $K \models degree(ap(x_1, \ldots, x_m), d_1, \ldots, d_m)$

iff (by rules (18), (19), (20), and given $K \vDash ap(x_1, ..., x_m)$)

• for $1 \le i \le m$, $d_i = 1$ if $x_i = 0$, $d_i = x_i$ if $x_i > 0$

iff (by Lemma 5, and given S is a candidate answer set of Π , and given $\phi(S)$ is an answer set of $AP_{\Pi}(x_1, \ldots, x_m)$)

• the satisfaction degrees of S are d_1, \ldots, d_m .

Similarly,

• $K \vDash degree(ap(y_1, \ldots, y_m), e_1, \ldots, e_m)$

- the satisfaction degrees of S_2 are e_1, \ldots, e_m .
- 1. Cardinality-preferred:
 - $K \vDash prf(ap(y_1, \ldots, y_m), ap(x_1, \ldots, x_m))$

iff (by rule (25))

- there exists a number d such that $0 \le d \le maxdegree 1$ and
 - $K \models prf2degree(ap(y_1, \ldots, y_m), ap(x_1, \ldots, x_m), d+1)$
 - $K \vDash equ2degree(ap(y_1, \ldots, y_m), ap(x_1, \ldots, x_m), Y) \text{ for } 1 \le Y \le d$

iff (by rules (23), (24))

- there exists a number d such that $0 \le d \le maxdegree 1$ and
 - there exist n_1 and n_2 such that $K \models card(ap(y_1, \ldots, y_m), d+1, n_1)$, $K \models card(ap(x_1, \ldots, x_m), d+1, n_2)$, and $n_1 > n_2$
 - for each $1 \le Y \le d$, there exists a number n such that $K \models card(ap(y_1, \ldots, y_m), Y, n)$ and $K \models card(ap(x_1, \ldots, x_m), Y, n)$

iff (by rule (22))

- there exists a number d such that $0 \le d \le maxdegree 1$ and
 - there exist n_1 and n_2 such that S_2 satisfies n_1 rules at degree d, S satisfies n_2 rules at degree d + 1, and $n_1 > n_2$
 - for each $1 \le Y \le d$, there exists a number n such that both S_2 and S satisfy n rules at degree Y

iff (by the semantics of LPOD)

- S_2 is cardinality-preferred to S
- which violates the fact that S is a preferred answer set.

2. Inclusion-preferred:

• $K \vDash prf(ap(y_1, \ldots, y_m), ap(x_1, \ldots, x_m))$

iff (by rule (30))

- there exists a number d such that $0 \le d \le maxdegree 1$ and
 - $K \models prf2degree(ap(y_1, \ldots, y_m), ap(x_1, \ldots, x_m), d+1)$
 - $K \models equ2degree(ap(y_1, \dots, y_m), ap(x_1, \dots, x_m), Y) \text{ for } 1 \le Y \le d$

iff (by rules (27), (28), (29))

- there exists a number d such that $0 \le d \le maxdegree 1$ and
 - $K \not\models equ2degree(ap(y_1, \ldots, y_m), ap(x_1, \ldots, x_m), d+1)$ and for $1 \le i \le m$, whenever S satisfies rule i at degree d + 1, S_2 must also satisfy rule i at degree d + 1;⁷
 - for each 1 ≤ Y ≤ d, S satisfies rule i at degree Y iff S₂ satisfies rule i at degree Y for 1 ≤ i ≤ m⁸

⁷ The atom $\{D_{11} \neq X; D_{21} = X\}$ is true in K iff the number of atoms in this set that is satisfied by K is smaller or equal to 1, which means that this atom is true iff $K \models \neg(\{D_{11} \neq X \land D_{21} = X)$ iff $K \models (D_{21} = X \rightarrow \{D_{11} = X)$. In the case X = d + 1, this atom is true iff "whenever S_2 satisfies rule 1 at degree d + 1, S must satisfies rule 1 at degree d + 1".

⁸ The atom $C_1 = \{D_{11} = X; D_{21} = X\}$ is true in K iff C_1 is the number of atoms in this set that is satisfied by K. Then $C_1 = 0 \lor C_1 = 2$ iff $D_{11} = X \leftrightarrow D_{21} = X$, which can be read as "S satisfies rule 1 at degree X iff S_2 satisfies rule 1 at degree X".

iff

- there exists a number d such that $0 \le d \le maxdegree 1$ and
 - the rules satisfied by S is a proper subset of the rules satisfied by S_2 at degree d+1
 - the rules satisfied by S is exactly the rules satisfied by S_2 at degrees $\{1, \ldots, d\}$
- iff (by the semantics of LPOD)
- S_2 is inclusion-preferred to S

which violates the fact that S is a preferred answer set.

3. Pareto-preferred:

• $K \vDash prf(ap(y_1, \ldots, y_m), ap(x_1, \ldots, x_m))$

iff (by rule (33))

- there exists 2 lists e_1, \ldots, e_m and d_1, \ldots, d_m such that
 - $K \vDash degree(ap(y_1, \ldots, y_m), e_1, \ldots, e_m)$
 - $K \vDash degree(ap(x_1, \ldots, x_m), d_1, \ldots, d_m)$
 - $K \not\models equ(ap(y_1, \ldots, y_m), ap(x_1, \ldots, x_m))$, and
 - $e_1 \le d_1, \dots, e_m \le d_m$

iff (by rule (32))

- there exists 2 lists e_1, \ldots, e_m and d_1, \ldots, d_m such that
 - $K \vDash degree(ap(y_1, \ldots, y_m), e_1, \ldots, e_m)$
 - $K \vDash degree(ap(x_1, \ldots, x_m), d_1, \ldots, d_m)$
 - $e_1 \leq d_1, \ldots, e_m \leq d_m$, and there exists an *i* such that $e_i < d_i$

iff (by the semantics of LPOD)

- S_2 is Pareto-preferred to S
- which violates the fact that S is a preferred answer set.

4. Penalty-Sum-preferred:

• $K \vDash prf(ap(y_1, \ldots, y_m), ap(x_1, \ldots, x_m))$

iff (by rule (36))

- there exist n_1 and n_2 such that
 - $K \vDash sum(ap(y_1, \ldots, y_m), n_1)$
 - $K \vDash sum(ap(x_1, \ldots, x_m), n_2)$, and
 - $n_1 < n_2$

iff (by rule (35))

- there exist n_1 and n_2 such that
 - the sum of the satisfaction degrees of all rules for S_2 is n_1
 - the sum of the satisfaction degrees of all rules for S is n_2 , and

 $- n_1 < n_2$

iff (by the semantics of LPOD)

• S_2 is penalty-sum-preferred to S

which violates the fact that S is a preferred answer set.

(b) Let Π be an LPOD (9) of signature σ ; let K be an optimal answer set of $\text{Ipod2asp}(\Pi)$; and let K satisfy $pAS(x_1, \ldots, x_m)$. By rules (26), (31), (34), (37), $K \models ap(x_1, \ldots, x_m)$. By Lemma 7, $S = shrink(K, x_1, \ldots, x_m)$ is an answer set of $AP_{\Pi}(x_1, \ldots, x_m)$. We will prove that S is a preferred answer set of Π .

Assume for the sake of contradiction that there exists a candidate answer set S_2 of Π and S_2 is preferred to S. By Proposition 1, S_2 is also an answer set of $AP_{\Pi}(y_1, \ldots, y_m)$ for some y_1, \ldots, y_m , where by Lemma 5, the list y_1, \ldots, y_m is not the same as x_1, \ldots, x_m . By Lemma 6 (b), K must satisfy $ap(y_1, \ldots, y_m)$. Since $K \models pAS(x_1, \ldots, x_m)$, by rules (26), (31), (34), (37), to prove a contradiction, it is sufficient to prove $K \models prf(ap(y_1, \ldots, y_m), ap(x_1, \ldots, x_m))$.

By Lemma 7, $shrink(K, y_1, \ldots, y_m)$ is a candidate answer set of Π . By Lemma 7 and Lemma 5, $shrink(K, y_1, \ldots, y_m)$ has the same satisfaction degrees as S_2 . So $shrink(S', y_1, \ldots, y_m)$ is preferred to S. As we proved in bullet (a), under any of the four criterion, $shrink(S', y_1, \ldots, y_m)$ is preferred to S iff $K \models prf(ap(y_1, \ldots, y_m), ap(x_1, \ldots, x_m))$. Since $shrink(S', y_1, \ldots, y_m)$ is preferred to S, $K \models prf(ap(y_1, \ldots, y_m), ap(x_1, \ldots, x_m))$. \Box

Theorem 1 Under any of the four preference criteria, the candidate (preferred, respectively) answer sets of an LPOD Π of signature σ are exactly the candidate (preferred, respectively) answer sets on σ of $|pod2asp(\Pi)$.

Proof. The proof follows from Lemma 7 and Lemma 8. \Box

Appendix D Proof of Proposition 3

Let's review the definition of $AP_{\Pi}(x_1, \ldots, x_m)$. Let Π be a CR-Prolog₂ program of signature σ , where its rules are rearranged such that the cr-rules are of indices $1, \ldots, k$, the ordered cr-rules are of indices $k + 1, \ldots, l$, and the ordered rules are of indices $l + 1, \ldots, m$. These 3 sets of rules are called $\Pi_{cr}, \Pi_{ocr}, \Pi_{or}$ respectively, and the remaining part in Π is called Π_r . For each rule i in $\Pi_{ocr} \cup \Pi_{or}$, let n_i denote the number of atoms in head(i). Let D_i be the set $\{0, 1\}$ for $1 \le i \le k$; $\{0, \ldots, n_i\}$ for $k + 1 \le i \le l$; $\{1, \ldots, n_i\}$ for $l + 1 \le i \le m$. $AP_{\Pi}(x_1, \ldots, x_m)$ denotes an assumption program obtained from Π as follows, where $x_i \in D_i$.

- $AP_{\Pi}(x_1,\ldots,x_m)$ contains Π_r
- for each cr-rule $i : Head_i \leftarrow Body_i$ in $\Pi_{cr}, AP_{\Pi}(x_1, \ldots, x_m)$ contains

$$Head_i \leftarrow Body_i, x_i = 1$$
 (D1)

• for each ordered rule or ordered cr-rule $i : C_i^1 \times \cdots \times C_i^{n_i} \stackrel{(+)}{\leftarrow} Body_i$ in $\Pi_{or} \cup \Pi_{ocr}$, for $1 \le j \le n_i, AP_{\Pi}(x_1, \ldots, x_m)$ contains

$$C_i^j \leftarrow Body_i, x_i = j \tag{D2}$$

• $AP_{\Pi}(x_1, \ldots, x_m)$ also contains the following rules:

$$\begin{split} & isPreferred(R1,R2) \leftarrow prefer(R1,R2). \\ & isPreferred(R1,R3) \leftarrow prefer(R1,R2), isPreferred(R2,R3). \\ & \leftarrow isPreferred(R,R). \\ & \leftarrow x_{r_1} > 0, x_{r_2} > 0, isPreferred(r_1,r_2). \quad (1 \leq r_1, r_2 \leq l) \end{split}$$

Proposition 3 For any CR-Prolog₂ program Π of signature σ , a set X of atoms is the projection

of a generalized answer set of Π onto σ iff X is the projection of an answer set of an assumption program of Π onto σ . In other words,

- (a) for any generalized answer set S of Π , there exists an assumption program $AP_{\Pi}(x_1, \ldots, x_m)$ of Π and one of its answer set S' such that $S|_{\sigma} = S'|_{\sigma}$;
- (b) for any answer set S' of any assumption program $AP_{\Pi}(x_1, \ldots, x_m)$ of Π , there exists a generalized answer set S of Π such that $S'|_{\sigma} = S|_{\sigma}$.

Proof. Let Π be a CR-Prolog₂ program. According to the semantics of CR-Prolog₂, S is a generalized answer set of Π iff S is an answer set of H'_{Π} , where H'_{Π} is obtained from Π as follows.⁹

- H'_{Π} contains Π_r
- for each cr-rule $i : Head_i \stackrel{+}{\leftarrow} Body_i$ in Π_{cr}, H'_{Π} contains

$$Head_i \leftarrow Body_i, appl(i)$$
 (D3)

• for each ordered cr-rule $i: C_i^1 \times \cdots \times C_i^{n_i} \stackrel{+}{\leftarrow} Body_i$ in \prod_{ocr} , for $1 \le j \le n_i$, H'_{Π} contains

$$C^{j} \leftarrow Body_{i}, appl(i), appl(choice(i, j))$$
 (D4)

$$fired(i) \leftarrow appl(choice(i,j))$$
 (D5)

$$prefer(choice(i, j), choice(i, j+1)) \quad (1 \le j \le n_i - 1)$$
(D6)

$$-Body_i, appl(i), not fired(i)$$
 (D7)

• for each ordered rule $i: C_i^1 \times \cdots \times C_i^{n_i} \leftarrow Body_i$ in Π_{or} , for $1 \le j \le n_i$, H'_{Π} contains

$$C^{j} \leftarrow Body_{i}, appl(choice(i, j))$$
 (D8)

$$fired(i) \leftarrow appl(choice(i,j))$$
 (D9)

$$prefer(choice(i, j), choice(i, j+1)) \quad (1 \le j \le n_i - 1)$$
(D10)

- $\leftarrow Body_i, not \, fired(i) \tag{D11}$
- H'_{Π} also contains:

$$isPreferred(R1, R2) \leftarrow prefer(R1, R2).$$
 (D12)

$$isPreferred(R1, R3) \leftarrow prefer(R1, R2), isPreferred(R2, R3).$$
 (D13)

 $\leftarrow isPreferred(R,R). \tag{D14}$

$$= appl(R1), appl(R2), is Preferred(R1, R2).$$
(D15)

• and for each $A \in atoms(H_{\Pi}, \{appl\}), H'_{\Pi}$ also contains

$$A\}.$$
 (D16)

Note that rule (D12) can be considered as two rules: (D12r), in which each variable is grounded by an index of a cr-rule; and (D12a), in which each variable is grounded by a term choice(*). Similarly, each of the rules (D13), (D14), (D15) can be considered as two rules.

The (propositional) signature of H'_{Π} is $\sigma \cup atoms(H'_{\Pi}, \{appl, fired, prefer, isPreferred\})$, while the (propositional) signature of $AP_{\Pi}(x_1, \ldots, x_m)$ is $\sigma \cup atoms(AP_{\Pi}(x_1, \ldots, x_m), \{isPreferred\})$, which is a subset of the signature of H'_{Π} .

⁹ Note that H'_{Π} is similar to H_{Π} (which is defined in Section 3.1 of the paper) except that H'_{Π} contains a choice rule

 $^{\{}A\}$ for each $A \in atoms(H_{\Pi}, \{appl\}).$

(a) Let S be a generalized answer set of Π . Then S is an answer set of H'_{Π} . We obtain x_1, \ldots, x_m such that

$$\begin{array}{l} --\text{ for } 1 \leq i \leq k: \, x_i = 0 \text{ if } S \not\vDash appl(i), \\ x_i = 1 \text{ if } S \vDash appl(i); \\ --\text{ for } k+1 \leq i \leq l: \, x_i = 0 \text{ if } S \not\vDash appl(i) \text{ and } S \vDash appl(choice(i,j)), \\ x_i = j \text{ if } S \vDash appl(i) \text{ and } S \vDash appl(choice(i,j)), \\ x_i = 1 \text{ if } S \vDash appl(i) \text{ and } S \not\vDash appl(choice(i,j)) \text{ for all } j \text{ (in the case when } S \not\vDash Body_i); \\ --\text{ for } l+1 \leq i \leq m: \, x_i = j \text{ if } S \vDash appl(choice(i,j)), \\ x_i = 1 \text{ if } S \not\vDash appl(choice(i,j)), \\ x_i = 1 \text{ if } S \not\vDash appl(choice(i,j)) \text{ for all } j. \end{array}$$

Then it is sufficient to prove that the projection of S onto

 $\sigma \cup atoms(AP_{\Pi}(x_1,\ldots,x_m), \{isPreferred\})$

is an answer set of $AP_{\Pi}(x_1, \ldots, x_m)$. This is equivalent to proving S is a minimal model of the reduct of $AP_{\Pi}(x_1, \ldots, x_m)$ relative to $\sigma \cup atoms(AP_{\Pi}(x_1, \ldots, x_m), \{isPreferred\})$. The assumption program $AP_{\Pi}(x_1, \ldots, x_m)$ is similar to H'_{Π} except that

- 1. $AP_{\Pi}(x_1, \ldots, x_m)$ does not contain the constraints: (D7), (D11), (D14a,) (D15a)
- 2. $AP_{\Pi}(x_1, \ldots, x_m)$ does not contain the definitions for fired(*), prefer(choice(*), choice(*)), and isPreferred(choice(*), choice(*)): (D5), (D6), (D9), (D10), (D12a), (D13a)
- 3. $AP_{\Pi}(x_1, \ldots, x_m)$ uses the value assignments for x_i to represent appl(*) in H'_{Π}

Let $(H'_{\Pi})_{i,\ldots,j}$ denote the set of rules in H'_{Π} translated by rules $(i),\ldots,(j)$.

First, let's obtain Π_1 from H'_{Π} by removing the constraints (D7), (D11), (D14a,) (D15a). In other words, Π_1 is $H'_{\Pi} \setminus (H'_{\Pi})_{D7,D11,D14a,D15a}$. By Lemma 1 (e), S is an answer set of Π_1 .

Second, let's obtain Π_2 from Π_1 by removing the definitions for fired(*),

prefer(choice(*), choice(*)), and isPreferred(choice(*), choice(*)). In other words, Π_2 is $\Pi_1 \setminus (H'_{\Pi})_{D5,D6,D9,D10,D12a,D13a}$. Let σ_1 be the propositional signature of Π_1 and let σ_2 be the propositional signature of Π_2 . We will use the splitting theorem to split Π_1 into Π_2 and $(H'_{\Pi})_{D5,D6,D9,D10,D12a,D13a}$. Since

- 1. no atom in σ_2 has a strictly positive occurrence in $(H'_{\Pi})_{D5,D6,D9,D10,D12a,D13a}$,
- 2. no atom in $\sigma_1 \setminus \sigma_2$ has a strictly positive occurrence in Π_2 , and
- each strongly connected component of the dependency graph of Π₁ w.r.t. σ₁ is a subset of σ₂ or σ₁ \ σ₂,

by the splitting theorem, S is an answer set of Π_2 relative to σ_2 , where σ_2 equals to $\sigma \cup atoms(\Pi_2, \{appl\}) \cup atoms(\Pi_2, \{isPreferred\}).$

Third, by the assignments of x_i, \ldots, x_m , we know

— for $1 \le i \le k$: $S \vDash appl(i)$ iff $x_i = 1$,

- for $k+1 \leq i \leq l$: $S \models Body_i \land appl(i) \land appl(choice(i, j))$ iff $S \models Body_i$ and $x_i = j$
- for $l+1 \leq i \leq m$: $S \vDash Body_i \land appl(choice(i, j))$ iff $S \vDash Body_i$ and $x_i = j$.

Note that we can obtain $AP_{\Pi}(x_1, \ldots, x_m)$ from Π_2 by

— for $1 \le i \le k$, replacing appl(i) with $x_i = 1$ in rule (D3);

¹⁰ Since S is an answer set of H'_{Π} , by rules (D6), (D12), (D13), and (D15), S cannot satisfy appl(choice(i, j)) for two different j.

- for $k + 1 \le i \le l$, replacing $appl(i) \land appl(choice(i, j))$ with $x_i = j$ in rule (D4); - for $l + 1 \le i \le m$, replacing appl(choice(i, j)) with $x_i = j$ in rule (D8) - for $1 \le i \le l$, replacing appl(i) with $x_i > 0$ in (grounded) rule (D15).

Since S is a minimal model of the reduct of Π_2 relative to $\sigma \cup atoms(H_{\Pi}, appl) \cup atoms(\Pi_2, \{isPreferred\}), S$ is a minimal model of the reduct of $AP_{\Pi}(x_1, \ldots, x_m)$ relative to $\sigma \cup atoms(\Pi_2, \{isPreferred\})$. Since

 $atoms(\Pi_2, \{isPreferred\}) = atoms(AP_{\Pi}(x_1, \dots, x_m), \{isPreferred\}),$

S is a minimal model of the reduct of $AP_{\Pi}(x_1,\ldots,x_m)$ relative to

 $\sigma \cup atoms(AP_{\Pi}(x_1,\ldots,x_m), \{isPreferred\}).$

(b) Let $AP_{\Pi}(x_1, \ldots, x_m)$ be an assumption program of Π , and S_{sp} be an answer set of $AP_{\Pi}(x_1, \ldots, x_m)$.

It is sufficient to prove S is an answer set of H'_{Π} . Let Π_1 be $H'_{\Pi} \setminus (H'_{\Pi})_{D7,D11,D14a,D15a}$. Let Π_2 be $\Pi_1 \setminus (H'_{\Pi})_{D5,D6,D9,D10,D12a,D13a}$. First, we prove

 $S_{sp} \cup \{appl(i) \mid 1 \le i \le k, x_i = 1\} \\ \cup \{appl(i), appl(choice(i, j)) \mid k + 1 \le i \le l, x_i = j, j > 0\} \\ \cup \{appl(choice(i, j)) \mid l + 1 \le i \le m, x_i = j\},$

denoted by S_2 , is an answer set of Π_2 . Let's compare the reduct of $AP_{\Pi}(x_1, \ldots, x_m)$ relative to S_{sp} and the reduct of Π_2 relative to S_2 . The reduct of Π_2 relative to S_2 can be obtained from the reduct of $AP_{\Pi}(x_1, \ldots, x_m)$ relative to S_{sp} by adding the facts

- 1. appl(i) for $1 \le i \le k$ and $x_i = 1$,
- 2. appl(i) and appl(choice(i, j)) for $k + 1 \le i \le l$, and $x_i = j, j > 0$,
- 3. appl(choice(i, j)) for $l + 1 \le i \le m$, and $x_i = j$;

and replacing

x_i = 1 by appl(i) for 1 ≤ i ≤ k,
 x_i = j, where j > 0, by appl(i) ∧ appl(choice(i, j)) for k + 1 ≤ i ≤ l,
 x_i = j by appl(choice(i, j)) for l + 1 ≤ i ≤ m.

Since S_{sp} is a minimal model of the reduct of $AP_{\Pi}(x_1, \ldots, x_m)$ relative to S_{sp} , and since

1. for $1 \le i \le k$, $S_2 \vDash appl(i)$ iff $x_i = 1$, 2. for $k + 1 \le i \le l$, $S_2 \vDash appl(i) \land appl(choice(i, j))$ iff $x_i = j \land j > 0$, 3. for $l + 1 \le i \le m$, appl(choice(i, j)) iff $x_i = j$;

 S_2 is a minimal model of the reduct of Π_2 relative to S_2 .

Second, we prove S is an answer set of Π_1 . Note that S equals

$$\begin{array}{ll} S_2 & \cup \{fired(i) \mid k+1 \leq i \leq l, x_i = j, j > 0\} \\ & \cup \{fired(i) \mid l+1 \leq i \leq m, x_i = j\} \\ & \cup \{prefer(choice(i,j), choice(i,j+1)) \mid k+1 \leq i \leq m, 1 \leq j \leq n_i\} \\ & \cup \{isPreferred(choice(i,j_1), choice(i,j_2)) \mid k+1 \leq i \leq m, 1 \leq j_1 < j_2 \leq n_i\}. \end{array}$$

Let σ_1 be the propositional signature of Π_1 and let σ_2 be the propositional signature of Π_2 . We will use the splitting theorem to construct Π_1 from Π_2 and $(H'_{\Pi})_{D5,D6,D9,D10,D12a,D13a}$. Note that

- 1. no atom in σ_2 has a strictly positive occurrence in $(H'_{\Pi})_{D5,D6,D9,D10,D12a,D13a}$,
- 2. no atom in $\sigma_1 \setminus \sigma_2$ has a strictly positive occurrence in Π_2 , and
- each strongly connected component of the dependency graph of Π₁ w.r.t. σ₁ is a subset of σ₂ or σ₁ \ σ₂,

Since S is an answer set of Π_2 relative to σ_2 , and it's easy to check that S is an answer set of $(H'_{\Pi})_{D5,D6,D9,D10,D12a,D13a}$ relative to $\sigma_1 \setminus \sigma_2$, S is an answer set of Π_1 . Third, since S satisfies rules (D7), (D11), (D14a), (D15a), by Lemma 1 (d), S is an answer

Third, since S satisfies rules (D7), (D11), (D14a), (D15a), by Lemma 1 (d), S is an answer set of H'_{Π} .

Appendix E Proof of Theorem 2

We first review some definitions. Let Π be a CR-Prolog₂ program. Let S be an optimal answer set of crp2asp(Π). Let x_1, \ldots, x_m be a list of integers such that $x_i \in D_i$. If $S \models ap(x_1, \ldots, x_m)$, we define the set $shrink(S, x_1, \ldots, x_m)$ as a generalized answer set on σ of crp2asp(Π); if $S \models candidate(x_1, \ldots, x_m)$, we define the set $shrink(S, x_1, \ldots, x_m)$ as a candidate answer set on σ of crp2asp(Π); if $S \models pAS(x_1, \ldots, x_m)$, we define the set $shrink(S, x_1, \ldots, x_m)$ as a preferred answer set on σ of crp2asp(Π).

Theorem 2 For any CR-Prolog₂ program Π of signature σ ,

- (a) The projections of the generalized answer sets of Π onto σ are exactly the generalized answer sets on σ of crp2asp(Π).
- (b) The projections of the candidate answer sets of Π onto σ are exactly the candidate answer sets on σ of crp2asp(Π).
- (c) The preferred answer sets of Π are exactly the preferred answer sets on σ of crp2asp(Π).

Proof. (a): Let Π be a CR-Prolog₂ program of signature σ . By Proposition 3, it is sufficient to prove that the projections (onto σ) of the answer sets of all assumption programs $AP_{\Pi}(x_1, \ldots, x_m)$ of Π are exactly the generalized answer sets on σ of crp2asp(Π) such that

- for any answer set S of any AP_Π(x₁,...,x_m), there exists an optimal answer set S' of crp2asp(Π) such that S' ⊨ ap(x₁,...,x_m) and S_σ = shrink(S', x₁,...,x_m);
- for any generalized answer set on σ, shrink(S', x₁,..., x_m), of crp2asp(Π) (where S' is an optimal answer set of crp2asp(Π) and S' ⊨ ap(x₁,..., x_m)), there exists an answer set S of AP_Π(x₁,..., x_m) such that S_σ = shrink(S', x₁,..., x_m).

Let $\operatorname{crp2asp}(\Pi) = \Pi_{base} \cup \Pi_{pref}$, where Π_{pref} is the set of rules translated from rules (48), (53), (54), (55), (56). We use Lemma 3 to prove that there is a 1-1 correspondence between the answer sets of $\operatorname{crp2asp}(\Pi)$ and the answer sets of Π_{base} , while an answer set of $\operatorname{crp2asp}(\Pi)$ agrees with the corresponding answer set of Π_{base} on the signature of Π_{base} . Let's take Π_{base} as our current program, Π_{cur} , and consider including the translation rules in Π_{pref} into Π_{cur} . If we include rules (48) and (53), by Lemma 3, there is a 1-1 correspondence between the answer sets of Π_{cur} and the answer sets of Π_{base} . Similarly, we can include rules (54), (55), (56) in order into Π_{cur} , and find that there is a 1-1 correspondence between the answer sets of $\Pi_{base} \cup \Pi_{pref}$ and the answer sets of Π_{base} , while an answer set of $\Pi_{base} \cup \Pi_{pref}$ agrees with the corresponding answer set of Π_{base} on the signature of Π_{base} . Since the predicates introduced by Π_{pref} are not in σ , it is sufficient to prove that the projections of the answer sets of all assumption programs $AP_{\Pi}(x_1, \ldots, x_m)$ of Π onto σ are exactly the generalized answer sets on σ of Π_{base} .

According to the translation, the empty set is always an answer set of Π_{base} , thus there must exist at least one optimal answer set of Π_{base} . Furthermore, by rule (44), the optimal answer set should contain as many ap(*) as possible. Let $gr(\Pi_{base}, x_1, \ldots, x_m)$ be a partial grounded program obtained from Π_{base} by replacing variables X_1, \ldots, X_m with x_1, \ldots, x_m . Since each partial grounded program is disjoint from each other, by the splitting theorem, it is sufficient to prove a 1-1 correspondence ϕ between the answer sets of $AP_{\Pi}(x_1, \ldots, x_m)$ and the optimal answer sets of $gr(\Pi_{base}, x_1, \ldots, x_m)$ such that

- (a.1) For any answer set S of $AP_{\Pi}(x_1, \ldots, x_m)$, $\phi(S) = \{a(\mathbf{v}, x_1, \ldots, x_m) \mid a(\mathbf{v}) \in S\} \cup \{ap(x_1, \ldots, x_m)\}$ is an optimal answer set of $gr(\Pi_{base}, x_1, \ldots, x_m)$.
- (a.2) For any optimal answer set S' of $gr(\Pi_{base}, x_1, \ldots, x_m)$, if $S' \not\models ap(x_1, \ldots, x_m)$, then $AP_{\Pi}(x_1, \ldots, x_m)$ has no answer set; if $S' \models ap(x_1, \ldots, x_m)$, then

$$S = \{a(\mathbf{v}) \mid a(\mathbf{v}, x_1, \dots, x_m) \in S'\} \setminus \{sp\}$$

is an answer set of $AP_{\Pi}(x_1, \ldots, x_m)$.

To prove bullet (a.1), let S be an answer set of $AP_{\Pi}(x_1, \ldots, x_m)$, and let $\phi(S)$ be $\{a(\mathbf{v}, x_1, \ldots, x_m) \mid a(\mathbf{v}) \in S\} \cup \{ap(x_1, \ldots, x_m)\}$. Since $\phi(S)$ satisfies $ap(x_1, \ldots, x_m)$, which is the only ap(*) in $gr(\Pi_{base}, x_1, \ldots, x_m)$, if we prove $\phi(S)$ is an answer set of $gr(\Pi_{base}, x_1, \ldots, x_m)$, $\phi(S)$ must be an optimal answer set of $gr(\Pi_{base}, x_1, \ldots, x_m)$. Note that, if we ignore the suffix x_1, \ldots, x_m in the reduct of $gr(\Pi_{base}, x_1, \ldots, x_m)$ relative to $\phi(S)$, it is almost the same as the reduct of $AP_{\Pi}(x_1, \ldots, x_m)$ relative to S except that the former has one more atom sp. Since S is a minimal model of the reduct of $gr(\Pi_{base}, x_1, \ldots, x_m)$ relative to S, and $\phi(S) \models ap(x_1, \ldots, x_m)$, $\phi(S)$ is a minimal model of the reduct of $gr(\Pi_{base}, x_1, \ldots, x_m)$ relative to $\phi(S)$. Thus $\phi(S)$ is an answer set of $gr(\Pi_{base}, x_1, \ldots, x_m)$.

To prove bullet (a.2), let S' be an optimal answer set of $gr(\Pi_{base}, x_1, \ldots, x_m)$. There are 2 cases as follows.

- ap(x₁,...,x_m) ∉ S'. We will prove AP_Π(x₁,...,x_m) has no answer set. Assume for the sake of contradiction that there exists an answer set S of AP_Π(x₁,...,x_m), by the bullet (a.1) that we just proved, φ(S) is an optimal answer set of gr(Π_{base}, x₁,...,x_m). Since φ(S) ⊨ ap(x₁,...,x_m), by rule (44), it has lower penalty than S', thus S' is not an optimal answer set, which is not the case. So AP_Π(x₁,...,x_m) has no answer set.
- 2. $ap(x_1, \ldots, x_m) \in S'$. Since S' is a minimal model of the reduct of $gr(\Pi_{base}, x_1, \ldots, x_m)$, if we remove all occurrence of $ap(x_1, \ldots, x_m)$ and x_1, \ldots, x_m in both S' and the reduct

of $gr(\Pi_{base}, x_1, \ldots, x_m)$ relative to S', the set of atoms $S = \{a(\mathbf{v}) \mid a(\mathbf{v}, x_1, \ldots, x_m) \in S'\} \setminus \{sp\}$ should be a minimal model of the new program, which is the reduct of $AP_{\Pi}(x_1, \ldots, x_m)$. Thus S is an answer set of $AP_{\Pi}(x_1, \ldots, x_m)$.

- (b): To prove Theorem 2 (b), it is sufficient to prove
- (b.1) for any candidate answer set S of Π , there exist an optimal answer set S' of crp2asp(Π) and a list x_1, \ldots, x_m such that $S' \vDash candidate(x_1, \ldots, x_m)$, and $S_{\sigma} = shrink(S', x_1, \ldots, x_m)$;
- **(b.2)** for any optimal answer set S' of crp2asp(Π), if S' \vDash candidate(x_1, \ldots, x_m), there exists a candidate answer set S of Π such that $S_{\sigma} = shrink(S', x_1, \ldots, x_m)$.

Let Π be a CR-Prolog₂ program with signature σ ; Π' be its translation crp2asp(Π).

To prove bullet (b.1), let S be a candidate answer set of Π , then by the semantics of CR-Prolog₂, S must be a generalized answer set of Π . We obtain x_1, \ldots, x_m such that,

- for $1 \le i \le k$: $x_i = 0$ if $S \nvDash appl(i)$, $x_i = 1$ if $S \vDash appl(i)$;
- for $k + 1 \le i \le l$: $x_i = 0$ if $S \nvDash appl(i)$, $x_i = j$ if $S \vDash appl(i)$ and $S \vDash appl(choice(i, j))$,
 - $x_i = 1$ if $S \vDash appl(i)$ and $S \nvDash appl(choice(i, j))$ for any j;
- for $l+1 \le i \le m$: $x_i = j$ if $S \vDash appl(choice(i, j))$, $x_i = 1$ if $S \nvDash appl(choice(i, j))$ for any j.

Note that the signature of $AP_{\Pi}(x_1, \ldots, x_m)$ is $\sigma' = \sigma \cup atoms(AP_{\Pi}(x_1, \ldots, x_m), \{isPreferred\})$. As we proved in the proof of Proposition 3, S is an answer set of $AP_{\Pi}(x_1, \ldots, x_m)$ with respect to σ' . Then $S_{\sigma'}$ is an answer set of $AP_{\Pi}(x_1, \ldots, x_m)$. By the first bullet in the proof for Theorem 2 (a), $\phi(S_{\sigma'}) = \{a(\mathbf{v}, x_1, \ldots, x_m) \mid a(\mathbf{v}) \in S_{\sigma'}\} \cup \{ap(x_1, \ldots, x_m)\}$ is an optimal answer set of $gr(\Pi_{base}, x_1, \ldots, x_m)$. Then there exists an optimal answer set S' of Π' such that $S' \models ap(x_1, \ldots, x_m)$ and $S_{\sigma} = shrink(S', x_1, \ldots, x_m)$.

Then, it suffices to proving $S' \vDash candidate(x_1, \ldots, x_m)$. Assume for the sake of contradiction that $S' \nvDash candidate(x_1, \ldots, x_m)$.

• $S' \not\models candidate(x_1, \ldots, x_m)$

iff (by rule (54))

• there exists an AP such that $S' \vDash dominate(AP, ap(x_1, \dots, x_m))$

iff (by rule (48) and (53))

- there exist $i \in \{k + 1, \dots, m\}$ and a list x'_1, \dots, x'_m such that $S' \models ap(x'_1, \dots, x'_m)$, $0 < x'_i$, and $x'_i < x_i$, or
- there exist $r_1, r_2 \in \{1, \ldots, l\}$ and a list x'_1, \ldots, x'_m such that $S' \models ap(x'_1, \ldots, x'_m)$, $S' \models isPreferred(r_1, r_2, x'_1, \ldots, x'_m)$, $S' \models isPreferred(r_1, r_2, x_1, \ldots, x_m)$, $x'_{r_1} > 0$, and $x_{r_2} > 0$

iff (by the first 2 bullets in the proof for Theorem 2 (a) and by the assignments of x_i)

- there exists i ∈ {k+1,...,m}, a generalized answer set A, and x_i, x'_i ∈ {1,...,n_i} such that A ⊨ appl(choice(i, x'_i)), S ⊨ appl(choice(i, x_i)), and x'_i < x_i
- there exist $r_1, r_2 \in \{1, \dots, l\}$, and a generalized answer set A such that $A \vDash isPreferred(r_1, r_2)$, $S \vDash isPreferred(r_1, r_2)$, $A \vDash appl(r_1)$, and $S \vDash appl(r_2)$

iff (by the definition of dominate)

• there exists a generalized answer set A that dominates S

which contradicts with the fact that S is a candidate answer set. Thus $S' \vDash candidate(x_1, \ldots, x_m)$ and $S_{\sigma} = shrink(S', x_1, \ldots, x_m)$.

To prove bullet (**b.2**), let S' be an optimal answer set of Π' and $S' \vDash candidate(x_1, \ldots, x_m)$ for some list $x_1 \ldots, x_m$. By rule (54), $S' \vDash ap(x_1, \ldots, x_m)$. Then by bullet (a), there exists a generalized answer set S of Π such that $S_{\sigma} = shrink(S', x_1, \ldots, x_m)$. Then it is sufficient to prove S is a candidate answer set of Π .

Assume for the sake of contradiction that S is not a candidate answer set of Π , then there must exists a generalized answer set A that dominates S. By the "iff" statements above, we can derive $S' \nvDash candidate(x_1, \ldots, x_m)$, which leads to a contradiction.

(c): Let Π be a CR-Prolog₂ program with signature σ ; Π' be its translation crp2asp(Π). To prove Theorem 2 (c), it is sufficient to prove

- (c.1) for any preferred answer set S of Π , there exists an optimal answer set S' of Π' such that $S' \models pAS(x_1, \ldots, x_m)$ for some x_1, \ldots, x_m , and $S_{\sigma} = shrink(S', x_1, \ldots, x_m)$
- (c.2) for any optimal answer set S' of Π' , if $S' \models pAS(x_1, \ldots, x_m)$ for some x_1, \ldots, x_m , there exists a preferred answer set S of Π such that $S_{\sigma} = shrink(S', x_1, \ldots, x_m)$.

To prove bullet (c.1), let S be a preferred answer set of Π , then S must be a candidate answer set of Π . By Theorem 2 (b), there exists an optimal answer set S' of Π' and a list x_1, \ldots, x_m such that $S' \vDash candidate(x_1, \ldots, x_m)$ and $S_{\sigma} = shrink(S', x_1, \ldots, x_m)$. Then it is sufficient to prove $S' \vDash pAS(x_1, \ldots, x_m)$.

Assume for the sake of contradiction that $S' \not\vDash pAS(x_1, \ldots, x_m)$.

• $S' \not\models pAS(x_1, \ldots, x_m)$

iff (since $S' \vDash candidate(x_1, \ldots, x_m)$), and by rule (56))

• there exists a AP such that $S' \models lessCrRulesApplied(AP, ap(x_1, \ldots, x_m))$

iff (by rule (55))

there exist a list x'₁,..., x'_m such that S' ⊨ candidate(x'₁,..., x'_m), x'_i ≤ x_i for 1 ≤ i ≤ m, and there exists a j such that x'_i < x_j

iff (since $S' \not\vDash dominate(ap(x'_1, \dots, x'_m), ap(x_1, \dots, x_m))$), by rule (48))

• there exist a list x'_1, \ldots, x'_m such that $S' \vDash candidate(x'_1, \ldots, x'_m)$, $x'_i \le x_i$ for $1 \le i \le m$, there exists a j such that $x'_j < x_j$, and for any $x'_i < x_i$, $x'_i = 0$

iff (by the assignments of x_i)

• there exist a candidate answer set A such that the atoms of the form appl(*) in A is a proper subset of those in S

which contradicts with the fact that S is a preferred answer set.

To prove bullet (c.2), let S' be an optimal answer set of Π' and $S' \models pAS(x_1, \ldots, x_m)$ for some list x_1, \ldots, x_m . By rules (56) and (54), $S' \models candidate(x_1, \ldots, x_m)$ and $S' \models ap(x_1, \ldots, x_m)$. Then by Theorem 2 (b), there exists a candidate answer set S of Π such that $S_{\sigma} = shrink(S', x_1, \ldots, x_m)$. Then it is sufficient to prove S is a preferred answer set of Π .

Assume for the sake of contradiction that S is not a preferred answer set of Π , then there must exists a candidate answer set A such that the atoms of the form appl(*) in A is a proper subset of those in S. By the "iff" statements above, we can derive $S' \not\models pAS(x_1, \ldots, x_m)$, which leads to a contradiction. \Box