Online appendix for the paper

A Probabilistic Extension of Action Language BC+
published in Theory and Practice of Logic Programming

Joohyung Lee and Yi Wang
School of Computing, Informatics and Decision Systems Engineering
Arizona State University, Tempe, AZ, USA
(e-mail: {joolee, ywang485}QRasu.edu)

Appendix A Proofs
A.1 Proof of Proposition 1
Proposition 1 For any transition (s, e, s, s and s’ are states.

Proof. To show that s and s’ are states, we show that 0 : s and 0 : s’ are stable models of D.
We use I° as an abbreviationof 0 : s U0 :eu 1:s U0 : pf. By definition of a transition, we
know that 0 : s U 0 : e U 1 : s’ is a residual stable model of D1, i.e., there exists an assignment
pftooPf suchthat0: sU0:eul:s UO0: pfisastable model of D;. By definition of a
probabilistic stable model, this means 0 : s U0 :eul:s U0: pfisa (deterministic) stable
model of

SD(0) U FD(0) U PF(0)70 u UEC U EXG. (A1)

To prove 0 : s is a stable model of Dy, we split (A1) into two disjoint subsets
SD(0)
and

SD(1) U FD(0) u PF()70 WUEC U EXG.

It can be seen that SD(0) is negative on 0 : 0% U 0 : 0P/ U 1: ¢/l and SD(1) U FD(0) U
PF(0 ()jo WUEC v EXG is negative on 0 : O’f t Every strongly connected components of (A1)
is either a subset of 0 : o/! or a subset of 0 : ¢®** U 0 : oPf U 1 : oL, By the splitting theorem,
we have that 0 : s is stable model of SD(0) w.r.t. 0 : ofland0:eul:s U0 :pfisastable
model of SD(1) U FD(0) U PF(0);0 WUEC U EXG wrt.0: 0%t u0: 0P/ U1 : o/l Since
Dy = SD(0), s’ is a stable model of D.

To prove O : s’ is a stable model of D, we further divide the set of fluents into the set o” of
regular fluents and the set o5¢ of statically determined fluents. From the above reasoning, we
know that 0 : e U 1:s" U 0: pf is a stable model of

SD(1) U FD(0) U PF(0);0 w UEC U EXG

wrt. 0:0%t U0:0Pf Ul:0fie.0:0% U0:0Pf Ul:0"Ul: 0%, . By Theorem 2 in
(Ferraris et al. 2009), we have that 0 : e U 1 : ' U 0 : pf is a stable model of

SD(1) u FD(0) u PF(0);0 wUEC U EXG

wrt. 1 : 0%% Since FD(0), PF(0), UEC and EXG are negative on 1 : %, this implies
0:eul:s U0:pfisastable model of SD(1) w.rt. 1 : o*¢. Since SD(1) does not mention

2 Lee & Wang

any atom in 0 : e U 0 : pf, we have that 1 : s’ is a stable model of SD(1) w.r.t. 1 : o°%. Let
(1: 07')Ch denote the set of rules of the form (10) for each ¢ € o”. The above implies that 1 : s’
is a stable model of SD(1) U (1 : o")P wrt. 1 : 6% U1 : 0" = 1 : o/l. Changing all the
timesteps from 1 to 0, we obtain that 0 : s is a stable model of SD(0) U (0 : ¢7)" = Dy w.r.t.
0:0/t. O

A.2 Proof of Theorem 1
Proposition 2

For any multi-valued probabilistic program II for which every total choice leads to n(n > 0)
stable models and any interpretation /, we have

PH(IT) = SWH(D)

Proof. We show that the normalization factor is constant n, i.e.,

W) =n.

1 is an interpretation of IT

Let pfi,...,pfm be the probabilistic constants in II, and v; 1, ..., v; x,;, each associated with
probability p; 1, ..., p; k, resp. be the values of pf; (i € {1,...,m}). Let T'Cyy be the set of all
assignments to probabilistic constants in II.

"
W)
I is an interpretation of IT

= > Wi

IeSM"[M)]

= Z n- n MH(C:’U)

tceTCn c=vE€tc

=n 2 n M (c=v)

tceT Crc=vete

=n - (p1,1 2 H Mp(e=v)+ -+ piri Z n My (e =v))

tc€TCrn c=veEtc tceTCn c=vetc
te(pfr)=v1,1 #PN te(pfr)=v1 k, SFPS1
=n - (Z P,y Z H M (c=v))
i1€{1,....k1} tceTCn c=vetc

te(pfi)=v1,i, c#pf1

=n-(Z D2,i; Z D1,iy Z H Mri(c =v))

i2€{1,...,ka} i16{1,....,k1} tceTCp c=veEtc
te(pfr)=v1,s, #Pf1
tepfa=va i, c#pf

(A2)

Appendix: A Probabilistic Extension of Action Language 3C+ 3

=n-(Z Drmip, - - - Z D2,is 2 P1,iy

im—1€{1,....km—1} is€{l,...,k2} i1€{1,....,k1}
> [Mu(c=v)
tceTCn c=v€Etc
te(pfr)=v1,iy c#pfi
te(pf2)=v2,i, c%?_h
\ c#pfm—1

te(Pfm—1)=Vm—1,im

=n - (Z Pmip, - - - Z D2,iy Z

tm—1€{1,...,km_1} ig€{l,...,ka} i1€{l,....,k1}

P1i, (Ma(pfm = vm,1) + -+ Ma(Pfm = Vmkn)))

=n - (Z Pmyip, - - 2 D2,iy Z P1,iy 1)

im—1€{1,....km—1} i2€{l,....k2} i16{1,....,k1}
—n-(1)
=n.
O
For i’ € {0,...,m}, we use SD(¢’) to denote the set of all rules of the form (8) in D,,, where
i =4,and for ¢’ € {0,...,m — 1}, we use F'D(i') to denote the set of all rules of the form (9)

in D,, where ¢ = ¢’. Furthermore, according to (Lee and Wang 2016), a pf constant declaration
(12) is translated into

In(pj) : (i:pf)=v; (A3)
foreachj € {1,...,n}andi € {1,...,m —1}. Forany ¢ € {0,...,m — 1}, and any assignment
to P/, we use PF (i) to denote the set of weighted rules (A3) in D,,, where pf is an pf constant,

and PF (i)r¢ to denote the subset of PF () that T'C satisfies.
Also according to (Lee and Wang 2016), D,,, contains

a: Le—c=v Ac=uy (A4)
and
a: L —— \/ c=v (A5)
veDom(c)

for all constants ¢ and vy, ve € Dom(c) such that v; # vy. We use UEC to denote the set of
rules of the form (A4) or (AS), and EXG to denote the set of rules of the form (11) and (10),
disregarding their weights.

Lemma 1

Let ({s,a,s"),pf) be a pf-transition of D. We have that 0 : s U0 :auU0:pful:sis
a (deterministic) stable model of SD(1) u FD(0) u PF(0),.,; v UEC w.rt. 0 : 0% L 0 :
ot u1:olt, '

Proof. By definition of pf-transition, we have that I is a deterministic stable model of

SD(0) u SD(1) u FD(0) u PF(0); vUEC. (A6)
We split (A6) into SD(0) and the rest

SD(1) u FD(0) u PF(0); wUEC.
It can be seen that SD(0) is negative on 0 : 6%t U 0 : 0P/ U 1 : o/! and SD(1) U FD(0) U

4 Lee & Wang

PF(0); u UEC is negative on 0 : ¢f. Each strongly connected components of (A6) is either a
subset of 0 : of! orasubsetof 0: 0%t U0 : 0P U 1: 7L,

By the splitting theorem, we have that 0 : s U0 :a U 0: pf U1 : s isa(deterministic) stable
model of SD(1) u FD(0) u PF(0),,, v UEC w.rt.0: 0% L 0 o?f U1l

U

For any set of constants C, a of C is a function that maps each element c in C to a unique
element in Dom(c). We say an interpretation I of the propositional signature constructed from
C (as described in Section 2.2) satisfies a value assignment V of C if forallc e C, (c = v)! =t

if and only if V'(¢) = v.

Theorem 1 Given any value assignment T'C' of constants in o2/ U 0 : ¢™*Pf and a value
assignment A of constants of o?nct, Ircoa is the only stable model of Tr(D,m) that satisfies

TC U A, and the probability of IT¢, 4 is
[I M(c=v)

c=veTC

Preypmy(Ircoa) = et +)

Proof. We first show that I 4 is the only stable model of T'r(D, m) that satisfies TC' U A.
Clearly Itcua = TC U A. We use I 4 fori € {0,1,...,m — 1} to denote the following
subset of ITcy a:

(Urcoa)liost U (Urcoa)livect U (Ircoa)livrion W (ITcoa)ligrs -
For any 4,5 € {0,...,m} such that i < j and any signature o', we use i..j : ¢’ to denote
i:0'U-rugiol.
e We show that I 4, i€, (I7cua)|0:ginitor U ISa 4 U U I{,?gulA is a probabilis-
tic stable model of T(D, m) by induction: Let I7¢4(n) denote (I7cua)|g.ginites U

0 n—1
Iteoa v Vlpega
Base Case: when m = 1, consider I7c,a(1), i€, (Ircoa)|oginitrs U IS o0 4-

Tr(D,1)

Ircua(l)
is the ASP program
(Dinit)chuA(l)U
SD(0) u SD(1)u
FD(0)u
PF(0)rc VUEC.
Since

(Urcoa)loers Ircoa)loeact, (Ircoa)lion), Ircoa)loers)
is a pf-transition, by Lemma 1, It (1) is a deterministic stable model of SD(1) u
FD(0) U PF(0)rc VUEC wrt. 0: 0%t U 0: 0P/ U1: 0/l
On the other hand, from the construction of Ir¢y 4, ITcua(1) is a deterministic stable
model of (Dinit) (17c.,4) © SD(0) wrt. 0: o/t U 0 : g™itp],
It can be seen that SD(1) U FD(0) u PF(0)rc v UEC is negative on 0 : o/t U 0 :

Appendix: A Probabilistic Extension of Action Language 3C+ 5

o™ I and (Dinit) (1r0.4) © SD(0) is negative on 0 : 6°* U 0 : 0?7 U 1 : ¢!, Each
strongly component of the dependency graph of (T'r(D,m)) .. (1) is either a subset of
0:0f1U0: 0™l orasubsetof 0: 0%t U 0:oPf U1:afl

Applying the splitting theorem, we have that I7¢ 4 (1) is a deterministic stable model of
(T'r(D,m)) 1y (1) and thus is a probabilistic stable model of T'r(D,m), since it does
not violate any hard rules.

For m > 1, consider ITc,a(m).

(Tr(D,m))rrcoam) = (Dinit) Irea(m)Y (A7)
SD(0) u---u SD(m)u
FDO)uv---uFD(m—1)u

PF0)rcv---u PF(m—1)rc UEC

Clearly we have

— each strongly connected component of the dependency graph of (A7) is either a subset
of 0: ¢/ L 0..(m—1): 0/ U0..(m—2): 0% U0..(m —2) : aP/ or a subset

ofm:cflum—1:0%0um—1:cP;

(TT(D,m - 1))ITCUA(W) = (Dinit)ITcuA(m)U
SD0)v---uSD(m—1)u
FDO)u---u FD(m—2)u

PF(O)TCu~-~uPF(m—2)TcuUECuEXG

t

is negativeonm : oft Um —1: 0%t Um —1: oP7;

(Tr(D,m)\Tr(D,m — 1))

Ircoa(m) =
SD(m)u
FD(m—1)u
PF(’ITL — 1)TC’

is negative on 0 : 0™/ G 0.m —1: 0/ L 0.m —2: 0% U 0.m —2: 0P/,
By LH., ITc,a(m — 1) is a probabilistic stable model of T'r(D,m — 1), which implies
Ircoa(m) is a (deterministic) stable model of

(Tr(D,m —1))

Ircoa(m)

wrt. 0 : o™f G 0.m—1:000.m—=2: 0% 0 0..m—2: oPf. The fact that
ITcua(m) is a (deterministic) stable model of

(Tr(D,m)\Tr(D,m — 1))

Itcoa(m)

wrt.m : ofl Um —1:0%" Um —1: oPf can be seen from Lemma 1 and replacing
timesteps m and m — 1 with 1 and O resp.
Thus, Irc,a(m) is a stable model of Tr(D, m).

Lee & Wang

e There does not exist more than one stable models of Tr(D,m) that satisfies TC U A.
Suppose, to the contrary, that there exists I # Ipc 4 that satisfies TC' U A and [is also
a stable model of T+(D,m). Since I and IT¢ 4 agree on TC U A, they can differ only
on the value assignment of constants in o', Let i : fI be any one of the constants such
that I(i : fl) # Ircoa(i @ fl) and there does not exist any j : fI’ with j < ¢ and
I(j: fU') # Itcua(j : fU'). By definition, the assumption that I is a probabilistic stable
model of T'r(D, m) means [is a (deterministic) stable model of

Tr(D,m); = Dinit;v
SD(0) v ---u SD(m)u
FDO)u---uFD(m—1)u

PF(0)r¢ v -+ v PF(m—1)rcu
UEC U EXG

which, by the splitting theorem, implies that [is a stable model of
(Dinit) 1o
SD0)u---uSD(@E—1)uSD(E+1)u---uSD(m)u
FDO)u---UFD(@i—2)uFD(i)u...FD(m —1)u
PF(0)rc U -+ U PF(i —2)rc U PE(i)rc U -+~ U PF(m — 1)rcu
INITrc VUEC U EXG

wrt. o™l G0 —1) ot U (i +1).m otV 0.3 —2) s 0%t Ui (m — 1) :
0%t U 0..(i — 2) : oPf Uid..(m — 1) : 0P/, and I is a stable model of

SD(i)u FD(i—1) U PF(i — 1)r¢
wrt.i:oft Ui—1:0%" Ui —1:0P/. Changing the timesteps, this means
0:1]i 10,0t I|imtigact, 1t I]igre, 00 I 1.g0s
is a stable model of
SD(1) u FD(0) u PF(0)pc wUEC U EXG

wrt. 1: 0100 : 0%t U0 : oP7. On the other hand, clearly, O : I|;_q.,1,0 : I|i_j.qact, 1 :
101,02 I|;_1.00s also satisfies SD(0). Due to the existence of EX G, we have

0: I‘i—l:afho : I‘i*l:a"wt: 1: I|i:afl70 : I|i—1:apf
is a stable model of
SD(0) u SD(1) u FD(0) U PF(0)rc VUEC U EXG = D,

The above implies that ({I|;_1.5st, I|i—1.0act, I|j.551 0, I|i_1.4»s) is also a pf-transition in
addition to

Urcoa)liztiost, Urcoa)li-tects (ITcoa)lior), (ITcoa)lim1:ovs),
which contradict our assumption 2.

Consequently, in 7(D, m), since there are (|c*“*| + 1)™ different assignments of c%“* under

Appendix: A Probabilistic Extension of Action Language 3C+ 7

Assumption 1, every total choice leads to (|o®*| + 1)™ stable models. By Theorem 2, we have
[T M(c=w)
c=veTC

Provw.m(Ireva) = =rooamym—

A.3 Proof of Theorem 2

For a multi-valued probabilistic program 11, a fotal choice of 11 is a value assignment to prob-
abilistic constants in II. For any interpretation I, of a multi-valued probabilistic program, that
satisfies uniqueness and existence constraints for all constants, the total choice of I, denoted
TC(I), is the function that maps each probabilistic constant ¢ to the value v such that ¢ = v € I.
We say a total choice tc leads to an interpretation [if I satisfies tc.

In the following proofs, we sometimes identify a value assignment A with the set

{c=v|A(c) = v}.

Proposition 3
For any multi-valued probabilistic program IT = (PF,II) such that every total choice leads to
the same number of stable models, we have

Pro(c =v) = Mn(c =)
for any probabilistic constant ¢ and v € Dom/(c).

Proof. Let n be the number of stable models that each total choices leads to. By Proposition 2
we have

Pra(c=v)

[T Mn(d =)
c'=v'eTC(I)

Tisa staIble model of T'T n

Ec=v
=Mn(c=v)- % . Z H Mp(cd =)

I'is a stable model of IT ¢/ =+'eT'C(I)
Ec=v

c';éc

1

=Mn(c=v)- - —- =v)... =
m(c =) ~n 2 Mr(cp =) Z Mm(c, =)
v'eDom(cy) v'eDom(cy)

1
=Mp(c=v)-—-n-1

n
=M (c =)

O

Proposition 4

For any multi-valued probabilistic program IT = (PF, II) such that every total choice leads to
the same number of stable models, and any value assignment ppf of a subset P of probabilistic
constants in IT, we have

Pru(N\ pf=v)= [] Prubf=w).

pf=veppf pf=veppf

8 Lee & Wang

Proof. Let n denote the number of stable models each total choice leads to. By Proposition 2

we have
Pro(/\ pf=v)
ppf(pf)=v
) WD)
. n
I is a stable model of IT
I= pf=v
ppf(pf)=v
[T Mule=v)
. c=veTC(I)
B . n
1 is a stable model of I'T
I= N pf=v
ppf(pf)=v
[l Mn(ppf=v)- [1 Mr(c =)
_ 2 ppf(pf)=v c=veTC(I)\ppf
1 is a stable model of ITT n
I= pf=v
ppf(pf)=v
1
= 1l Mabf=v-o) [] Mn(e=v)
ppf(pf)=v Ili’s:a stab/lg mod;lfoi{[e:veTC([)\ppf
ppf(pf)=v
We use C to denote the set of all constants in II. Let C\P = {¢1,...,¢,}. Since every total

choice leads to the same number of stable models, we have

1 Z n Mr(c =v)

n I is]a stable model of IT c=veT'C'(I)\ppf

pf=v
pf=veppf

1

- Z ‘ n- H Mry(c =v)
TC is a value assignment of C'\ P TC(c)=v

1

=—n Z Mr(cp =v)... Z Mr(c, =)
veDom(cy) veDom(cy,)

=1.

Consequently by Proposition 3 we have

Pro(/\ pf=v)

pf=veppf
1

= n Mn(pf=v)'ﬁ Z n Mr(c = v)

pf=veppf I }L a Stab/lg mocif}ozf {Ic:veTC (D\ppf

pf=veppf

= n Mu(pf =v)-1

pf=veppf
= H Pra(pf =v).

pf=veppf

Appendix: A Probabilistic Extension of Action Language 3C+ 9

Theorem 2 For any state s and s, and any interpretation e of 0%, we have
Proypmy(i+1:5" [i:si:e) = Proypmy(i+1:8|j:s,j:€)

foranyi,j € {0,...,m — 1} such that Prp.(p m)(i : 5) # 0 and Pry.(p m)(j : s) # 0.

Proof. Forany k € {0,...,m — 1} such that Prp,.(p m)(k : 5) # 0, we show that

Proypmy(k+1:8"|k:sk:e)=Prp, (1:5]0:s,0:e).

m

Firstly, since T'r(D, m) satisfies the condition that every total choice leads to the same number
of stable models, by Proposition 3, we have

PTTT(D,TVL) (Z ipf = U) = MTT(D,m) (Z ipf = ’U)
= Mp,,(i:pf =) (A8)

for any pf constant pf and v € Dom(pf) and any i € {0,...,m — 1}.

Secondly, from Theorem 1, it can be seen that for any (probabilistic) stable model I of
Tr(D,m), ({I|sort, |igact, I|ip1.051)5 I)i:ovs) is always a pf-transition: the contrary would im-
ply that for some stable model I of T'r(D,m), there does not exist any assignment 7C' U A on
pf constants and action constants such that I = Irc_ 4, which contradicts Theorem 1. Under
Assumption 2, this implies
1 if ({s,a, "), pf) is a pf-transition

Proypmy(k+1:8" |k:sk:ek:pf)=
’ 0 otherwise

and thus
Proypmy(k+1:5" | k:s,k:ek:pf)=Prp,(1:5]0:50:e,0:pf) (A9)

for all assignments pf to o?/.
From (A8) and (A9), and by Proposition 4, we have

Proppmy(k+1:5" | k:sk:e)
{Law of Total Probability}

= Z PTTT(D,m)(k+1:5/|k:’S,k:evk:pf)'PrTr(D,m)(k:pf)
pf is any value assignment to o” f
= Z Proppmy(k+1:5" | k:s,k:ek:pf)

pf is any value assignment to oPf

(H PTT’I”(D,’ITL) (k = pf(c)))

cearf

{Proposition 4 and (A8)}
Z Proppmy(k+1:8 | k:sk:ek:pf)

pf is any value assignment to o?f

(T Mp,.(k: ¢ = pf(e)))

ceapf

= {From (A9)}

= Z PrDm(l:s’|0:s,0:e,0:pf)-(HMDm(O:c:pf(c)))
pf is any value assignment to oPf ceorf

=Prp,(1:5]0:5,0:€)

10 Lee & Wang

|
Corollary 1 For every m > 1, X, is a residual (probabilistic) stable model of Tr(D,m) iff
X0, ..., X™ ! are transitions of D and 0: s is a residual stable model of D;,,;;. Furthermore,

Propp,m)(Xm | 0:eg,...,m —1iep_1) =p(X%) x -+ x p(X™) x Prop(p,m)(0:50).

Proof. By Theorem 1, an interpretation [is a (probabilistic) stable model of T'r(D,m) iff
19, ... I 1 are pf-transitions and (I7cua)lo.ort U (ITcua)|ginitss is a Tesidual stable model
of Dinit PFy(D). From the definition of transition and pf-transition, it follows that X, is a
residual (probabilistic) stable model of D,, iff X°,..., X™ ! are transitions of D and 0 : sq is
a residual stable model of D,,,;;.

Furthermore, we have

Provpm)(Xm | 0:eo,...,0:ep1)
= Proypmy(m s, [m—=1:8,_1,m—1:ep_1)
o Proppmy(2:82 [1is,1ier)

Proppmy(1:510:50,0:e) U Prop(p,m)(0: so)

We have
Provp,m)(Xm | 80,€0, -+ -5 €m—1)
= {By Theorem 2}
=Prp, (1:8m |0:8m-1,0:€m_1) - Prp, (1:s2]0:51,0:ep)
Prp,, (1:51]0:50,0:e0) - Pryr(p,m)(0: s0)
=Prp, (1:51]0:50,0:e)-Prp, (1:52]0:81,0:€1)-----
Prp, (1:8,10:8m-1,0:€emn_1) Pro.(p,m)(0: so0)
=p(X1) x - x p(X™) x Pror(p,m)(0 : s0).
0

Appendix B LPMN Translation of the Yale Shooting Example (Section 4) in the Input
Language of LPMLN2ASP

astep(0) .

step(0..1).

boolean(t; f).

turkey (slimTurkey; fatTurkey) .

& ———— INIT(D) —————————
@log(0.5) pf_initAlive(T, t) :- turkey(T).
@log(0.5) pf_initAlive(T, f) :- turkey(T).
@log(0.5) pf_initlLoaded(t) .

@log(0.5) pf_initLoaded(f) .

:— not alive(T, B, 0), pf_initAlive(T, B).

Appendix: A Probabilistic Extension of Action Language BC +

:— not loaded(B, 0), pf_initLoaded(B) .

:— pf_initAlive(T, t), pf_initAlive(T, f).

:— not pf_initAlive(T, t), not pf initAlive(T, f), turkey(T).
:— pf_initLoaded(t), pf_initLoaded(f) .

:— not pf_initloaded(t), not pf_initLoaded(f) .

§ - PF (D) ——————————

%% Probability Distribution

@log(0.6) pf_turkeyKilled(slimTurkey, t, I) :— astep(I).
@log(0.4) pf_turkeyKilled(slimTurkey, £, I) :— astep(I).
@log(0.3) pf_turkeyKilled Alert(slimTurkey, t, I) :— astep(I).
@log(0.7) pf_turkeyKilled Alert(slimTurkey, f, I) :— astep(I).
@log(0.9) pf_turkeyKilled(fatTurkey, t, I) :— astep(I).
@log(0.1) pf_turkeyKilled(fatTurkey, £, I) :— astep(I).
@log(0.7) pf_turkeyKilled Alert (fatTurkey, t, I) :— astep(I).
@log(0.3) pf_turkeyKilled Alert (fatTurkey, £, I) :— astep(I).

%% Fluent Dynamic Laws

loaded(t, I+1) :— load(t, I), astep(I).

alive(T, £, I+1l) :— loaded(t, I), fire(T, t, I), alert(T, £, I),
pf_turkeyKilled(T, t, I), astep(I).

alive(T, £, I+1l) :— loaded(t, I), fire(T, t, I), alert(T, t, I),
pf_turkeyKilled Alert(T, t, I), astep(I).

loaded(f, I+1) :— fire(T, t, I).

{alive(T, B, I+1l)} :— alive(T, B, I), astep(I), boolean(B), turkey(T) .
{loaded(B, I+1)} :— loaded(B, I), astep(I), boolean(B) .

%% Static Laws
alert (T, £, I) :- not not alert(T, £, I), turkey(T), step(I).
alert(T, t, I) :— alive(T1, £, I), alive(T, t, I).

%% Initial State and Actions are Random

{alive(T, B, 0)} :— turkey(T), boolean(B) .
{loaded(B, 0)} :— boolean(B) .

{load(B, I)} :— boolean(B), astep(I).

{fire(T, B, I)} :— turkey(T), boolean(B), astep(I).

o\°
o\

UEC

:— alive(T, t, I), alive(T, £, I).

:— not alive(T, t, I), not alive(T, £, I), step(I), turkey(T).
:— alert (T, t, I), alert(T, £, I).

:— not alert(T, t, I), not alert(T, £, I), step(Il), turkey(T).
:— loaded(t, I), loaded(f, I).

:— not loaded(t, I), not loaded(f, I), step(I).

11

12 Lee & Wang

:— fire(T, t, I), fire(T, £, I).

:— not fire(T, t, I), not fire(T, £, I), astep(I), turkey(T).

:— load(t, I), load(f, I).

:— not load(t, I), not load(f, I), astep(I).

:— pf_turkeyKilled(T, t, I), pf_turkeyKilled(T, £, I).

:— not pf_turkeyKilled(T, t, I), not pf_turkeyKilled(T, £, I),
astep(I), turkey(T).

:— pf_turkeyKilled Alert (T, t, I), pf_turkeyKilled Alert(T, £, I).

:— not pf_turkeyKilled Alert(T, t, I), not pf_turkeyKilled Alert(T, £, I),
astep(I), turkey(T).

o\°
o

No Concurrency

:— fire(T1, t, I), fire(T2, t, I), astep(I), T1 != T2,
turkey (T1l), turkey(T2).

:— load(t, I), fire(T, t, I).

The prediction query “given that only the fat turkey is alive and the gun is loaded at the
beginning, what is the probability that the turkey died after shooting is executed” is answered by
adding the constraints

:— not alive(slimTurkey, £, 0).
:— not alive(fatTurkey, t, 0).
:— not loaded(t, 0).

not fire(fatTurkey, t, 0).

to the LPM™N program and executing the command line:
lpmln2asp -i yale-shooting.lpmln -g alive

The output is:

alive (fatTurkey, t, 0) 1.0
alive (fatTurkey, t, 1) 0.299999550682
alive (fatTurkey, £, 1) 0.7
alive (slimTurkey, £, 0) 1.0
(1

00000449318
alive (slimTurkey, £,)y 1.0

The postdiction query “given that the slim turkey was alive and the gun was loaded at the
beginning, the person shot at the slim turkey and it died, what is the probability that the fat
turkey was alive at the beginning” is answered by adding the constraints

:— not alive(slimTurkey, t, 0).
:— not loaded(t, 0).

:— not fire(slimTurkey, t, 0).
:— not alive(slimTurkey, £, 1).

to the LPMIN program and executing the command line:
lpmln2asp -i yale-shooting.lpmln -g alive

The output is

Appendix: A Probabilistic Extension of Action Language 3C+ 13

alive (fatTurkey, £, 0) 0.333338788027
alive (slimTurkey, t, 0) 1.0
alive (fatTurkey, t, 1) 0.666661211973
alive (slimTurkey, £, 1) 1.0
() 0.666661211973
()

alive (fatTurkey, t, O
1) 0.333338788027

alive (fatTurkey, f£f,

The planning problem “given that both the turkeys are alive and the gun is not loaded at
the beginning, generate a plan that gives best chance to kill both the turkeys with 4 actions” is
answered by adding the constraints, describing the initial state and the goal,

:— not alive(slimTurkey, t, 0).
:— not alive(fatTurkey, t, 0).
:— not loaded(f, 0).

:— not alive(slimTurkey, f, 4).
:— not alive(fatTurkey, f, 4).

to the LPMN program, and executing the command line:
IpmlnZ2asp -1 yale-shooting.lpmln
The output is

Answer: 9

pf_initAlive(slimTurkey,t) pf_initAlive(fatTurkey,t)

unsat (2,’’-0.693100"",slimTurkey)

unsat(2,’’-0.693100"", fatTurkey) unsat(3,’’-0.693100"")
pf_initLoaded(f) pf_turkeyKilled(slimTurkey,t,0)
pf_turkeyKilled(slimTurkey, t, 1) pf_turkeyKilled(slimTurkey,t,2)
pf_turkeyKilled(slimTurkey, t, 3) pf_turkeyKilled(fatTurkey,t, 0)
pf_turkeyKilled(fatTurkey, t, 1) pf_turkeyKilled(fatTurkey,t,2)
pf_turkeyKilled(fatTurkey, t, 3)

alert (slimTurkey, f, 0) alert (slimTurkey, f,1) alert (slimTurkey, £, 2)
alert (slimTurkey, f, 3) alert (slimTurkey, f,4) alert (fatTurkey, £, 0)
alert (fatTurkey, £, 1) alert (fatTurkey, £, 4)

loaded(t,1) load(t,0) loaded(t,3) load(t,2) loaded(f,2)
fire(slimTurkey, t, 1) loaded(f,4) fire(fatTurkey,t, 3)
alive(slimTurkey, f,2) alive(slimTurkey, £, 3) alive(slimTurkey, £, 4)
alive (fatTurkey, £, 4)

unsat (13,”7’-1.203900"",0) unsat(13,’"-1.203900"7,1)

unsat (13,”7/-1.203900"",2) unsat(13,’"-1.203900"", 3)
pf_turkeyKilled Alert (fatTurkey, t, 0)

pf_turkeyKilled Alert (fatTurkey, t, 1)

pf_turkeyKilled Alert (fatTurkey, t, 2)

pf_turkeyKilled Alert (fatTurkey, t, 3)

alive(slimTurkey, t, 0) alive(fatTurkey, t,0) alive(slimTurkey,t,1)
alive(fatTurkey, t, 1) alert(fatTurkey, t,2) alive(fatTurkey, t,2)
alert (fatTurkey, t, 3) alive(fatTurkey, t,3) loaded(f, 0)

(
(
(
(

14 Lee & Wang

unsat(12,”’-0.916200"",0) unsat(12,’"-0.916200"",1)
unsat(12,”’-0.916200"",2) unsat(12,’"-0.916200"", 3)
pf_turkeyKilled Alert (slimTurkey, £, 0)

pf_turkeyKilled Alert (slimTurkey, £, 1)

pf_turkeyKilled Alert (slimTurkey, £, 2)

pf_turkeyKilled Alert (slimTurkey, f, 3) unsat(16,’’-2.302500"",0)
unsat (16,”’-2.302500"",1) unsat(16,’"-2.302500"",2)

unsat (16,”’-2.302500"",3) unsat(18,’"-1.203900"",0)

unsat (18,”’-1.203900"",1) unsat(18,’"-1.203900"",2)

unsat (18,”’-1.203900"",3) fire(slimTurkey, f,0) fire(slimTurkey, £, 2)
fire(slimTurkey, £, 3) fire(fatTurkey, f,0) fire(fatTurkey, f, 1)
fire(fatTurkey, £,2) load(f,1) load(f, 3)

Optimization: 7387

OPTIMUM FOUND

Appendix C LPM™YN Translation of the Robot Example (Section 5) in the Input Language
of LPMLN2ASP

astep(0..2).
step(0..3).
boolean(t; f).
room(rl; r2).

0.5) init_locRobot (r2) .

%$%% caused Init ILocBook = {Rl: 0.5, R2: 0.5}
@log(0.5) init_locBook(rl) .

@log(0.5) init_locBook (r2) .

$%% caused Init HasBook = {t: 0.5, f: 0.5}
@log(0.5) init_hasBook (t) .

@log(0.5) init_hasBook (f) .

Initial Static Laws

% initially LocBook = r if Init TocBook = r
:— not locBook (R, 0), init_locBook(R) .

%% initially LocRobot = r if Init_ LocRobot
:— not locRobot (R, 0), init_locRobot (R) .

%% initially hasBook = b if Init HasBook = b
:— hasBook (B, 0), init_hasBook(B) .

%% initially \bot if EnterFailed

:— ab(enter_failed, t, 0).

%$%% initially \bot if PickupFailed

oe
Il
-

oe

o\©

Appendix: A Probabilistic Extension of Action Language BC + 15

:— ab(pickup failed, t, 0).

%$%% initially \bot if DropBook

:— ab(drop_book, t, 0).

% UEC

:— init locRobot (rl), init_locRobot (r2) .

:— not init_ locRobot (rl), not init_locRobot (r2) .
:— init locBook(rl), init_locBook(r2) .

o\

:— not init locBook(rl), not init_ locBook (r2) .
:— init hasBook(t), init_hasBook (f) .
:— not init hasBook (t), not init_hasBook (f) .

D m
Probability Distribution
caused Pf_EnterFailed = {t: 0.1, f: 0.9}

o0 o° oo

o oe
o°

@log(0.1) pf_enterFailed(t, I) :— astep(I).
@log(0.9) pf_enterFailed(f, I) :— astep(I).
%%% caused Pf_PickupFailed = {t: 0.3, f: 0.7}
@log(0.3) pf_pickupFailed(t, I) :— astep(I).
@log(0.7) pf_pickupFailed(f, I) :- astep(I).
%%% caused Pf_DropBook = {t: 0.2, f: 0.8}
@log(0.2) pf_dropBook(t, I) :— astep(I).
@log(0.8) pf_dropBook(f, I) :— astep(I).

%
o
)

% Fluent Dynamic Laws
%% caused LocRobot = r after Goto(r) & "EnterFailed

locRobot (R, I+l) :— goto(R, t, I), not ab(enter failed, t, I+1).
%$%% caused HasBook if LocRobot = LocBook after PickupBook & "PickupFailed
hasBook (t, I+1l) :— pickupBook(t, I), locRobot (R, I+1l), locBook(R, I+1),

not ab(pickup_failed, t, I+1l).
%% caused "HasBook after putdownBook

o\

hasBook (£, I+1l) :— putdownBook(t, I).

%%% caused_ab EnterFailed if \top after pf_EnterFailed & Goto(r)
ab(enter_failed, B, I+l) :— ab(t, I+l), goto(R, t, I), pf_enterFailed(B, I).
%%% caused_ab EnterFailed if \top after pf_EnterFailed & Goto(r)
ab(pickup_failed, B, I+1l) :—

ab(t, I+1l), pickupBook(t, I), pf_pickupFailed(B, I).
%% caused_ab DropBook if \top after hasBook & Pf_DropBook
ab (drop_book, B, I+l) :— ab(t, I+1l), hasBook(t, I), pf_dropBook(B, I).

o

%%% caused {LocRobot = r}”{ch} after LocRobot = r
{locRobot (R, I+1l)} :— locRobot (R, I), astep(I).
%%% caused {LocBook = r}~{ch} after LocBook = r
{locBook (R, I+1l)} :— locBook(R, I), astep(I).

%$%% caused {HasBook = b}~ {ch} after HasBook = b
{hasBook (B, I+1l)} :— hasBook(B, I), astep(I).

16 Lee & Wang

Static Laws

% caused LocBook = r if LocRobot = r & HasBook

locBook (R, I) :— locRobot (R, I), hasBook(t, I).

hasBook (£, I) :— ab(drop_book, t, I).

%%% caused { EnterFailed}” {ch} if "EnterFailed

ab(enter_failed, f, I) :— not not ab(enter_failed, f, I), step(I).
%%% caused { PickupFailed}”{ch} if "PickupFailed

ab(pickup_failed, £, I) :— not not ab(pickup_failed, f, I), step(I).
%%% caused { DropBook} " {ch} if "“DropBook

b (drop_bock, f, I) :— not not ab(drop_book, £, I), step(I).

Q

%% Initial State and Actions are Random
{locRobot (R, 0)} :— room(R) .

{locBook (R, 0)} :— room(R) .

{hasBook (B, 0) : boolean(B) }.

{ab(enter_failed, B, 0) : boolean(B)}.
{ab(pickup_failed, B, 0) : boolean(B)}.
{ab(drop_book, B, 0) : boolean(B)}.

{goto(R, B, I) : boolean(B)} :— room(R), astep(I).
{pickupBook (B, I) : boolean(B)} :— astep(I).
{putdownBook (B, I) : boolean(B)} :— astep(I).

o\
o

UEC

:— locRobot (rl, I), locRobot(r2, I).

:— not locRobot(rl, I), not locRobot(r2, I), step(I).

:— locBook (rl, I), locBook(r2, I).

:— not locBook(rl, I), not locBook(r2, I), step(I).

:— hasBook (t, I), hasBook(f, I).

:— not hasBook (t, I), not hasBook(f, I), step(I).

:— ab(enter_failed, t, I), ab(enter failed, £, I).

:— not ab(enter_failed, t, I), not ab(enter_failed, f, I), step(I).
:— ab(pickup_failed, t, I), ab(pickup failed, £, I).

:— not ab(pickup_failed, t, I), not ab(pickup failed, f, I), step(I).
:— ab(drop_book, t, I), ab(drop_book, f, I).

:— not ab(drop_book, t, I), not ab(drop_boock, £, I), step(I).
:— goto(R, t, I), goto(R, £, I).

:— not goto(R, t, I), not goto(R, £, I), astep(I), room(R) .
:— pickupBook (t, I), pickupBook(f, I).

:— not pickupBook(t, I), not pickupBook(f, I), astep(I).

:— putdownBook (t, I), putdownBook(f, I).

:— not putdownBook (t, I), not putdownBook(f, I), astep(I).
:—ab(t, I), ab(f, I).

:— not ab(t, I), not ab(f, I), step(I).

o\
o\

No Concurrency

Appendix: A Probabilistic Extension of Action Language BC + 17

:— goto(R1, t, I), goto(R2, t, I), astep(I), Rl != R2.
:— goto(R, t, I), pickupBook(t, I), room(R), astep(I).
:— goto(R, t, I), putdownBook(t, I), room(R), astep(I).
:— pickupBook (t, I), putdownBook(t, I), astep(I).

% Action and Observation History
:— not locRobot (rl, 0).

:— not locBook(rl, 0).

:— not hasBook (£, 0).

:— not pickupBook(t, 0).

:— not goto(rz, t, 1).

:— not putdownBook (t, 2).

:— locBook (r2, 3).

% Enable abnormality
%% caused ab
ab(t,I) :— step(I).

#show ab/3.

#show pickupBook/2.
#show goto/3.

#show putdownBook/2 .
#show locRobot/2.
#show locBook/2.
#show hasBook/2.

For the above program,
lpmlnZ2asp —i robot.lpmln
gives the output

Answer: 71

ab(enter_failed, f,1) ab(enter_failed, f, 2)

goto(r2,t,1) ab(enter_failed, £, 3)

locRobot (rl,1) locRobot (r2,2) locRobot (r2,3) ab(pickup_failed, t, 1)
pickupBook (t, 0) ab(pickup failed, f,2) ab(pickup_failed, £, 3)
hasBook (f, 1) hasBook (f,2) hasBook (f, 3) putdownBook (t, 2)

ab (drop_lbook, £, 1) hasBook (f, 0) locBook(rl, 0) locRobot (rl, 0)

ab (drop_lbook, f,2) locBook(rl,1l) ab(drop_lbook, f, 3) locBook(rl, 2)
locBook (rl, 3) ab(enter_failed, f,0) ab(pickup_failed, £, 0)

ab (drop_book, £,0) goto(rl, f,0) goto(rl, f,1) goto(rl, f,2) goto(r2, £, 0)
goto(r2, f,2) pickupBook (f, 1) pickupBook (f,2) putdownBook (f, 0)
putdownBook (£, 1)

Optimization: 3283

OPTIMUM FOUND

The observation that the book was in the robot’s hand after it picked up the book is represented
as the constraint

18 Lee & Wang

:— not hasBook (t, 1).

With the constraint in the program,
lpmlnZ2asp —i robot.lpmln
gives the output

Answer: 50

ab(enter_failed, f,1) ab(enter_failed, f,2) goto(r2,t,1)
ab(enter_failed, £, 3) locRobot (rl, 1) locRobot (r2,2) locRobot (r2, 3)
pickupBook (t, 0) ab(pickup_failed, f,1) ab(pickup failed, £, 2)

ab (pickup_failed, £, 3) hasBook(f,2) hasBook(f, 3) putdownBook(t, 2)
ab (drop_book, £,1) hasBook (£, 0) locBook(rl, 0) locRobot (rl,0)

ab (drop_book, t, 2) hasBook (t,1) locBook(rl,1l) ab(drop_book, £, 3)
locBook(rl, 2) locBook(rl, 3) ab(enter_ failed, £, 0)

ab (pickup failed, £,0) ab(drop_book, f,0) goto(rl, f,0) goto(rl, £, 1)
goto(rl, f,2) goto(r2,£f,0) goto(r2, f,2) pickupBook (f, 1)
pickupBook (f, 2) putdownBook (f, 0) putdownBook (£, 1)

Optimization: 3688

OPTIMUM FOUND

The observation that the robot itself was not at r2 after the execution of the plan is represented
as the constraint

:— locRobot (r2, 3).

With the constraint in the program,
IpmlnZ2asp —i robot.lpmln
gives the output

Answer: 89

ab(enter_failed, f,1) ab(enter_failed, t,2) goto(r2,t,1)
ab(enter_failed, f,3) locRobot (rl,1) locRobot (rl,2) locRobot (rl, 3)
pickupBook (t, 0) ab(pickup failed, f,1) ab(pickup_failed, £, 2)

ab (pickup failed, £, 3) hasBook (f, 3) putdownBook (t,2) ab(drop_book, £, 1)
hasBook (f, 0) locBook(rl,0) locRobot (rl,0) hasBook(t,1)

ab (drop_book, f,2) locBook(rl, 1) hasBook(t,2) ab(drop ook, f, 3)
locBook (rl, 2) locBook(rl, 3) ab(enter_failed, f,0)
ab(pickup_failed, f,0) ab(drop_book, f,0) goto(rl, f,0) goto(rl,f, 1)
goto(rl, f,2) goto(r2,f,0) goto(r2, f,2) pickupBook(f,1)
pickupBook (f, 2) putdownBook (f, 0) putdownBook (f, 1)

Optimization: 4381

OPTIMUM FOUND

