
Online appendix for the paper

A Probabilistic Extension of Action Language BC+
published in Theory and Practice of Logic Programming

Joohyung Lee and Yi Wang
School of Computing, Informatics and Decision Systems Engineering

Arizona State University, Tempe, AZ, USA
(e-mail: {joolee, ywang485}@asu.edu)

Appendix A Proofs

A.1 Proof of Proposition 1

Proposition 1 For any transition xs, e, s1y, s and s1 are states.

Proof. To show that s and s1 are states, we show that 0 : s and 0 : s1 are stable models of D0.
We use I0 as an abbreviation of 0 : sY 0 : eY 1 : s1 Y 0 : pf . By definition of a transition, we
know that 0 : s Y 0 : e Y 1 : s1 is a residual stable model of D1, i.e., there exists an assignment
pf to σpf such that 0 : s Y 0 : e Y 1 : s1 Y 0 : pf is a stable model of D1. By definition of a
probabilistic stable model, this means 0 : s Y 0 : e Y 1 : s1 Y 0 : pf is a (deterministic) stable
model of

SDp0q Y FDp0q Y PF p0qI0 Y UEC Y EXG. (A1)

To prove 0 : s is a stable model of D0, we split (A1) into two disjoint subsets

SDp0q

and

SDp1q Y FDp0q Y PF p0qI0 Y UEC Y EXG.

It can be seen that SDp0q is negative on 0 : σact Y 0 : σpf Y 1 : σfl and SDp1q Y FDp0q Y

PF p0qI0 YUEC YEXG is negative on 0 : σfl. Every strongly connected components of (A1)
is either a subset of 0 : σfl or a subset of 0 : σact Y 0 : σpf Y 1 : σfl. By the splitting theorem,
we have that 0 : s is stable model of SDp0q w.r.t. 0 : σfl and 0 : e Y 1 : s1 Y 0 : pf is a stable
model of SDp1qYFDp0qYPF p0qI0 YUECYEXG w.r.t. 0 : σactY 0 : σpf Y 1 : σfl. Since
D0 “ SDp0q, s1 is a stable model of D0.

To prove 0 : s1 is a stable model of D0, we further divide the set of fluents into the set σr of
regular fluents and the set σsd of statically determined fluents. From the above reasoning, we
know that 0 : eY 1 : s1 Y 0 : pf is a stable model of

SDp1q Y FDp0q Y PF p0qI0 Y UEC Y EXG

w.r.t. 0 : σact Y 0 : σpf Y 1 : σfl, i.e. 0 : σact Y 0 : σpf Y 1 : σr Y 1 : σsd, . By Theorem 2 in
(Ferraris et al. 2009), we have that 0 : eY 1 : s1 Y 0 : pf is a stable model of

SDp1q Y FDp0q Y PF p0qI0 Y UEC Y EXG

w.r.t. 1 : σsd. Since FDp0q, PF p0q, UEC and EXG are negative on 1 : σsd, this implies
0 : eY 1 : s1 Y 0 : pf is a stable model of SDp1q w.r.t. 1 : σsd. Since SDp1q does not mention

2 Lee & Wang

any atom in 0 : e Y 0 : pf , we have that 1 : s1 is a stable model of SDp1q w.r.t. 1 : σsd. Let
p1 : σrqch denote the set of rules of the form (10) for each c P σr. The above implies that 1 : s1

is a stable model of SDp1q Y p1 : σrqch w.r.t. 1 : σsd Y 1 : σr “ 1 : σfl. Changing all the
timesteps from 1 to 0, we obtain that 0 : s1 is a stable model of SDp0q Y p0 : σrqch “ D0 w.r.t.
0 : σfl.

A.2 Proof of Theorem 1

Proposition 2

For any multi-valued probabilistic program Π for which every total choice leads to npn ą 0q

stable models and any interpretation I , we have

P 2ΠpIq “
1

n
W 2

ΠpIq.

Proof. We show that the normalization factor is constant n, i.e.,

ÿ

I is an interpretation of Π

W 2
ΠpIq “ n.

Let pf1, . . . , pfm be the probabilistic constants in Π, and vi,1, . . . , vi,ki , each associated with
probability pi,1, . . . , pi,ki resp. be the values of pfi (i P t1, . . . ,mu). Let TCΠ be the set of all
assignments to probabilistic constants in Π.

ÿ

I is an interpretation of Π

W 2
ΠpIq

“
ÿ

IPSM2rΠs

W 2
ΠpIq

“
ÿ

tcPTCΠ

n ¨
ź

c“vPtc

MΠpc “ vq

“n
ÿ

tcPTCΠ

ź

c“vPtc

MΠpc “ vq

“n ¨ pp1,1

ÿ

tcPTCΠ

tcppf1q“v1,1

ź

c“vPtc
c‰pf1

MΠpc “ vq ` ¨ ¨ ¨ ` p1,k1

ÿ

tcPTCΠ

tcppf1q“v1,k1

ź

c“vPtc
c‰pf1

MΠpc “ vqq

“n ¨ p
ÿ

i1Pt1,...,k1u

p1,i1

ÿ

tcPTCΠ

tcppf1q“v1,i1

ź

c“vPtc
c‰pf1

MΠpc “ vqq

“n ¨ p
ÿ

i2Pt1,...,k2u

p2,i2

ÿ

i1Pt1,...,k1u

p1,i1

ÿ

tcPTCΠ

tcppf1q“v1,i1
tcpf2“v2,i2

ź

c“vPtc
c‰pf1
c‰pf2

MΠpc “ vqq

(A2)

Appendix: A Probabilistic Extension of Action Language BC+ 3

“n ¨ p
ÿ

im´1Pt1,...,km´1u

pm,im . . .
ÿ

i2Pt1,...,k2u

p2,i2

ÿ

i1Pt1,...,k1u

p1,i1

ÿ

tcPTCΠ

tcppf1q“v1,i1

tcppf2q“v2,i2...
tcppfm´1q“vm´1,im

ź

c“vPtc
c‰pf1
c‰pf2
...

c‰pfm´1

MΠpc “ vqq

“n ¨ p
ÿ

im´1Pt1,...,km´1u

pm,im . . .
ÿ

i2Pt1,...,k2u

p2,i2

ÿ

i1Pt1,...,k1u

p1,i1pMΠppfm “ vm,1q ` ¨ ¨ ¨ `MΠppfm “ vm,kmqqq

“n ¨ p
ÿ

im´1Pt1,...,km´1u

pm,im . . .
ÿ

i2Pt1,...,k2u

p2,i2

ÿ

i1Pt1,...,k1u

p1,i11q

“n ¨ p1q

“n.

For i1 P t0, . . . ,mu, we use SDpi1q to denote the set of all rules of the form (8) in Dm where
i “ i1, and for i1 P t0, . . . ,m ´ 1u, we use FDpi1q to denote the set of all rules of the form (9)
in Dm where i “ i1. Furthermore, according to (Lee and Wang 2016), a pf constant declaration
(12) is translated into

lnppjq : pi : pfq “ vj (A3)

for each j P t1, . . . , nu and i P t1, . . . ,m´ 1u. For any i P t0, . . . ,m´ 1u, and any assignment
to σpf , we use PF piq to denote the set of weighted rules (A3) in Dm where pf is an pf constant,
and PF piqTC to denote the subset of PF piq that TC satisfies.

Also according to (Lee and Wang 2016), Dm contains

α : K Ð c “ v1 ^ c “ v2 (A4)

and

α : K Ð
ł

vPDompcq

c “ v (A5)

for all constants c and v1, v2 P Dompcq such that v1 ‰ v2. We use UEC to denote the set of
rules of the form (A4) or (A5), and EXG to denote the set of rules of the form (11) and (10),
disregarding their weights.

Lemma 1
Let pxs, a, s1y, pfq be a pf-transition of D. We have that 0 : s Y 0 : a Y 0 : pf Y 1 : s1 is
a (deterministic) stable model of SDp1q Y FDp0q Y PF p0q0:pf Y UEC w.r.t. 0 : σact Y 0 :

σpf Y 1 : σfl.

Proof. By definition of pf-transition, we have that I is a deterministic stable model of

SDp0q Y SDp1q Y FDp0q Y PF p0qI Y UEC. (A6)

We split (A6) into SDp0q and the rest

SDp1q Y FDp0q Y PF p0qI Y UEC.

It can be seen that SDp0q is negative on 0 : σact Y 0 : σpf Y 1 : σfl and SDp1q Y FDp0q Y

4 Lee & Wang

PF p0qI Y UEC is negative on 0 : σfl. Each strongly connected components of (A6) is either a
subset of 0 : σfl or a subset of 0 : σact Y 0 : σpf Y 1 : σfl.

By the splitting theorem, we have that 0 : sY 0 : aY 0 : pf Y 1 : s1 is a (deterministic) stable
model of SDp1q Y FDp0q Y PF p0q0:pf Y UEC w.r.t. 0 : σact Y 0 : σpf Y 1 : σfl.

For any set of constants C, a of C is a function that maps each element c in C to a unique
element in Dompcq. We say an interpretation I of the propositional signature constructed from
C (as described in Section 2.2) satisfies a value assignment V of C if for all c P C, pc “ vqI “ t
if and only if V pcq “ v.

Theorem 1 Given any value assignment TC of constants in σpfm Y 0 : σinitpf and a value
assignment A of constants of σactm , ITCYA is the only stable model of TrpD,mq that satisfies
TC YA, and the probability of ITCYA is

PrTrpD,mqpITCYAq “

ś

c“vPTC

Mpc “ vq

p|σact| ` 1qm
.

Proof. We first show that ITCYA is the only stable model of TrpD,mq that satisfies TC YA.
Clearly ITCYA (TC Y A. We use IiTCYA for i P t0, 1, . . . ,m ´ 1u to denote the following
subset of ITCYA:

pITCYAq|i:σfl Y pITCYAq|i:σact Y pITCYAq|i`1:σfl Y pITCYAq|i:σpf .

For any i, j P t0, . . . ,mu such that i ă j and any signature σ1, we use i..j : σ1 to denote
i : σ1 Y ¨ ¨ ¨ Y j : σ1.

‚ We show that ITCYA, i.e., pITCYAq|0:σinitpf Y I0
TCYA Y ¨ ¨ ¨ Y Im´1

TCYA is a probabilis-
tic stable model of TrpD,mq by induction: Let ITCYApnq denote pITCYAq|0:σinitpf Y

I0
TCYA Y ¨ ¨ ¨ Y I

n´1
TCYA

Base Case: when m “ 1, consider ITCYAp1q, i.e, pITCYAq|0:σinitpf Y I0
TCYA.

TrpD, 1qITCYAp1q

is the ASP program

pDinitqITCYAp1qY

SDp0q Y SDp1qY

FDp0qY

PF p0qTC Y UEC.

Since

pxpITCYAq|0:σfl , pITCYAq|0:σact , pITCYAq|1:σfly, pITCYAq|0:σpf q

is a pf-transition, by Lemma 1, ITCYAp1q is a deterministic stable model of SDp1q Y
FDp0q Y PF p0qTC Y UEC w.r.t. 0 : σact Y 0 : σpf Y 1 : σfl.
On the other hand, from the construction of ITCYA, ITCYAp1q is a deterministic stable
model of pDinitqpITCYAq Y SDp0q w.r.t. 0 : σfl Y 0 : σinitpf .
It can be seen that SDp1q Y FDp0q Y PF p0qTC Y UEC is negative on 0 : σfl Y 0 :

Appendix: A Probabilistic Extension of Action Language BC+ 5

σinitpf and pDinitqpITCYAq Y SDp0q is negative on 0 : σact Y 0 : σpf Y 1 : σfl. Each
strongly component of the dependency graph of pTrpD,mqqITCYAp1q is either a subset of
0 : σfl Y 0 : σinitpf or a subset of 0 : σact Y 0 : σpf Y 1 : σfl.
Applying the splitting theorem, we have that ITCYAp1q is a deterministic stable model of
pTrpD,mqqITCYAp1q and thus is a probabilistic stable model of TrpD,mq, since it does
not violate any hard rules.

For m ą 1, consider ITCYApmq.

pTrpD,mqqITCYApmq “ pDinitqITCYApmqY (A7)

SDp0q Y ¨ ¨ ¨ Y SDpmqY

FDp0q Y ¨ ¨ ¨ Y FDpm´ 1qY

PF p0qTC Y ¨ ¨ ¨ Y PF pm´ 1qTC Y UEC

Clearly we have

— each strongly connected component of the dependency graph of (A7) is either a subset
of 0 : σinitpf Y 0..pm ´ 1q : σfl Y 0..pm ´ 2q : σact Y 0..pm ´ 2q : σpf or a subset
of m : σfl Ym´ 1 : σact Ym´ 1 : σpf ;

—

pTrpD,m´ 1qqITCYApmq “ pDinitqITCYApmqY

SDp0q Y ¨ ¨ ¨ Y SDpm´ 1qY

FDp0q Y ¨ ¨ ¨ Y FDpm´ 2qY

PF p0qTC Y ¨ ¨ ¨ Y PF pm´ 2qTC Y UEC Y EXG

is negative on m : σfl Ym´ 1 : σact Ym´ 1 : σpf ;
—

pTrpD,mqzTrpD,m´ 1qqITCYApmq “

SDpmqY

FDpm´ 1qY

PF pm´ 1qTC

is negative on 0 : σinitpf Y 0..m´ 1 : σfl Y 0..m´ 2 : σact Y 0..m´ 2 : σpf .

By I.H., ITCYApm ´ 1q is a probabilistic stable model of TrpD,m ´ 1q, which implies
ITCYApmq is a (deterministic) stable model of

pTrpD,m´ 1qqITCYApmq

w.r.t. 0 : σinitpf Y 0..m ´ 1 : σfl Y 0..m ´ 2 : σact Y 0..m ´ 2 : σpf . The fact that
ITCYApmq is a (deterministic) stable model of

pTrpD,mqzTrpD,m´ 1qqITCYApmq

w.r.t. m : σfl Ym ´ 1 : σact Ym ´ 1 : σpf can be seen from Lemma 1 and replacing
timesteps m and m´ 1 with 1 and 0 resp.
Thus, ITCYApmq is a stable model of TrpD,mq.

6 Lee & Wang

‚ There does not exist more than one stable models of TrpD,mq that satisfies TC YA.
Suppose, to the contrary, that there exists I ‰ ITCYA that satisfies TC Y A and I is also
a stable model of TrpD,mq. Since I and ITCYA agree on TC Y A, they can differ only
on the value assignment of constants in σfl. Let i : fl be any one of the constants such
that Ipi : flq ‰ ITCYApi : flq and there does not exist any j : fl1 with j ď i and
Ipj : fl1q ‰ ITCYApj : fl1q. By definition, the assumption that I is a probabilistic stable
model of TrpD,mq means I is a (deterministic) stable model of

TrpD,mqI “ DinitIY

SDp0q Y ¨ ¨ ¨ Y SDpmqY

FDp0q Y ¨ ¨ ¨ Y FDpm´ 1qY

PF p0qTC Y ¨ ¨ ¨ Y PF pm´ 1qTCY

UEC Y EXG

which, by the splitting theorem, implies that I is a stable model of

pDinitqIY

SDp0q Y ¨ ¨ ¨ Y SDpi´ 1q Y SDpi` 1q Y ¨ ¨ ¨ Y SDpmqY

FDp0q Y ¨ ¨ ¨ Y FDpi´ 2q Y FDpiq Y . . . FDpm´ 1qY

PF p0qTC Y ¨ ¨ ¨ Y PF pi´ 2qTC Y PF piqTC Y ¨ ¨ ¨ Y PF pm´ 1qTCY

INITTC Y UEC Y EXG

w.r.t. σinitpf Y 0..pi ´ 1q : σfl Y pi ` 1q..m : σfl Y 0..pi ´ 2q : σact Y i..pm ´ 1q :

σact Y 0..pi´ 2q : σpf Y i..pm´ 1q : σpf , and I is a stable model of

SDpiq Y FDpi´ 1q Y PF pi´ 1qTC

w.r.t. i : σfl Y i´ 1 : σact Y i´ 1 : σpf . Changing the timesteps, this means

0 : I|i´1:σfl , 0 : I|i´1:σact , 1 : I|i:σfl , 0 : I|i´1:σpf

is a stable model of

SDp1q Y FDp0q Y PF p0qTC Y UEC Y EXG

w.r.t. 1 : σflY0 : σactY0 : σpf . On the other hand, clearly, 0 : I|i´1:σfl , 0 : I|i´1:σact , 1 :

I|i:σfl , 0 : I|i´1:σpf also satisfies SDp0q. Due to the existence of EXG, we have

0 : I|i´1:σfl , 0 : I|i´1:σact , 1 : I|i:σfl , 0 : I|i´1:σpf

is a stable model of

SDp0q Y SDp1q Y FDp0q Y PF p0qTC Y UEC Y EXG “ D1

The above implies that pxI|i´1:σfl , I|i´1:σact , I|i:σfly, I|i´1:σpf q is also a pf-transition in
addition to

pxpITCYAq|i´1:σfl , pITCYAq|i´1:σact , pITCYAq|i:σfly, pITCYAq|i´1:σpf q,

which contradict our assumption 2.

Consequently, in TrpD,mq, since there are p|σact| ` 1qm different assignments of σact under

Appendix: A Probabilistic Extension of Action Language BC+ 7

Assumption 1, every total choice leads to p|σact| ` 1qm stable models. By Theorem 2, we have

PrTrpD,mqpITCYAq “

ś

c“vPTC

Mpc “ vq

p|σact| ` 1qm
.

A.3 Proof of Theorem 2

For a multi-valued probabilistic program Π, a total choice of Π is a value assignment to prob-
abilistic constants in Π. For any interpretation I , of a multi-valued probabilistic program, that
satisfies uniqueness and existence constraints for all constants, the total choice of I , denoted
TCpIq, is the function that maps each probabilistic constant c to the value v such that c “ v P I .
We say a total choice tc leads to an interpretation I if I satisfies tc.

In the following proofs, we sometimes identify a value assignment A with the set

tc “ v | Apcq “ vu.

Proposition 3
For any multi-valued probabilistic program Π “ xPF,Πy such that every total choice leads to
the same number of stable models, we have

PrΠpc “ vq “MΠpc “ vq

for any probabilistic constant c and v P Dompcq.

Proof. Let n be the number of stable models that each total choices leads to. By Proposition 2
we have

PrΠpc “ vq

“
ÿ

I is a stable model of Π
I(c“v

ś

c1“v1PTCpIq

MΠpc
1 “ v1q

n

“MΠpc “ vq ¨
1

n
¨

ÿ

I is a stable model of Π
I(c“v

ź

c1“v1PTCpIq
c1‰c

MΠpc
1 “ v1q

“MΠpc “ vq ¨
1

n
¨ n

ÿ

v1PDompc1q

MΠpc1 “ v1q . . .
ÿ

v1PDompcnq

MΠpcn “ v1q

“MΠpc “ vq ¨
1

n
¨ n ¨ 1

“MΠpc “ vq

Proposition 4
For any multi-valued probabilistic program Π “ xPF,Πy such that every total choice leads to
the same number of stable models, and any value assignment ppf of a subset P of probabilistic
constants in Π, we have

PrΠp
ľ

pf“vPppf

pf “ vq “
ź

pf“vPppf

PrΠppf “ vq.

8 Lee & Wang

Proof. Let n denote the number of stable models each total choice leads to. By Proposition 2
we have

PrΠp
ľ

ppfppfq“v

pf “ vq

“
ÿ

I is a stable model of Π
I(

Ź

ppfppfq“v

pf“v

W
2

ΠpIq

n

“
ÿ

I is a stable model of Π
I(

Ź

ppfppfq“v

pf“v

ś

c“vPTCpIq

MΠpc “ vq

n

“
ÿ

I is a stable model of Π
I(

Ź

ppfppfq“v

pf“v

ś

ppfppfq“v

MΠppf “ vq ¨
ś

c“vPTCpIqzppf

MΠpc “ vq

n

“
ź

ppfppfq“v

MΠppf “ vq ¨
1

n

ÿ

I is a stable model of Π
I(

Ź

ppfppfq“v

pf“v

ź

c“vPTCpIqzppf

MΠpc “ vq

We use C to denote the set of all constants in Π. Let CzP “ tc1, . . . , cnu. Since every total
choice leads to the same number of stable models, we have

1

n

ÿ

I is a stable model of Π
I(

Ź

pf“vPppf

pf“v

ź

c“vPTCpIqzppf

MΠpc “ vq

“
1

n

ÿ

TC is a value assignment of CzP

n ¨
ź

TCpcq“v

MΠpc “ vq

“
1

n
¨ n

ÿ

vPDompc1q

MΠpc1 “ vq . . .
ÿ

vPDompcnq

MΠpcn “ vq

“1.

Consequently by Proposition 3 we have

PrΠp
ľ

pf“vPppf

pf “ vq

“
ź

pf“vPppf

MΠppf “ vq ¨
1

n

ÿ

I is a stable model of Π
I(

Ź

pf“vPppf

pf“v

ź

c“vPTCpIqzppf

MΠpc “ vq

“
ź

pf“vPppf

MΠppf “ vq ¨ 1

“
ź

pf“vPppf

PrΠppf “ vq.

Appendix: A Probabilistic Extension of Action Language BC+ 9

Theorem 2 For any state s and s1, and any interpretation e of σact, we have

PrTrpD,mqpi` 1 : s1 | i : s, i : eq “ PrTrpD,mqpj ` 1 : s1 | j : s, j : eq

for any i, j P t0, . . . ,m´ 1u such that PrTrpD,mqpi : sq ‰ 0 and PrTrpD,mqpj : sq ‰ 0.
Proof. For any k P t0, . . . ,m´ 1u such that PrTrpD,mqpk : sq ‰ 0, we show that

PrTrpD,mqpk ` 1 : s1 | k : s, k : eq “ PrDm
p1 : s1 | 0 : s, 0 : eq.

Firstly, since TrpD,mq satisfies the condition that every total choice leads to the same number
of stable models, by Proposition 3, we have

PrTrpD,mqpi : pf “ vq “MTrpD,mqpi : pf “ vq

“MDmpi : pf “ vq (A8)

for any pf constant pf and v P Domppfq and any i P t0, . . . ,m´ 1u.
Secondly, from Theorem 1, it can be seen that for any (probabilistic) stable model I of

TrpD,mq, pxI|i:σfl , I|i:σact , I|i`1:σfly, I|i:σpf q is always a pf-transition: the contrary would im-
ply that for some stable model I of TrpD,mq, there does not exist any assignment TC Y A on
pf constants and action constants such that I “ ITCYA, which contradicts Theorem 1. Under
Assumption 2, this implies

PrTrpD,mqpk ` 1 : s1 | k : s, k : e, k : pfq “

#

1 if pxs, a, s1y, pfq is a pf-transition

0 otherwise

and thus

PrTrpD,mqpk ` 1 : s1 | k : s, k : e, k : pfq “ PrDm
p1 : s1 | 0 : s, 0 : e, 0 : pfq (A9)

for all assignments pf to σpf .
From (A8) and (A9), and by Proposition 4, we have

PrTrpD,mqpk ` 1 : s1 | k : s, k : eq

“ tLaw of Total Probabilityu

“
ÿ

pf is any value assignment to σpf

PrTrpD,mqpk ` 1 : s1 | k : s, k : e, k : pfq ¨ PrTrpD,mqpk : pfq

“
ÿ

pf is any value assignment to σpf

PrTrpD,mqpk ` 1 : s1 | k : s, k : e, k : pfq¨

p
ź

cPσpf

PrTrpD,mqpk : c “ pfpcqqq

“ tProposition 4 and (A8)u

“
ÿ

pf is any value assignment to σpf

PrTrpD,mqpk ` 1 : s1 | k : s, k : e, k : pfq¨

p
ź

cPσpf

MDm
pk : c “ pfpcqqq

“ tFrom (A9)u

“
ÿ

pf is any value assignment to σpf

PrDm
p1 : s1 | 0 : s, 0 : e, 0 : pfq ¨ p

ź

cPσpf

MDm
p0 : c “ pfpcqqq

“ PrDm
p1 : s1 | 0 : s, 0 : eq

10 Lee & Wang

Corollary 1 For every m ě 1, Xm is a residual (probabilistic) stable model of TrpD,mq iff
X0, . . . , Xm´1 are transitions of D and 0:s0 is a residual stable model of Dinit. Furthermore,

PrTrpD,mqpXm | 0:e0, . . . ,m´ 1:em´1q “ ppX0q ˆ ¨ ¨ ¨ ˆ ppXmq ˆ PrTrpD,mqp0:s0q.

Proof. By Theorem 1, an interpretation I is a (probabilistic) stable model of TrpD,mq iff
I0, . . . , Im´1 are pf-transitions and pITCYAq|0:σfl Y pITCYAq|σinitpf is a residual stable model
of Dinit Y PF0pDq. From the definition of transition and pf-transition, it follows that Xm is a
residual (probabilistic) stable model of Dm iff X0, . . . , Xm´1 are transitions of D and 0 : s0 is
a residual stable model of Dinit.

Furthermore, we have

PrTrpD,mqpXm | 0 : e0, . . . , 0 : em´1q

“ PrTrpD,mqpm : sm | m´ 1 : sm´1,m´ 1 : em´1q¨

¨ ¨ ¨ ¨ PrTrpD,mqp2 : s2 | 1 : s1, 1 : e1q¨

PrTrpD,mqp1 : s1 | 0 : s0, 0 : e0q Y PrTrpD,mqp0 : s0q

We have

PrTrpD,mqpXm | s0, e0, . . . , em´1q

“ tBy Theorem 2u

“ PrDmp1 : sm | 0 : sm´1, 0 : em´1q ¨ ¨ ¨ ¨ ¨ PrDmp1 : s2 | 0 : s1, 0 : e1q¨

PrDmp1 : s1 | 0 : s0, 0 : e0q ¨ PrTrpD,mqp0 : s0q

“ PrDm
p1 : s1 | 0 : s0, 0 : e0q ¨ PrDm

p1 : s2 | 0 : s1, 0 : e1q ¨ ¨ ¨ ¨ ¨

PrDm
p1 : sm | 0 : sm´1, 0 : em´1q ¨ PrTrpD,mqp0 : s0q

“ ppX1q ˆ ¨ ¨ ¨ ˆ ppXmq ˆ PrTrpD,mqp0 : s0q.

Appendix B LPMLN Translation of the Yale Shooting Example (Section 4) in the Input
Language of LPMLN2ASP

astep(0).
step(0..1).
boolean(t; f).
turkey(slimTurkey; fatTurkey).

% ---------- INIT(D) ------------
@log(0.5) pf_initAlive(T, t) :- turkey(T).
@log(0.5) pf_initAlive(T, f) :- turkey(T).
@log(0.5) pf_initLoaded(t).
@log(0.5) pf_initLoaded(f).

:- not alive(T, B, 0), pf_initAlive(T, B).

Appendix: A Probabilistic Extension of Action Language BC+ 11

:- not loaded(B, 0), pf_initLoaded(B).

:- pf_initAlive(T, t), pf_initAlive(T, f).
:- not pf_initAlive(T, t), not pf_initAlive(T, f), turkey(T).
:- pf_initLoaded(t), pf_initLoaded(f).
:- not pf_initLoaded(t), not pf_initLoaded(f).

% ---------- PF(D) ----------
%% Probability Distribution
@log(0.6) pf_turkeyKilled(slimTurkey, t, I) :- astep(I).
@log(0.4) pf_turkeyKilled(slimTurkey, f, I) :- astep(I).
@log(0.3) pf_turkeyKilled_Alert(slimTurkey, t, I) :- astep(I).
@log(0.7) pf_turkeyKilled_Alert(slimTurkey, f, I) :- astep(I).
@log(0.9) pf_turkeyKilled(fatTurkey, t, I) :- astep(I).
@log(0.1) pf_turkeyKilled(fatTurkey, f, I) :- astep(I).
@log(0.7) pf_turkeyKilled_Alert(fatTurkey, t, I) :- astep(I).
@log(0.3) pf_turkeyKilled_Alert(fatTurkey, f, I) :- astep(I).

%% Fluent Dynamic Laws
loaded(t, I+1) :- load(t, I), astep(I).
alive(T, f, I+1) :- loaded(t, I), fire(T, t, I), alert(T, f, I),

pf_turkeyKilled(T, t, I), astep(I).
alive(T, f, I+1) :- loaded(t, I), fire(T, t, I), alert(T, t, I),

pf_turkeyKilled_Alert(T, t, I), astep(I).
loaded(f, I+1) :- fire(T, t, I).

{alive(T, B, I+1)} :- alive(T, B, I), astep(I), boolean(B), turkey(T).
{loaded(B, I+1)} :- loaded(B, I), astep(I), boolean(B).

%% Static Laws
alert(T, f, I) :- not not alert(T, f, I), turkey(T), step(I).
alert(T, t, I) :- alive(T1, f, I), alive(T, t, I).

%% Initial State and Actions are Random
{alive(T, B, 0)} :- turkey(T), boolean(B).
{loaded(B, 0)} :- boolean(B).
{load(B, I)} :- boolean(B), astep(I).
{fire(T, B, I)} :- turkey(T), boolean(B), astep(I).

%% UEC
:- alive(T, t, I), alive(T, f, I).
:- not alive(T, t, I), not alive(T, f, I), step(I), turkey(T).
:- alert(T, t, I), alert(T, f, I).
:- not alert(T, t, I), not alert(T, f, I), step(I), turkey(T).
:- loaded(t, I), loaded(f, I).
:- not loaded(t, I), not loaded(f, I), step(I).

12 Lee & Wang

:- fire(T, t, I), fire(T, f, I).
:- not fire(T, t, I), not fire(T, f, I), astep(I), turkey(T).
:- load(t, I), load(f, I).
:- not load(t, I), not load(f, I), astep(I).
:- pf_turkeyKilled(T, t, I), pf_turkeyKilled(T, f, I).
:- not pf_turkeyKilled(T, t, I), not pf_turkeyKilled(T, f, I),

astep(I), turkey(T).
:- pf_turkeyKilled_Alert(T, t, I), pf_turkeyKilled_Alert(T, f, I).
:- not pf_turkeyKilled_Alert(T, t, I), not pf_turkeyKilled_Alert(T, f, I),

astep(I), turkey(T).

%% No Concurrency
:- fire(T1, t, I), fire(T2, t, I), astep(I), T1 != T2,

turkey(T1), turkey(T2).
:- load(t, I), fire(T, t, I).

The prediction query “given that only the fat turkey is alive and the gun is loaded at the
beginning, what is the probability that the turkey died after shooting is executed” is answered by
adding the constraints

:- not alive(slimTurkey, f, 0).
:- not alive(fatTurkey, t, 0).
:- not loaded(t, 0).
:- not fire(fatTurkey, t, 0).

to the LPMLN program and executing the command line:
lpmln2asp -i yale-shooting.lpmln -q alive

The output is:

alive(fatTurkey, t, 0) 1.0
alive(fatTurkey, t, 1) 0.299999550682
alive(fatTurkey, f, 1) 0.700000449318
alive(slimTurkey, f, 0) 1.0
alive(slimTurkey, f, 1) 1.0

The postdiction query “given that the slim turkey was alive and the gun was loaded at the
beginning, the person shot at the slim turkey and it died, what is the probability that the fat
turkey was alive at the beginning” is answered by adding the constraints

:- not alive(slimTurkey, t, 0).
:- not loaded(t, 0).
:- not fire(slimTurkey, t, 0).
:- not alive(slimTurkey, f, 1).

to the LPMLN program and executing the command line:

lpmln2asp -i yale-shooting.lpmln -q alive

The output is

Appendix: A Probabilistic Extension of Action Language BC+ 13

alive(fatTurkey, f, 0) 0.333338788027
alive(slimTurkey, t, 0) 1.0
alive(fatTurkey, t, 1) 0.666661211973
alive(slimTurkey, f, 1) 1.0
alive(fatTurkey, t, 0) 0.666661211973
alive(fatTurkey, f, 1) 0.333338788027

The planning problem “given that both the turkeys are alive and the gun is not loaded at
the beginning, generate a plan that gives best chance to kill both the turkeys with 4 actions” is
answered by adding the constraints, describing the initial state and the goal,

:- not alive(slimTurkey, t, 0).
:- not alive(fatTurkey, t, 0).
:- not loaded(f, 0).

:- not alive(slimTurkey, f, 4).
:- not alive(fatTurkey, f, 4).

to the LPMLN program, and executing the command line:

lpmln2asp -i yale-shooting.lpmln

The output is

Answer: 9
pf_initAlive(slimTurkey,t) pf_initAlive(fatTurkey,t)
unsat(2,’’-0.693100’’,slimTurkey)
unsat(2,’’-0.693100’’,fatTurkey) unsat(3,’’-0.693100’’)
pf_initLoaded(f) pf_turkeyKilled(slimTurkey,t,0)
pf_turkeyKilled(slimTurkey,t,1) pf_turkeyKilled(slimTurkey,t,2)
pf_turkeyKilled(slimTurkey,t,3) pf_turkeyKilled(fatTurkey,t,0)
pf_turkeyKilled(fatTurkey,t,1) pf_turkeyKilled(fatTurkey,t,2)
pf_turkeyKilled(fatTurkey,t,3)
alert(slimTurkey,f,0) alert(slimTurkey,f,1) alert(slimTurkey,f,2)
alert(slimTurkey,f,3) alert(slimTurkey,f,4) alert(fatTurkey,f,0)
alert(fatTurkey,f,1) alert(fatTurkey,f,4)
loaded(t,1) load(t,0) loaded(t,3) load(t,2) loaded(f,2)
fire(slimTurkey,t,1) loaded(f,4) fire(fatTurkey,t,3)
alive(slimTurkey,f,2) alive(slimTurkey,f,3) alive(slimTurkey,f,4)
alive(fatTurkey,f,4)
unsat(13,’’-1.203900’’,0) unsat(13,’’-1.203900’’,1)
unsat(13,’’-1.203900’’,2) unsat(13,’’-1.203900’’,3)
pf_turkeyKilled_Alert(fatTurkey,t,0)
pf_turkeyKilled_Alert(fatTurkey,t,1)
pf_turkeyKilled_Alert(fatTurkey,t,2)
pf_turkeyKilled_Alert(fatTurkey,t,3)
alive(slimTurkey,t,0) alive(fatTurkey,t,0) alive(slimTurkey,t,1)
alive(fatTurkey,t,1) alert(fatTurkey,t,2) alive(fatTurkey,t,2)
alert(fatTurkey,t,3) alive(fatTurkey,t,3) loaded(f,0)

14 Lee & Wang

unsat(12,’’-0.916200’’,0) unsat(12,’’-0.916200’’,1)
unsat(12,’’-0.916200’’,2) unsat(12,’’-0.916200’’,3)
pf_turkeyKilled_Alert(slimTurkey,f,0)
pf_turkeyKilled_Alert(slimTurkey,f,1)
pf_turkeyKilled_Alert(slimTurkey,f,2)
pf_turkeyKilled_Alert(slimTurkey,f,3) unsat(16,’’-2.302500’’,0)
unsat(16,’’-2.302500’’,1) unsat(16,’’-2.302500’’,2)
unsat(16,’’-2.302500’’,3) unsat(18,’’-1.203900’’,0)
unsat(18,’’-1.203900’’,1) unsat(18,’’-1.203900’’,2)
unsat(18,’’-1.203900’’,3) fire(slimTurkey,f,0) fire(slimTurkey,f,2)
fire(slimTurkey,f,3) fire(fatTurkey,f,0) fire(fatTurkey,f,1)
fire(fatTurkey,f,2) load(f,1) load(f,3)
Optimization: 7387
OPTIMUM FOUND

Appendix C LPMLN Translation of the Robot Example (Section 5) in the Input Language
of LPMLN2ASP

astep(0..2).
step(0..3).
boolean(t; f).
room(r1; r2).

% ---------- D_Init ------------
%% Probability Distribution
%%% caused Init_LocRobot = {R1: 0.5, R2: 0.5}
@log(0.5) init_locRobot(r1).
@log(0.5) init_locRobot(r2).
%%% caused Init_LocBook = {R1: 0.5, R2: 0.5}
@log(0.5) init_locBook(r1).
@log(0.5) init_locBook(r2).
%%% caused Init_HasBook = {t: 0.5, f: 0.5}
@log(0.5) init_hasBook(t).
@log(0.5) init_hasBook(f).

%% Initial Static Laws
%%% initially LocBook = r if Init_LocBook = r
:- not locBook(R, 0), init_locBook(R).
%%% initially LocRobot = r if Init_LocRobot = r
:- not locRobot(R, 0), init_locRobot(R).
%%% initially hasBook = b if Init_HasBook = b
:- hasBook(B, 0), init_hasBook(B).
%%% initially \bot if EnterFailed
:- ab(enter_failed, t, 0).
%%% initially \bot if PickupFailed

Appendix: A Probabilistic Extension of Action Language BC+ 15

:- ab(pickup_failed, t, 0).
%%% initially \bot if DropBook
:- ab(drop_book, t, 0).
%% UEC
:- init_locRobot(r1), init_locRobot(r2).
:- not init_locRobot(r1), not init_locRobot(r2).
:- init_locBook(r1), init_locBook(r2).
:- not init_locBook(r1), not init_locBook(r2).
:- init_hasBook(t), init_hasBook(f).
:- not init_hasBook(t), not init_hasBook(f).

% ---------- D_m ----------
%% Probability Distribution
%%% caused Pf_EnterFailed = {t: 0.1, f: 0.9}
@log(0.1) pf_enterFailed(t, I) :- astep(I).
@log(0.9) pf_enterFailed(f, I) :- astep(I).
%%% caused Pf_PickupFailed = {t: 0.3, f: 0.7}
@log(0.3) pf_pickupFailed(t, I) :- astep(I).
@log(0.7) pf_pickupFailed(f, I) :- astep(I).
%%% caused Pf_DropBook = {t: 0.2, f: 0.8}
@log(0.2) pf_dropBook(t, I) :- astep(I).
@log(0.8) pf_dropBook(f, I) :- astep(I).

%% Fluent Dynamic Laws
%%% caused LocRobot = r after Goto(r) & ẼnterFailed
locRobot(R, I+1) :- goto(R, t, I), not ab(enter_failed, t, I+1).
%%% caused HasBook if LocRobot = LocBook after PickupBook & P̃ickupFailed
hasBook(t, I+1) :- pickupBook(t, I), locRobot(R, I+1), locBook(R, I+1),

not ab(pickup_failed, t, I+1).
%%% caused H̃asBook after putdownBook
hasBook(f, I+1) :- putdownBook(t, I).

%%% caused_ab EnterFailed if \top after pf_EnterFailed & Goto(r)
ab(enter_failed, B, I+1) :- ab(t, I+1), goto(R, t, I), pf_enterFailed(B, I).
%%% caused_ab EnterFailed if \top after pf_EnterFailed & Goto(r)
ab(pickup_failed, B, I+1) :-

ab(t, I+1), pickupBook(t, I), pf_pickupFailed(B, I).
%%% caused_ab DropBook if \top after hasBook & Pf_DropBook
ab(drop_book, B, I+1) :- ab(t, I+1), hasBook(t, I), pf_dropBook(B, I).

%%% caused {LocRobot = r}ˆ{ch} after LocRobot = r
{locRobot(R, I+1)} :- locRobot(R, I), astep(I).
%%% caused {LocBook = r}ˆ{ch} after LocBook = r
{locBook(R, I+1)} :- locBook(R, I), astep(I).
%%% caused {HasBook = b}ˆ{ch} after HasBook = b
{hasBook(B, I+1)} :- hasBook(B, I), astep(I).

16 Lee & Wang

%% Static Laws
%%% caused LocBook = r if LocRobot = r & HasBook
locBook(R, I) :- locRobot(R, I), hasBook(t, I).
hasBook(f, I) :- ab(drop_book, t, I).
%%% caused { ẼnterFailed}ˆ{ch} if ẼnterFailed
ab(enter_failed, f, I) :- not not ab(enter_failed, f, I), step(I).
%%% caused { P̃ickupFailed}ˆ{ch} if P̃ickupFailed
ab(pickup_failed, f, I) :- not not ab(pickup_failed, f, I), step(I).
%%% caused { D̃ropBook}ˆ{ch} if D̃ropBook
ab(drop_book, f, I) :- not not ab(drop_book, f, I), step(I).

%% Initial State and Actions are Random
{locRobot(R, 0)} :- room(R).
{locBook(R, 0)} :- room(R).
{hasBook(B, 0) : boolean(B)}.
{ab(enter_failed, B, 0) : boolean(B)}.
{ab(pickup_failed, B, 0) : boolean(B)}.
{ab(drop_book, B, 0) : boolean(B)}.
{goto(R, B, I) : boolean(B)} :- room(R), astep(I).
{pickupBook(B, I) : boolean(B)} :- astep(I).
{putdownBook(B, I) : boolean(B)} :- astep(I).

%% UEC
:- locRobot(r1, I), locRobot(r2, I).
:- not locRobot(r1, I), not locRobot(r2, I), step(I).
:- locBook(r1, I), locBook(r2, I).
:- not locBook(r1, I), not locBook(r2, I), step(I).
:- hasBook(t, I), hasBook(f, I).
:- not hasBook(t, I), not hasBook(f, I), step(I).
:- ab(enter_failed, t, I), ab(enter_failed, f, I).
:- not ab(enter_failed, t, I), not ab(enter_failed, f, I), step(I).
:- ab(pickup_failed, t, I), ab(pickup_failed, f, I).
:- not ab(pickup_failed, t, I), not ab(pickup_failed, f, I), step(I).
:- ab(drop_book, t, I), ab(drop_book, f, I).
:- not ab(drop_book, t, I), not ab(drop_book, f, I), step(I).
:- goto(R, t, I), goto(R, f, I).
:- not goto(R, t, I), not goto(R, f, I), astep(I), room(R).
:- pickupBook(t, I), pickupBook(f, I).
:- not pickupBook(t, I), not pickupBook(f, I), astep(I).
:- putdownBook(t, I), putdownBook(f, I).
:- not putdownBook(t, I), not putdownBook(f, I), astep(I).
:- ab(t, I), ab(f, I).
:- not ab(t, I), not ab(f, I), step(I).

%% No Concurrency

Appendix: A Probabilistic Extension of Action Language BC+ 17

:- goto(R1, t, I), goto(R2, t, I), astep(I), R1 != R2.
:- goto(R, t, I), pickupBook(t, I), room(R), astep(I).
:- goto(R, t, I), putdownBook(t, I), room(R), astep(I).
:- pickupBook(t, I), putdownBook(t, I), astep(I).

% Action and Observation History
:- not locRobot(r1, 0).
:- not locBook(r1, 0).
:- not hasBook(f, 0).
:- not pickupBook(t, 0).
:- not goto(r2, t, 1).
:- not putdownBook(t, 2).
:- locBook(r2, 3).

% Enable abnormality
%% caused ab
ab(t,I) :- step(I).

#show ab/3.
#show pickupBook/2.
#show goto/3.
#show putdownBook/2.
#show locRobot/2.
#show locBook/2.
#show hasBook/2.

For the above program,

lpmln2asp -i robot.lpmln

gives the output

Answer: 71
ab(enter_failed,f,1) ab(enter_failed,f,2)
goto(r2,t,1) ab(enter_failed,f,3)
locRobot(r1,1) locRobot(r2,2) locRobot(r2,3) ab(pickup_failed,t,1)
pickupBook(t,0) ab(pickup_failed,f,2) ab(pickup_failed,f,3)
hasBook(f,1) hasBook(f,2) hasBook(f,3) putdownBook(t,2)
ab(drop_book,f,1) hasBook(f,0) locBook(r1,0) locRobot(r1,0)
ab(drop_book,f,2) locBook(r1,1) ab(drop_book,f,3) locBook(r1,2)
locBook(r1,3) ab(enter_failed,f,0) ab(pickup_failed,f,0)
ab(drop_book,f,0) goto(r1,f,0) goto(r1,f,1) goto(r1,f,2) goto(r2,f,0)
goto(r2,f,2) pickupBook(f,1) pickupBook(f,2) putdownBook(f,0)
putdownBook(f,1)
Optimization: 3283
OPTIMUM FOUND

The observation that the book was in the robot’s hand after it picked up the book is represented
as the constraint

18 Lee & Wang

:- not hasBook(t, 1).

With the constraint in the program,

lpmln2asp -i robot.lpmln

gives the output

Answer: 50
ab(enter_failed,f,1) ab(enter_failed,f,2) goto(r2,t,1)
ab(enter_failed,f,3) locRobot(r1,1) locRobot(r2,2) locRobot(r2,3)
pickupBook(t,0) ab(pickup_failed,f,1) ab(pickup_failed,f,2)
ab(pickup_failed,f,3) hasBook(f,2) hasBook(f,3) putdownBook(t,2)
ab(drop_book,f,1) hasBook(f,0) locBook(r1,0) locRobot(r1,0)
ab(drop_book,t,2) hasBook(t,1) locBook(r1,1) ab(drop_book,f,3)
locBook(r1,2) locBook(r1,3) ab(enter_failed,f,0)
ab(pickup_failed,f,0) ab(drop_book,f,0) goto(r1,f,0) goto(r1,f,1)
goto(r1,f,2) goto(r2,f,0) goto(r2,f,2) pickupBook(f,1)
pickupBook(f,2) putdownBook(f,0) putdownBook(f,1)
Optimization: 3688
OPTIMUM FOUND

The observation that the robot itself was not at r2 after the execution of the plan is represented
as the constraint

:- locRobot(r2, 3).

With the constraint in the program,

lpmln2asp -i robot.lpmln

gives the output

Answer: 89
ab(enter_failed,f,1) ab(enter_failed,t,2) goto(r2,t,1)
ab(enter_failed,f,3) locRobot(r1,1) locRobot(r1,2) locRobot(r1,3)
pickupBook(t,0) ab(pickup_failed,f,1) ab(pickup_failed,f,2)
ab(pickup_failed,f,3) hasBook(f,3) putdownBook(t,2) ab(drop_book,f,1)
hasBook(f,0) locBook(r1,0) locRobot(r1,0) hasBook(t,1)
ab(drop_book,f,2) locBook(r1,1) hasBook(t,2) ab(drop_book,f,3)
locBook(r1,2) locBook(r1,3) ab(enter_failed,f,0)
ab(pickup_failed,f,0) ab(drop_book,f,0) goto(r1,f,0) goto(r1,f,1)
goto(r1,f,2) goto(r2,f,0) goto(r2,f,2) pickupBook(f,1)
pickupBook(f,2) putdownBook(f,0) putdownBook(f,1)
Optimization: 4381
OPTIMUM FOUND

