Constraint-Based Inference in Probabilistic Logic Programs

Arun Nampally, Timothy Zhang, C. R. Ramakrishnan Department of Computer Science, Stony Brook University, Stony Brook, NY 11794 {anampally,thzhang,cram}@cs.stonybrook.edu

May 2, 2018

A Proofs

Proposition (Closure properties). *OSDDs are closed under conjunction and disjunction operations.*

Proof. Let $\psi = (s,k,Y)[\gamma_i:\psi_i]$ and $\psi' = (s',k',Y')[\gamma'_j:\psi'_j]$ be two OSDDs.

Let \oplus denote either \land or \lor , then by the definition of $\psi \oplus \psi'$ ordering is preserved. Depending on the ordering of the OSDDs, $\psi \oplus \psi'$ has three cases. If $(s,k) \prec (s',k')$ (resp. $(s',k') \prec (s,k)$ then $\psi \oplus \psi'$ is constructed by leaving the root and edge lables intact at (s,k,Y) (resp. (s',k',Y')). In this case urgency, mutual exclusion, and completeness are all preserved since ψ (resp. ψ') is an OSDD and the root and its edge labels are unchanged.

If (s,k) = (s',k') urgency is preserved since $\forall i \forall j \ \gamma_i \land \gamma'_j$ are the constructed edges of $\psi \oplus \psi'$ and individually these γ_i and γ'_j satisfied urgency. If we take two distinct edge constraints $\gamma_i \land \gamma'_j$ and $\gamma_k \land \gamma_i$ it is the case that $[[\gamma_i \land \gamma'_j \land \gamma_k \land \gamma'_l]] = \emptyset$ since either $i \neq k$ or $j \neq l$ and both $[[\gamma_i \land \gamma_k]] = \emptyset$ and $[[\gamma'_j \land \gamma'_l]] = \emptyset$. Let σ be the grounding substitution of $\cup_{i,j} Vars(\gamma_i \land \gamma'_j) \setminus \{Y\}$ that is compatible with constraint formula labeling the path to the node (s,k,Y). To prove completeness, we note that $\cup_j [[\gamma_i \sigma \land \gamma'_j \sigma]]_Y = [[\gamma_i \sigma]]_Y$. Therefore, $\cup_{i,j} [[(\gamma_i \land \gamma'_j)\sigma]] = type(Y)$.

Proposition. Let $\psi = (s, k, Y)[\gamma_i : \psi_i]$ and $\psi' = (s', k', Y')[\gamma'_i : \psi'_i]$ be two OSDDs, then

$$\mathscr{G}(\boldsymbol{\psi} \oplus \boldsymbol{\psi}') = \mathscr{G}(\boldsymbol{\psi}) \oplus \mathscr{G}(\boldsymbol{\psi}').$$

Proof. When $(s,k) \prec (s',k')$, then $\mathscr{G}(\psi) \oplus \mathscr{G}(\psi') = (s,k,Y)[\alpha_r : \mathscr{G}(\psi_r[\alpha_r/Y]) \oplus \mathscr{G}(\psi')]$. But $\mathscr{G}(\psi \oplus \psi') = \mathscr{G}((s,k,Y)[\gamma_i : \psi_i \oplus \psi']) = (s,k,Y)[\alpha_r : \mathscr{G}(\psi_r \oplus \psi'[\alpha_r/Y])]$.

Thus, we consider the case where (s,k) = (s',k'). Both ground explanation graphs have the same root, therefore the ground explanations in $\mathscr{G}(\psi) \oplus \mathscr{G}(\psi')$ are obtained by combining subtrees connected which have the same edge label. Given grounding substitution σ on $\bigcup_{i,j} Vars(\gamma_i \land \gamma'_j) \setminus \{Y\}$ that is compatible with the constraint formula labeling the path from root to the node under consideration, if some value $\alpha \in type(Y)$ is such that it satisfies $\gamma_i \sigma$ and $\gamma'_j \sigma$ for specific *i*, *j*, then in $\psi \oplus \psi'$, $\alpha \in [[(\gamma_i \land \gamma_j)\sigma]]_Y$, therefore the same subtrees are combined.

Proposition (Condition for Measurability). A satisfiable constraint formula is measurable w.r.t all of its variables if and only if it saturated.

Proof. First we prove that saturation is a sufficient condition for measurability.

The proof is by induction on the number of variables in γ . When $|Vars(\gamma)| = 1$ the proposition holds since the only satisfiable constraint formulas with a single variable are $\{X = c\}$ for some $c \in Dom(X)$ or formulas of the form $\{X \neq c_1, X \neq c_2, ..., X \neq c_m\}$ for some distinct set of values $\{c_1, ..., c_m\} \subset Dom(X)$. Clearly the formulas are measurable w.r.t X.

Assume that the proposition holds for saturated constraint formulas with *n* variables. Now consider a satisfiable constraint formula γ with n + 1 variables which is saturated. Let $X \in Vars(\gamma)$. Consider the graph obtained by removing *X* and all edges incident on *X* from the constraint graph of γ . It represents a saturated constraint formula γ' with *n* variables. This is because for any three variables *A*, *B*, *C* distinct from *X*, if A = B, B = C then *A*, *C* are connected by an "=" edge. Similarly, if $A = B, B \neq C$, then *A*, *C* are connected by an " \neq " edge. Further for any variable *A* other than *X*, if *Z* is the set of variables connected to *A* by " \neq " edges, then there exists edges between each pair of these nodes. This is due to the definition of saturation which is satisfied by γ .

But, by inductive hypothesis γ' is measurable w.r.t each of its variables. Now consider computing the measure of X in γ . If X is connected to any node Y with an "=" edge, then measure of X is 1. If X is not connected to any node with an "=" edge, then it is either disconnected from other nodes or connected to them by only " \neq " edges. In either case m_X is computed by subtracting the number of nodes connected to X by " \neq " edges from the domain.

To prove that saturation is a necessary condition we use proof by contradiction. Assume there exists a measurable constraint formula γ which is not saturated. Then there exists a variable $X \in Vars(\gamma)$ and a set \mathscr{Z} which is the set of nodes connected to the node for X by " \neq " edge and for some pair of elements $A, B \in \mathscr{Z}$, there is no edge between them. Since we take closure of "=" edges, we can assume that $\gamma \not\models A = B$. So there must exist two substitutions σ, σ' where A = B and $A \neq B$ respectively. The number of solutions of X under these two substitutions is clearly different, which is a contradiction.