Appendix A Proofs of results

Proof of Proposition 2. Just note that, by construction, the evaluation of every 0term w.r.t. $\mathcal{I}=\left\langle\sigma^{h}, \sigma^{t}, I^{h}, I^{t}\right\rangle$ is the same to its evaluation w.r.t. $\hat{\mathcal{I}}$. Hence, for every 0 -terms $\tau_{1}, \ldots, \tau_{n}$ we have:
$\mathcal{I}, w \neq{ }_{s} p\left(\tau_{1}, \ldots, \tau_{n}\right)$
iff $p\left(\sigma^{w}\left(\tau_{1}\right), \ldots, \sigma^{w}\left(\tau_{n}\right)\right) \in I^{w}$
iff $p\left(\hat{\sigma}^{w}\left(\tau_{1}\right), \ldots, \hat{\sigma}^{w}\left(\tau_{n}\right)\right) \in I^{w}$
iff $\hat{\mathcal{I}}, w \models_{\mathcal{F}} p\left(\tau_{1}, \ldots, \tau_{n}\right)$. Similarly, for any pair of 0 -terms τ_{1}, τ_{2}, we have:
$\mathcal{I}, w \neq_{\mathcal{s}} \tau_{1}=\tau_{2}$
iff $\sigma\left(\tau_{1}\right)=\sigma\left(\tau_{2}\right)$
iff $\hat{\sigma}\left(\tau_{1}\right)=\hat{\sigma}\left(\tau_{2}\right)$
iff $\hat{\mathcal{I}}, w \models_{\mathcal{F}} \tau_{1}=\tau_{2}$.
Then, the proof follows by induction noting that the rules of $\models_{\mathcal{S}}$ and $\models_{\mathcal{F}}$ are the same when considered the different signatures.

Proof of Proposition 3. Just note that, by construction, the evaluation of every term w.r.t. $\mathcal{I}=\left\langle\sigma^{h}, \sigma^{t}, I^{h}, I^{t}\right\rangle$ is the same to the evaluation of $\kappa(\tau)$ w.r.t. $\tilde{\mathcal{I}}$. Hence, for any terms $\tau_{1}, \ldots, \tau_{n}$ we have:
$\mathcal{I}, w \mid{ }_{\mathcal{S}} p\left(\tau_{1}, \ldots, \tau_{n}\right)$
iff $p\left(\sigma\left(\tau_{1}\right), \ldots, \sigma\left(\tau_{n}\right)\right) \in I^{w}$
iff $p\left(\tilde{\sigma}\left(\kappa\left(\tau_{1}\right)\right), \ldots, \tilde{\sigma}\left(\kappa\left(\tau_{n}\right)\right)\right) \in I^{w}$
iff $\hat{\mathcal{I}}, w \models_{\mathcal{F}} p\left(\kappa\left(\tau_{1}\right), \ldots, \kappa\left(\tau_{n}\right)\right)$
iff $\hat{\mathcal{I}}, w \models_{\mathcal{F}} \kappa\left(p\left(\tau_{1}, \ldots, \tau_{n}\right)\right)$.
Then, the proof follows by induction noting that the rules of $\models_{\mathcal{S}}$ and $\models_{\mathcal{F}}$ are the same when considered the different signatures.

Proof of Proposition 4. By definition, $\operatorname{Coh}(\mathcal{I})$ is a coherent interpretation and, thus, we get: $\operatorname{Coh}(\mathcal{I})=\varphi$ iff $\operatorname{Coh}(\mathcal{I}), h \models_{\mathcal{s}} \varphi$. Furthermore, by definition, \mathcal{I} and $\operatorname{Coh}(\mathcal{I})$ agree on the evaluation of every 0-term and, since φ is a 0 -formula, it follows that $\operatorname{Coh}(\mathcal{I}), h \models_{\mathcal{s}} \varphi$ iff $\mathcal{J}, h \models_{\mathcal{S}} \varphi$ for any interpretation \mathcal{J} such that $\mathcal{J}=\hat{\mathcal{I}}$. Hence, the statement follows directly from Proposition 2

Proof of Proposition 5. Let $\mathcal{I}=\left\langle\sigma^{h}, \sigma^{t}, I^{h}, I^{t}\right\rangle$ be a coherent interpretation. Then, we have that $\mathcal{I}, w \models \varphi$ iff $\mathcal{I}, w \models_{\mathcal{s}} \varphi$ and it is obvious that $\mathcal{I}, w \models_{\mathcal{s}} \varphi$ implies $\mathcal{I}, t \models_{\mathcal{s}} \varphi$ when $w=t$. The proof that $\mathcal{I}, h \models_{\mathcal{S}} \varphi$ implies $\mathcal{I}, t \models_{\mathcal{S}} \varphi$ easily follows by structural induction. Note that, in case that φ is an atom $p\left(\tau_{1}, \ldots, \tau_{n}\right)$, then $\mathcal{I}, h \models_{\mathcal{s}} \varphi$ implies $p\left(\tau_{1}, \ldots, \tau_{n}\right) \in I^{h} \subseteq I^{t}$ which, in its turn, implies $\mathcal{I}, t \models_{\mathcal{s}} \varphi$. In case that φ is of the form $\tau_{1}=\tau_{2}$, we have $\mathcal{I}, h \models_{\mathcal{s}} \varphi$ iff $\sigma^{h}\left(\tau_{1}\right)=\sigma^{h}\left(\tau_{2}\right) \neq \boldsymbol{u}$ which, in its turn, implies $\sigma^{t}\left(\tau_{1}\right)=\sigma^{t}\left(\tau_{2}\right) \neq \boldsymbol{u}$ and $\mathcal{I}, t \models_{\mathcal{s}} \varphi$. The rest of the cases are as usual in SQHT ${ }^{=}$.

Let us show that $\mathcal{I}, w \models \neg \varphi$ iff $\mathcal{I}, t \not \vDash \varphi$. Note that, since \mathcal{I} is coherent, we have:
$\mathcal{I}, w \models \neg \varphi$
iff $\mathcal{I}, w \models_{\mathcal{S}} \neg \varphi$
iff $\tilde{\mathcal{I}}, w \models_{\mathcal{F}} \kappa(\neg \varphi)$ (Proposition 3)
iff $\tilde{\mathcal{I}}, w \models_{\mathcal{F}} \neg \kappa(\varphi)$ (by definition)
iff $\tilde{\mathcal{I}}, t \not \vDash_{\mathcal{F}} \kappa(\varphi)$ (Proposition 1).

Furthermore, since \mathcal{I} is coherent, we have:
$\mathcal{I}, t \not \vDash \varphi$
iff $\mathcal{I}, t \not \vDash_{\mathcal{s}} \varphi$
iff $\tilde{\mathcal{I}}, t \not \vDash_{\mathcal{F}} \kappa(\varphi)$ (Proposition 3).
Consequently, $\mathcal{I}, w \models \neg \varphi$ iff $\mathcal{I}, t \not \models \varphi$ holds.
Proof of Proposition 6. Assume first that φ is a $\mathrm{SQHT}_{\mathcal{F}}^{=}$tautology and suppose, for the sake of contradiction, that φ is not a $\operatorname{SQHT}_{\mathcal{S}}^{=}$tautology. Let $\mathcal{I}=\left\langle\sigma^{h}, \sigma^{t}, I^{h}, I^{t}\right\rangle$ be an interpretation such that $\mathcal{I} \not \vDash_{\mathcal{S}} \varphi$. Then, from Proposition 3, it follows that $\mathcal{I} \not \forall_{\mathcal{F}} \kappa(\varphi)$ which is a contradiction. Hence, $\kappa(\varphi)$ must be a $\operatorname{SQHT}_{\mathcal{\mathcal { S }}}^{\overline{\overline{\mathcal{L}}} \text { tautology. }}$

Assume now that φ is a 0 -formula. Then $\kappa(\varphi)=\varphi$ and, as shown above, the only if direction holds. Hence, assume that φ is a $\operatorname{SQHT}_{\overline{\mathcal{S}}}^{\overline{=}}$ tautology and suppose, for the sake of contradiction, that φ is not a $\operatorname{SQHT}_{\mathcal{F}}^{\overline{=}}$ tautology. Let $\mathcal{I}=\left\langle\sigma^{h}, \sigma^{t}, I^{h}, I^{t}\right\rangle$ be an $\mathrm{SQHT}_{\mathcal{\mathcal { F }}}=$-interpretation such that $\mathcal{I} \not{\neq \mathcal{F}_{\mathcal{F}}}^{\varphi}$. From Proposition 4, this implies that $\operatorname{Coh}(\mathcal{I}) \not \vDash_{\mathcal{S}} \varphi$ which is a contradiction with the fact that φ is a $\operatorname{SQHT}_{\mathcal{\mathcal { S }}}^{\overline{\bar{s}}}$ tautology. Consequently, φ must be a $\operatorname{SQHT}_{\mathcal{\mathcal { S }}}^{=}$tautology.
Lemma 1. Any pair of $\mathrm{SQHT}^{=}{ }_{-}$interpretations \mathcal{I}_{1} and \mathcal{I}_{2} satisfy:
i) $\mathcal{I}_{1} \preceq \mathcal{I}_{2}$ iff $\operatorname{Coh}\left(\mathcal{I}_{1}\right) \preceq \operatorname{Coh}\left(\mathcal{I}_{2}\right)$,
ii) $\mathcal{I}_{1}=\mathcal{I}_{2}$ iff $\operatorname{Coh}\left(\mathcal{I}_{1}\right)=\operatorname{Coh}\left(\mathcal{I}_{2}\right)$, and
iii) $\mathcal{I}_{1} \prec \mathcal{I}_{2}$ iff $\operatorname{Coh}\left(\mathcal{I}_{1}\right) \prec \operatorname{Coh}\left(\mathcal{I}_{2}\right)$.

Proof

First note that i) implies ii) and these two together imply iii). Hence, let us show that i) holds.

Let $\mathcal{I}_{1}=\left\langle\sigma_{1}^{h}, \sigma_{1}^{t}, I_{1}^{h}, I_{1}^{t}\right\rangle$ and $\mathcal{I}=\left\langle\sigma_{2}^{h}, \sigma_{2}^{t}, I_{2}^{h}, I_{2}^{t}\right\rangle$ such that $\mathcal{I}_{1} \preceq \mathcal{I}_{2}$. Then, $\sigma_{1}^{w} \preceq \sigma_{2}^{w}$ and $I_{1}^{w} \subseteq I_{2}^{w}$ with $w \in\{h, t\}$. By definition, we have that $\operatorname{Coh}\left(\mathcal{I}_{1}\right)=\left\langle\sigma_{\mathcal{I}_{1}}, \sigma_{\mathcal{I}_{1}^{t}}, I_{1}^{h}, I_{1}^{t}\right\rangle$ and $\operatorname{Coh}\left(\mathcal{I}_{2}\right)=\left\langle\sigma_{\mathcal{I}_{2}}, \sigma_{\mathcal{I}_{2}^{t}}, I_{2}^{h}, I_{2}^{t}\right\rangle$ and, to show $\operatorname{Coh}\left(\mathcal{I}_{1}\right) \preceq \operatorname{Coh}\left(\mathcal{J}_{2}\right)$, it is enough to prove $\sigma_{\mathcal{J}_{1}} \preceq \sigma_{\mathcal{J}_{2}}$ for $\mathcal{J} \in\left\{\mathcal{I}, \mathcal{I}^{t}\right\}$. Note that, for every term $\tau \in \operatorname{Terms}^{0}(\mathcal{C} \cup \mathcal{F})$, we have that

$$
\begin{aligned}
& \sigma_{\mathcal{I}}(\tau)=\sigma_{1}^{h}(\tau) \preceq \sigma_{2}^{h}(\tau)=\sigma_{\mathcal{I}}(\tau) \\
& \sigma_{\mathcal{I}^{t}}(\tau)=\sigma_{1}^{t}(\tau) \preceq \sigma_{2}^{t}(\tau)=\sigma_{\mathcal{I}^{t}}(\tau)
\end{aligned}
$$

and, for every intensional set $\tau=\{\vec{\tau}(\vec{x}): \varphi(\vec{x})\}$ we have that

$$
\begin{aligned}
\sigma_{\mathcal{I}}(\tau) & \preceq \sigma_{\mathcal{I}}(\tau) \\
\sigma_{\mathcal{I}^{t}}(\tau) & \preceq \sigma_{\mathcal{I}^{t}}(\tau)
\end{aligned}
$$

follows from $I_{1}^{w} \subseteq I_{2}^{w}$. The rest of the proof follows by structural induction and the fact that functions preserve their interpretation through subterms. That is, $\tau=f\left(\tau_{1}, \ldots, \tau_{n}\right)$ and $\sigma_{\mathcal{J}_{1}}\left(\tau_{i}\right) \preceq \sigma_{\mathcal{J}_{2}}\left(\tau_{i}\right)$. By definition, if $\sigma_{\mathcal{J}_{1}}\left(\tau_{i}\right)=\boldsymbol{u}$ for some $1 \leq i \leq n$, then $\sigma_{\mathcal{J}_{1}}(\tau)=$ $\boldsymbol{u} \preceq \sigma_{\mathcal{J}_{2}}(\tau)$. Otherwise, $\sigma_{\mathcal{J}_{1}}\left(\tau_{i}\right)=\sigma_{\mathcal{J}_{2}}\left(\tau_{i}\right)$ for all $1 \leq i \leq n$ and, thus

$$
\sigma_{\mathcal{J}_{1}}(\tau)=\sigma_{\mathcal{J}_{1}}\left(f\left(\sigma_{\mathcal{J}_{1}}\left(\tau_{1}\right), \ldots, \sigma_{\mathcal{J}_{1}}\left(\tau_{n}\right)\right)\right)=\sigma_{\mathcal{J}_{1}}\left(f\left(\sigma_{\mathcal{J}_{2}}\left(\tau_{1}\right), \ldots, \sigma_{\mathcal{J}_{2}}\left(\tau_{n}\right)\right)\right) \preceq \sigma_{\mathcal{J}_{2}}(\tau)
$$

and, by induction hypothesis, we get

$$
\sigma_{\mathcal{J}_{1}}\left(f\left(\sigma_{\mathcal{J}_{2}}\left(\tau_{1}\right), \ldots, \sigma_{\mathcal{J}_{2}}\left(\tau_{n}\right)\right)\right) \preceq \sigma_{\mathcal{J}_{2}}\left(f\left(\sigma_{\mathcal{J}_{2}}\left(\tau_{1}\right), \ldots, \sigma_{\mathcal{J}_{2}}\left(\tau_{n}\right)\right)\right)=\sigma_{\mathcal{J}_{2}}(\tau)
$$

Hence, $\sigma_{\mathcal{J}_{1}}(\tau) \preceq \sigma_{\mathcal{J}_{2}}(\tau)$
Proof of Proposition 7. Assume first that I is a stable model of Γ w.r.t. Definition 10. Then, there is some total coherent interpretation $\mathcal{I}=\langle\sigma, I\rangle$ such that $\mathcal{I} \models \Gamma$ and that satisfies $\mathcal{I}^{\prime} \not \vDash \Gamma$ for all \mathcal{I}^{\prime} with $\mathcal{I}^{\prime} \prec \mathcal{I}$. From $\mathcal{I} \models \Gamma$, it follows that $\hat{\mathcal{I}} \models_{\mathcal{F}} \varphi$ (Proposition 2). Suppose, for the sake of contradiction, that I is not a stable model according to Definition 4. Then, $\hat{\mathcal{I}} \models_{\mathcal{F}} \varphi$ implies that there is some interpretation $\mathcal{I}^{\prime} \prec \hat{\mathcal{I}}$ such that $\mathcal{I}^{\prime} \models_{\mathcal{F}} \Gamma$. From Proposition 4, this implies that $\operatorname{Coh}\left(\mathcal{I}^{\prime}\right) \models \Gamma$. Furthermore, from Lemma 1, it follows that $\mathcal{I}^{\prime} \prec \hat{\mathcal{I}}$ implies $\operatorname{Coh}\left(\mathcal{I}^{\prime}\right) \prec \operatorname{Coh}(\hat{\mathcal{I}})=\mathcal{I}$ which is a contradiction.

The other way around. Assume now that I is a stable model of Γ w.r.t. Definition 4. Then, there is some interpretation $\mathcal{I}=\langle\sigma, I\rangle$ such that $\mathcal{I} \models_{\mathcal{F}} \Gamma$ and that $\mathcal{I}^{\prime} \not \vDash_{\mathcal{F}} \Gamma$ for all \mathcal{I}^{\prime} with $\mathcal{I}^{\prime} \prec \mathcal{I}$. From Proposition 4, this implies that $\operatorname{Coh}(\mathcal{I}) \models \Gamma$. Suppose now that I is not a stable model according to Definition 10. Then, there is some coherent interpretation $\mathcal{I}^{\prime}=\left\langle\sigma^{h}, \sigma^{t}, I^{h}, I\right\rangle \prec \operatorname{Coh}(\mathcal{I})$ such that $\mathcal{I}^{\prime} \models \Gamma$. From Proposition 2, this implies that $\hat{\mathcal{I}}^{\prime} \models_{\mathcal{F}} \Gamma$ and that $\hat{\mathcal{I}}^{\prime} \prec \mathcal{I}$ which is a contradiction.

Proposition 9. Given a ground GZ-formula φ and a total coherent interpretation of the form $\mathcal{I}=\langle\sigma, T\rangle$, we have: $\mathcal{I} \models \varphi$ iff $T \not \models_{c l} \varphi$.

Proof of Proposition 9. The proof follows by induction assuming φ is an i-formula and that the statement holds for every subformula of φ and for every $(i-1)$-formula. Note that iii) is the unique non-trivial case.

Let $A=(f\{\vec{x}: \varphi(\vec{x})\} \unlhd n)$ be a set atom. Then, we have that
$T \models_{c l} A$
iff $\hat{f}\left(\left\{\vec{c} \in \mathcal{D}^{|\vec{x}|} \mid T \models_{c l} \varphi(\vec{c})\right\}\right)=k$ and $k \unlhd n($ Definition 12)
iff $\hat{f}\left(\left\{\vec{c} \in \mathcal{D}^{|\vec{x}|} \mid \mathcal{I} \models \varphi(\vec{c})\right\}\right)=k$ and $k \unlhd n$ (induction hypothesis).
On the other hand, we also have that
$\mathcal{I} \models A$
iff $\unlhd(\sigma(f\{\vec{x}: \varphi(\vec{x})\}), \sigma(n)) \in I^{h}$ (Definition 7)
iff $\sigma(f\{\vec{x}: \varphi(\vec{x})\}) \unlhd \sigma(n)$
iff $\hat{f}(\sigma(\{\vec{x}: \varphi(\vec{x})\})) \unlhd \sigma(n)$ (Definition 11)
iff $\hat{f}\left(\left\{\vec{x}[\vec{x} / \vec{c}] \mid \mathcal{I} \models \varphi(\vec{c})\right.\right.$ with $\left.\left.\vec{c} \in \mathcal{D}^{|\vec{x}|}\right\}\right) \unlhd \sigma(n)$ (Definition 8)
iff $\hat{f}\left(\left\{\vec{c} \in \mathcal{D}^{|\vec{x}|} \mid \mathcal{I} \models \varphi(\vec{c})\right\}\right) \unlhd \sigma(n)$
iff $\hat{f}\left(\left\{\vec{c} \in \mathcal{D}^{|\vec{x}|} \mid \mathcal{I} \models \varphi(\vec{c})\right\}\right) \unlhd n$ (term evaluation)
Then, the result follows directly by defining k as the result of evaluating the expression $\hat{f}\left(\left\{\vec{c} \in \mathcal{D}^{|\vec{x}|} \mid \mathcal{I} \models \varphi(\vec{c})\right\}\right)$.
Proposition 10. Given a ground GZ-formula φ and some coherent interpretation \mathcal{I}, we have:
i) $\mathcal{I}, t \models \varphi$ iff $T \not \models_{c l} \varphi$, and
ii) $\mathcal{I} \models \varphi$ iff $H \models_{c l} \varphi^{T}$.

Proof of Proposition 10. First, note that i) follows directly from Proposition 9. So, let us prove ii).

Assume that \mathcal{I} is of the form $\mathcal{I}=\left\langle\sigma^{h}, \sigma^{t}, H, T\right\rangle$. If φ is an ground GZ-atom a, then $\mathcal{I} \models \varphi$
iff $a \in H \subseteq T$ iff $H \models{ }_{c l} \varphi^{T}$. Otherwise, we proceed by induction assuming that φ is an i-formula and that the statement holds for all subformulas of φ and all $(i-1)$-formulas.

If φ is a set atom of the form $A=f\{\vec{x}: \psi(\vec{x})\} \unlhd n$. Then, $\mathcal{I} \models A$ implies $\mathcal{I}, t \models A$ (Proposition 5) which, in its turn, implies $T \models_{c l} A$ (Proposition 9) and, thus, we get $A^{T}=\left(\bigwedge \operatorname{Gr}_{T}^{+}(\psi(\vec{x}))\right)^{T}$. Furthermore, $\mathcal{I} \models A$ also implies

$$
\sigma^{h}(f\{\vec{x}: \psi(\vec{x})\}) \neq \boldsymbol{u}
$$

$$
\sigma^{h}(n)=n \neq \boldsymbol{u}
$$

By definition of term evaluation the former implies

$$
\sigma^{h}(\{\vec{x}: \psi(\vec{x})\}) \neq \boldsymbol{u}
$$

and, by the definition of coherent interpretation, this implies

$$
\begin{aligned}
\sigma^{h}(\{\vec{x}: \psi(\vec{x})\}) & =\sigma^{t}(\{\vec{x}: \psi(\vec{x})\}) \\
& =\left\{\sigma^{h}(\vec{\tau}[\vec{x} / \vec{c}]) \mid \mathcal{I}, h=_{\mathcal{s}} \psi(\vec{c}) \text { for some } \vec{c} \in \mathcal{D}^{|\vec{x}|}\right\} \\
& =\left\{\sigma^{t}(\vec{\tau}[\vec{x} / \vec{c}]) \mid \mathcal{I}, t=_{\mathcal{s}} \psi(\vec{c}) \text { for some } \vec{c} \in \mathcal{D}^{|\vec{x}|}\right\}
\end{aligned}
$$

and, thus, $\mathcal{I}, h \models \psi(\vec{c})$ iff $\mathcal{I}, t \models \psi(\vec{c})$ iff $T \models_{c l} \psi(\vec{c})$ (Proposition 9) for all $\vec{c} \in \mathcal{D}^{|\vec{x}|}$. This implies

$$
\mathcal{I} \models \bigwedge \operatorname{Gr}_{T}^{+}(\psi(\vec{x}))=\bigwedge\left\{\psi(\vec{c}) \in \operatorname{Gr}(T) \mid \text { and } T \models_{c l} \psi(\vec{c})\right\}
$$

Since this is a $(i-1)$-formula, by induction hypothesis, we get

$$
H \models_{c l}\left(\bigwedge \operatorname{Gr}_{T}^{+}(\psi(\vec{x}))\right)^{T}=A^{T}
$$

Assume now that $H \models_{c l} A^{T}$, then $T \models_{c l} A$ and we get

$$
\hat{f}\left(\left\{\vec{c} \in \mathcal{D}^{|\vec{x}|} \mid T \models_{c l} \psi(\vec{c})\right\}\right) \unlhd n
$$

which implies $\hat{f}\left(\left\{\vec{c} \in \mathcal{D}^{|\vec{x}|} \mid \mathcal{I}, t=_{\mathcal{s}} \psi(\vec{c})\right\}\right) \unlhd n$. From this and Definition 8 , we get $\hat{f}\left(\sigma^{t}(\{\vec{x}: \psi(\vec{x})\})\right) \unlhd n$ and, in its turn, from this and Definition 11 we get

$$
\sigma^{t}(f\{\vec{x}: \psi(\vec{x})\}) \unlhd \sigma^{t}(n)
$$

Hence, we obtain that \mathcal{I}, $t \models A$. Furthermore, $H \models_{c l} A^{T}=\left(\bigwedge \mathrm{Gr}_{T}^{+}(\psi(\vec{x}))\right)^{T}$ implies that, for all $\vec{c} \in \mathcal{D}^{|\vec{x}|}, H \models_{c l} \psi(\vec{c})^{T}$ whenever $T \models_{c l} \psi(\vec{c})$. By induction hypothesis, this implies that $\mathcal{I} \models \psi(\vec{c})^{T}$ holds whenever $T \models_{c l} \psi(\vec{c})$. and, thus, we get that $\mathcal{I}, t \models_{\mathcal{s}} \psi(\vec{c})$ implies $\mathcal{I} \models_{\mathcal{S}} \psi(\vec{c})$ for all $\vec{c} \in \mathcal{D}^{|\vec{x}|}$. Hence,

$$
\sigma^{t}(\{\vec{x}: \psi(\vec{x})\})=\sigma^{h}(\{\vec{x}: \psi(\vec{x})\})
$$

and, thus, that $\mathcal{I} \models A$.
The cases for connective \wedge, \vee and \rightarrow follow by structural induction as in Lemma 1 from (?): $\mathcal{I} \models \varphi_{1} \wedge \varphi_{2}\left(\right.$ resp. $\left.\mathcal{I} \models \varphi_{1} \wedge \varphi_{2}\right)$
iff $\mathcal{I} \models \varphi_{1}$ and (resp. or) $\mathcal{I} \models \varphi_{2}$
iff $H \models_{c l} \varphi_{1}^{T}$ and (resp. or) $H \models_{c l} \varphi_{2}^{t}$
iff $H \models_{c l} \varphi_{1}^{T} \wedge \varphi_{2}^{T}$ (resp. $\left.H \models_{c l} \varphi_{1}^{T} \vee \varphi_{2}^{T}\right)$
iff $H \models_{c l}\left(\varphi_{1} \wedge \varphi_{2}\right)^{T}\left(\right.$ resp. $\left.H \models_{c l}\left(\varphi_{1} \vee \varphi_{2}\right)^{T}\right)$.
Finally, $\mathcal{I} \models \varphi_{1} \rightarrow \varphi_{2}$
iff both $\mathcal{I}, h \not \vDash \varphi_{1}$ or $\mathcal{I}, h \models \varphi_{2}$ and $\mathcal{I}, t \not \vDash \varphi_{1}$ or $\mathcal{I}, t \models \varphi_{2}$
iff both $\mathcal{I} \not \vDash \varphi_{1}$ or $\mathcal{I} \models_{c l} \varphi_{2}$ and $T \not \vDash_{c l} \varphi_{1}$ or $T \not \models_{c l} \varphi_{2}$
iff both $H \not \vDash_{c l} \varphi_{1}^{T}$ or $H \models_{c l} \varphi_{2}^{T}$ and $T \not \models_{c l} \varphi_{1}$ or $T \models_{c l} \varphi_{2}$
iff both $H \models_{c l} \varphi_{1}^{T} \rightarrow \varphi_{2}^{T}$ and $T \models_{c l} \varphi_{1} \rightarrow \varphi_{2}$
iff both $H \not \vDash_{c l} \varphi_{1}^{T} \rightarrow \varphi_{2}^{T}$ and $\varphi^{T}=\varphi_{1}^{T} \rightarrow \varphi_{2}^{T}$
iff $H \models_{c l} \varphi^{T}$
Lemma 2. Let Γ be any GZ-theory and let \mathcal{I} be any coherent interpretation and T be a set of atoms. Then,
i) $\mathcal{I} \models \Gamma$ iff $\mathcal{I} \models \operatorname{Gr}(\Gamma)$,
ii) T is a stable model of Γ iff T is a stable model of $\operatorname{Gr}(\Gamma)$.

Proof

By definition, we get: $\mathcal{I} \models \Gamma$
iff $\mathcal{I}=\forall \vec{x} \varphi(\vec{x})$ for all $\varphi(\vec{x}) \in \Gamma$
iff $\mathcal{I}=\varphi(\vec{c})$ for all $\varphi(\vec{x}) \in \Gamma$ and all $\vec{c} \in \mathcal{D}^{|\vec{x}|}$
iff $\mathcal{I} \mid=\varphi(\vec{c})$ for all $\varphi(\vec{x}) \in \operatorname{Gr}(\Gamma)=\left\{\varphi(\vec{c}) \mid \forall \vec{x} \varphi(\vec{x}) \in \Gamma\right.$ and $\left.\vec{c} \in \mathcal{D}^{|\vec{x}|}\right\}$
iff $\mathcal{I} \mid=\operatorname{Gr}(\Gamma)$.
Furthermore, T is a stable model of Γ
iff there is some total coherent interpretation $\mathcal{I}=\langle\sigma, T\rangle$ which is an equilibrium model of Γ
iff there is some total coherent interpretation $\mathcal{I}=\langle\sigma, T\rangle$ which is an \prec-minimal model of Γ
iff there is some total coherent interpretation $\mathcal{I}=\langle\sigma, T\rangle$ which is an \prec-minimal model of $\operatorname{Gr}(\Gamma)$
iff T is a stable model of Γ.

Proof of Theorem 1. First note that, from Definition 13 and Lemma 2, we have that T is a stable model of Γ iff T is a stable model of $\operatorname{Gr}(\Gamma)$ according to both Definitions. Hence, we assume without loss of generality that Γ is ground.

Let $\mathcal{I}=\langle\sigma, T\rangle$ be a total coherent interpretation. Then, from Proposition 10, we get that $\mathcal{I} \models \Gamma$ iff $T \not \models_{c l} \Gamma^{T}$. Let us show now that if T is the \subseteq-minimal model of Γ^{T}, then \mathcal{I} is an equilibrium model of Γ. Suppose, for the sake of contradiction, that this does not hold. Then, there is a some coherent interpretation $\mathcal{I}^{\prime}=\left\langle\sigma^{h}, \sigma^{t}, H, T\right\rangle$ such that $\mathcal{I}^{\prime} \preceq \mathcal{I}$ and $\mathcal{I} \models \Gamma$, but $\mathcal{I}^{\prime} \nsucceq \mathcal{I}$. Note that, from Proposition $10, \mathcal{I}^{\prime} \models \Gamma$ implies $H \models_{c l} \Gamma^{T}$ while, since \mathcal{I}^{\prime} is coherent, $\mathcal{I}^{\prime} \preceq \mathcal{I}$ and $\mathcal{I}^{\prime} \nsucceq \mathcal{I}$ imply $H \subset T$ (note that all evaluable functions are aggregates and, thus, σ^{h} and σ^{t} are fully determined by H and T, respectively) which is a contradiction with the assumption.

The other way around. Suppose, for the sake of contradiction, that \mathcal{I} is an equilibrium model of Γ, but T is not the \subseteq-minimal model of Γ^{T}. Then there is some set $H \subset T$ that satisfies $H \models_{c l} \Gamma^{T}$ and, from Proposition 10, this implies $\mathcal{I}^{\prime}=\left\langle\sigma^{h}, \sigma^{t}, H, T\right\rangle \models \Gamma$ and that $\mathcal{I}^{\prime} \prec \mathcal{I}$ which contradicts the fact that \mathcal{I} is a stable model of Γ.

Proof of Proposition 8. Let $\mathcal{I}=\left\langle\sigma^{h}, \sigma^{t}, I^{h}, I^{t}\right\rangle$ be some coherent interpretation. If φ is an atom, by definition, we have that $\mathcal{I} \models_{\mathcal{S}} \exists x, x=\tau_{i} \wedge p\left(\tau_{1}, \ldots, x, \ldots, \tau_{n}\right)$ iff $\mathcal{I} \mid=_{\mathcal{s}} c=\tau_{i} \wedge p\left(\tau_{1}, \ldots, c, \ldots, \tau_{n}\right)$ for some $c \in \operatorname{Terms}^{0}(\mathcal{C})$
iff $\mathcal{I} \models_{\mathcal{S}} c=\tau_{i}$ and $\mathcal{I} \models_{s} p\left(\tau_{1}, \ldots, c, \ldots, \tau_{n}\right)$ for some $c \in \operatorname{Terms}^{0}(\mathcal{C})$
iff $\sigma^{h}(c)=\sigma^{h}\left(\tau_{i}\right) \neq \boldsymbol{u}$ and $p\left(\sigma^{h}\left(\tau_{1}\right), \ldots, \sigma^{h}(c), \ldots, \sigma^{h}\left(\tau_{n}\right)\right) \in I^{h}$ for some constant $c \in \operatorname{Terms}{ }^{0}(\mathcal{C})$
iff $\sigma^{h}(c)=\sigma^{h}\left(\tau_{i}\right) \neq \boldsymbol{u}$ and $p\left(\sigma^{h}\left(\tau_{1}\right), \ldots, \sigma^{h}\left(\tau_{i}\right), \ldots, \sigma^{h}\left(\tau_{n}\right)\right) \in I^{h}$ for some constant $c \in \operatorname{Terms}^{0}(\mathcal{C})$
iff $\sigma^{h}\left(\tau_{i}\right) \neq \boldsymbol{u}$ and $p\left(\sigma^{h}\left(\tau_{1}\right), \ldots, \sigma^{h}\left(\tau_{i}\right), \ldots, \sigma^{h}\left(\tau_{n}\right)\right) \in I^{h}$
iff $p\left(\sigma^{h}\left(\tau_{1}\right), \ldots, \sigma^{h}\left(\tau_{i}\right), \ldots, \sigma^{h}\left(\tau_{n}\right)\right) \in I^{h}$
iff $\mathcal{I} \models_{\mathcal{S}} p\left(\tau_{1}, \ldots, \tau_{i}, \ldots, \tau_{n}\right)$.

