Appendix A Proofs of results

Proof of Proposition 2. Just note that, by construction, the evaluation of every 0term w.r.t. $\mathcal{I} = \langle \sigma^h, \sigma^t, I^h, I^t \rangle$ is the same to its evaluation w.r.t. $\hat{\mathcal{I}}$. Hence, for every 0-terms τ_1, \ldots, τ_n we have: $\mathcal{I}, w \models_S p(\tau_1, \ldots, \tau_n)$ iff $p(\sigma^w(\tau_1), \ldots, \sigma^w(\tau_n)) \in I^w$ iff $\hat{\mathcal{I}}, w \models_F p(\tau_1, \ldots, \tau_n)$. Similarly, for any pair of 0-terms τ_1, τ_2 , we have: $\mathcal{I}, w \models_S \tau_1 = \tau_2$ iff $\sigma(\tau_1) = \sigma(\tau_2)$ iff $\hat{\mathcal{I}}, w \models_F \tau_1 = \tau_2$. Then, the proof follows by induction noting that the rules of \models_S and \models_F are the same

Proof of Proposition 3. Just note that, by construction, the evaluation of every term w.r.t. $\mathcal{I} = \langle \sigma^h, \sigma^t, I^h, I^t \rangle$ is the same to the evaluation of $\kappa(\tau)$ w.r.t. $\tilde{\mathcal{I}}$. Hence, for any terms τ_1, \ldots, τ_n we have:

$$\begin{split} \mathcal{I}, & \models_{\mathcal{S}} p(\tau_1, \dots, \tau_n) \\ \text{iff } p(\sigma(\tau_1), \dots, \sigma(\tau_n)) \in I^w \\ \text{iff } p(\tilde{\sigma}(\kappa(\tau_1)), \dots, \tilde{\sigma}(\kappa(\tau_n))) \in I^w \\ \text{iff } \hat{\mathcal{I}}, & \models_{\mathcal{F}} p(\kappa(\tau_1), \dots, \kappa(\tau_n)) \\ \text{iff } \hat{\mathcal{I}}, & \models_{\mathcal{F}} \kappa(p(\tau_1, \dots, \tau_n)). \end{split}$$

when considered the different signatures.

Then, the proof follows by induction noting that the rules of $\models_{\mathcal{S}}$ and $\models_{\mathcal{F}}$ are the same when considered the different signatures.

Proof of Proposition 4. By definition, $Coh(\mathcal{I})$ is a coherent interpretation and, thus, we get: $Coh(\mathcal{I}) \models \varphi$ iff $Coh(\mathcal{I}), h \models_{\mathcal{S}} \varphi$. Furthermore, by definition, \mathcal{I} and $Coh(\mathcal{I})$ agree on the evaluation of every 0-term and, since φ is a 0-formula, it follows that $Coh(\mathcal{I}), h \models_{\mathcal{S}} \varphi$ iff $\mathcal{J}, h \models_{\mathcal{S}} \varphi$ for any interpretation \mathcal{J} such that $\mathcal{J} = \hat{\mathcal{I}}$. Hence, the statement follows directly from Proposition 2

Proof of Proposition 5. Let $\mathcal{I} = \langle \sigma^h, \sigma^t, I^h, I^t \rangle$ be a coherent interpretation. Then, we have that $\mathcal{I}, w \models \varphi$ iff $\mathcal{I}, w \models_s \varphi$ and it is obvious that $\mathcal{I}, w \models_s \varphi$ implies $\mathcal{I}, t \models_s \varphi$ when w = t. The proof that $\mathcal{I}, h \models_s \varphi$ implies $\mathcal{I}, t \models_s \varphi$ easily follows by structural induction. Note that, in case that φ is an atom $p(\tau_1, \ldots, \tau_n)$, then $\mathcal{I}, h \models_s \varphi$ implies $p(\tau_1, \ldots, \tau_n) \in I^h \subseteq I^t$ which, in its turn, implies $\mathcal{I}, t \models_s \varphi$. In case that φ is of the form $\tau_1 = \tau_2$, we have $\mathcal{I}, h \models_s \varphi$ iff $\sigma^h(\tau_1) = \sigma^h(\tau_2) \neq u$ which, in its turn, implies $\sigma^t(\tau_1) = \sigma^t(\tau_2) \neq u$ and $\mathcal{I}, t \models_s \varphi$. The rest of the cases are as usual in SQHT⁼.

Let us show that $\mathcal{I}, w \models \neg \varphi$ iff $\mathcal{I}, t \not\models \varphi$. Note that, since \mathcal{I} is coherent, we have: $\mathcal{I}, w \models \neg \varphi$ iff $\mathcal{I}, w \models_{\mathcal{S}} \neg \varphi$ iff $\tilde{\mathcal{I}}, w \models_{\mathcal{F}} \kappa(\neg \varphi)$ (Proposition 3) iff $\tilde{\mathcal{I}}, w \models_{\mathcal{F}} \neg \kappa(\varphi)$ (by definition) iff $\tilde{\mathcal{I}}, t \not\models_{\mathcal{F}} \kappa(\varphi)$ (Proposition 1). \square

Furthermore, since \mathcal{I} is coherent, we have: $\mathcal{I}, t \not\models \varphi$ iff $\mathcal{I}, t \not\models_{s} \varphi$ iff $\tilde{\mathcal{I}}, t \not\models_{\tau} \kappa(\varphi)$ (Proposition 3). Consequently, $\mathcal{I}, w \models \neg \varphi$ iff $\mathcal{I}, t \not\models \varphi$ holds.

Proof of Proposition 6. Assume first that φ is a SQHT⁼_{\mathcal{F}} tautology and suppose, for the sake of contradiction, that φ is not a SQHT⁼_{\mathcal{S}} tautology. Let $\mathcal{I} = \langle \sigma^h, \sigma^t, I^h, I^t \rangle$ be an interpretation such that $\mathcal{I} \not\models_{\mathcal{S}} \varphi$. Then, from Proposition 3, it follows that $\mathcal{I} \not\models_{\mathcal{F}} \kappa(\varphi)$ which is a contradiction. Hence, $\kappa(\varphi)$ must be a SQHT⁼_{\mathcal{S}} tautology.

Assume now that φ is a 0-formula. Then $\kappa(\varphi) = \varphi$ and, as shown above, the only if direction holds. Hence, assume that φ is a SQHT^{\equiv} tautology and suppose, for the sake of contradiction, that φ is not a SQHT^{\equiv} tautology. Let $\mathcal{I} = \langle \sigma^h, \sigma^t, I^h, I^t \rangle$ be an SQHT^{\equiv}-interpretation such that $\mathcal{I} \not\models_{\mathcal{F}} \varphi$. From Proposition 4, this implies that $Coh(\mathcal{I}) \not\models_{\mathcal{S}} \varphi$ which is a contradiction with the fact that φ is a SQHT^{$\equiv}$ </sup> tautology. Consequently, φ must be a SQHT^{\equiv} tautology.

Lemma 1. Any pair of SQHT⁼-interpretations \mathcal{I}_1 and \mathcal{I}_2 satisfy:

i) $\mathcal{I}_1 \preceq \mathcal{I}_2$ iff $Coh(\mathcal{I}_1) \preceq Coh(\mathcal{I}_2)$, ii) $\mathcal{I}_1 = \mathcal{I}_2$ iff $Coh(\mathcal{I}_1) = Coh(\mathcal{I}_2)$, and iii) $\mathcal{I}_1 \prec \mathcal{I}_2$ iff $Coh(\mathcal{I}_1) \prec Coh(\mathcal{I}_2)$.

Proof

First note that i) implies ii) and these two together imply iii). Hence, let us show that i) holds.

Let $\mathcal{I}_1 = \langle \sigma_1^h, \sigma_1^t, I_1^h, I_1^t \rangle$ and $\mathcal{I} = \langle \sigma_2^h, \sigma_2^t, I_2^h, I_2^t \rangle$ such that $\mathcal{I}_1 \preceq \mathcal{I}_2$. Then, $\sigma_1^w \preceq \sigma_2^w$ and $I_1^w \subseteq I_2^w$ with $w \in \{h, t\}$. By definition, we have that $Coh(\mathcal{I}_1) = \langle \sigma_{\mathcal{I}_1}, \sigma_{\mathcal{I}_1^t}, I_1^h, I_1^t \rangle$ and $Coh(\mathcal{I}_2) = \langle \sigma_{\mathcal{I}_2}, \sigma_{\mathcal{I}_2^t}, I_2^h, I_2^t \rangle$ and, to show $Coh(\mathcal{I}_1) \preceq Coh(\mathcal{J}_2)$, it is enough to prove $\sigma_{\mathcal{J}_1} \preceq \sigma_{\mathcal{J}_2}$ for $\mathcal{J} \in \{\mathcal{I}, \mathcal{I}^t\}$. Note that, for every term $\tau \in Terms^0(\mathcal{C} \cup \mathcal{F})$, we have that

$$\begin{aligned} \sigma_{\mathcal{I}}(\tau) &= \sigma_1^h(\tau) \preceq \sigma_2^h(\tau) = \sigma_{\mathcal{I}}(\tau) \\ \sigma_{\mathcal{I}^t}(\tau) &= \sigma_1^t(\tau) \preceq \sigma_2^t(\tau) = \sigma_{\mathcal{I}^t}(\tau) \end{aligned}$$

and, for every intensional set $\tau = \{\vec{\tau}(\vec{x}): \varphi(\vec{x})\}$ we have that

$$\sigma_{\mathcal{I}}(\tau) \preceq \sigma_{\mathcal{I}}(\tau)$$
$$\sigma_{\mathcal{I}^{t}}(\tau) \preceq \sigma_{\mathcal{I}^{t}}(\tau)$$

follows from $I_1^w \subseteq I_2^w$. The rest of the proof follows by structural induction and the fact that functions preserve their interpretation through subterms. That is, $\tau = f(\tau_1, \ldots, \tau_n)$ and $\sigma_{\mathcal{J}_1}(\tau_i) \preceq \sigma_{\mathcal{J}_2}(\tau_i)$. By definition, if $\sigma_{\mathcal{J}_1}(\tau_i) = \boldsymbol{u}$ for some $1 \leq i \leq n$, then $\sigma_{\mathcal{J}_1}(\tau) = \boldsymbol{u} \preceq \sigma_{\mathcal{J}_2}(\tau)$. Otherwise, $\sigma_{\mathcal{J}_1}(\tau_i) = \sigma_{\mathcal{J}_2}(\tau_i)$ for all $1 \leq i \leq n$ and, thus

$$\sigma_{\mathcal{J}_1}(\tau) = \sigma_{\mathcal{J}_1}(f(\sigma_{\mathcal{J}_1}(\tau_1), \dots, \sigma_{\mathcal{J}_1}(\tau_n))) = \sigma_{\mathcal{J}_1}(f(\sigma_{\mathcal{J}_2}(\tau_1), \dots, \sigma_{\mathcal{J}_2}(\tau_n))) \preceq \sigma_{\mathcal{J}_2}(\tau)$$

and, by induction hypothesis, we get

$$\sigma_{\mathcal{J}_1}(f(\sigma_{\mathcal{J}_2}(\tau_1),\ldots,\sigma_{\mathcal{J}_2}(\tau_n))) \preceq \sigma_{\mathcal{J}_2}(f(\sigma_{\mathcal{J}_2}(\tau_1),\ldots,\sigma_{\mathcal{J}_2}(\tau_n))) = \sigma_{\mathcal{J}_2}(\tau)$$

Hence, $\sigma_{\mathcal{J}_1}(\tau) \preceq \sigma_{\mathcal{J}_2}(\tau) \square$

Proof of Proposition 7. Assume first that I is a stable model of Γ w.r.t. Definition 10. Then, there is some total coherent interpretation $\mathcal{I} = \langle \sigma, I \rangle$ such that $\mathcal{I} \models \Gamma$ and that satisfies $\mathcal{I}' \not\models \Gamma$ for all \mathcal{I}' with $\mathcal{I}' \prec \mathcal{I}$. From $\mathcal{I} \models \Gamma$, it follows that $\hat{\mathcal{I}} \models_{\mathcal{F}} \varphi$ (Proposition 2). Suppose, for the sake of contradiction, that I is not a stable model according to Definition 4. Then, $\hat{\mathcal{I}} \models_{\mathcal{F}} \varphi$ implies that there is some interpretation $\mathcal{I}' \prec \hat{\mathcal{I}}$ such that $\mathcal{I}' \models_{\mathcal{F}} \Gamma$. From Proposition 4, this implies that $Coh(\mathcal{I}') \models \Gamma$. Furthermore, from Lemma 1, it follows that $\mathcal{I}' \prec \hat{\mathcal{I}}$ implies $Coh(\mathcal{I}') \prec Coh(\hat{\mathcal{I}}) = \mathcal{I}$ which is a contradiction.

The other way around. Assume now that I is a stable model of Γ w.r.t. Definition 4. Then, there is some interpretation $\mathcal{I} = \langle \sigma, I \rangle$ such that $\mathcal{I} \models_{\mathcal{F}} \Gamma$ and that $\mathcal{I}' \not\models_{\mathcal{F}} \Gamma$ for all \mathcal{I}' with $\mathcal{I}' \prec \mathcal{I}$. From Proposition 4, this implies that $Coh(\mathcal{I}) \models \Gamma$. Suppose now that I is not a stable model according to Definition 10. Then, there is some coherent interpretation $\mathcal{I}' = \langle \sigma^h, \sigma^t, I^h, I \rangle \prec Coh(\mathcal{I})$ such that $\mathcal{I}' \models \Gamma$. From Proposition 2, this implies that $\hat{\mathcal{I}}' \models_{\mathcal{F}} \Gamma$ and that $\hat{\mathcal{I}}' \prec \mathcal{I}$ which is a contradiction. \Box

Proposition 9. Given a ground GZ-formula φ and a total coherent interpretation of the form $\mathcal{I} = \langle \sigma, T \rangle$, we have: $\mathcal{I} \models \varphi$ iff $T \models_{cl} \varphi$.

Proof of Proposition 9. The proof follows by induction assuming φ is an *i*-formula and that the statement holds for every subformula of φ and for every (i-1)-formula. Note that iii) is the unique non-trivial case.

Let $A = (f\{\vec{x}:\varphi(\vec{x})\} \leq n)$ be a set atom. Then, we have that $T \models_{cl} A$ iff $\hat{f}(\{\vec{c} \in \mathcal{D}^{|\vec{x}|} \mid \mathcal{T} \models_{cl} \varphi(\vec{c})\}) = k$ and $k \leq n$ (Definition 12) iff $\hat{f}(\{\vec{c} \in \mathcal{D}^{|\vec{x}|} \mid \mathcal{I} \models \varphi(\vec{c})\}) = k$ and $k \leq n$ (induction hypothesis). On the other hand, we also have that $\mathcal{I} \models A$ iff $\leq (\sigma(f\{\vec{x}:\varphi(\vec{x})\}), \sigma(n)) \in I^h$ (Definition 7) iff $\sigma(f\{\vec{x}:\varphi(\vec{x})\}) \leq \sigma(n)$ iff $\hat{f}(\sigma(\{\vec{x}:\varphi(\vec{x})\})) \leq \sigma(n)$ (Definition 11) iff $\hat{f}(\{\vec{x}[\vec{x}/\vec{c}] \mid \mathcal{I} \models \varphi(\vec{c}) \text{ with } \vec{c} \in \mathcal{D}^{|\vec{x}|} \}) \leq \sigma(n)$ (Definition 8) iff $\hat{f}(\{\vec{c} \in \mathcal{D}^{|\vec{x}|} \mid \mathcal{I} \models \varphi(\vec{c})\}) \leq \sigma(n)$ iff $\hat{f}(\{\vec{c} \in \mathcal{D}^{|\vec{x}|} \mid \mathcal{I} \models \varphi(\vec{c})\}) \leq \sigma(n)$ iff $\hat{f}(\{\vec{c} \in \mathcal{D}^{|\vec{x}|} \mid \mathcal{I} \models \varphi(\vec{c})\}) \leq n$ (term evaluation) Then, the result follows directly by defining k as the result of evaluating the expression $\hat{f}(\{\vec{c} \in \mathcal{D}^{|\vec{x}|} \mid \mathcal{I} \models \varphi(\vec{c})\})$.

Proposition 10. Given a ground GZ-formula φ and some coherent interpretation \mathcal{I} , we have:

i)
$$\mathcal{I}, t \models \varphi \text{ iff } T \models_{cl} \varphi, \text{ and}$$

ii) $\mathcal{I} \models \varphi \text{ iff } H \models_{cl} \varphi^T.$

Proof of Proposition 10. First, note that i) follows directly from Proposition 9. So, let us prove ii).

Assume that \mathcal{I} is of the form $\mathcal{I} = \langle \sigma^h, \sigma^t, H, T \rangle$. If φ is an ground GZ-atom a, then $\mathcal{I} \models \varphi$

iff $a \in H \subseteq T$ iff $H \models_{cl} \varphi^T$. Otherwise, we proceed by induction assuming that φ is an *i*-formula and that the statement holds for all subformulas of φ and all (i-1)-formulas.

If φ is a set atom of the form $A = f\{\vec{x}: \psi(\vec{x})\} \leq n$. Then, $\mathcal{I} \models A$ implies $\mathcal{I}, t \models A$ (Proposition 5) which, in its turn, implies $T \models_{cl} A$ (Proposition 9) and, thus, we get $A^T = (\bigwedge \operatorname{Gr}^+_T(\psi(\vec{x})))^T$. Furthermore, $\mathcal{I} \models A$ also implies

$$\sigma^{h}(f\{\vec{x}:\psi(\vec{x})\}) \neq \boldsymbol{u} \qquad \qquad \sigma^{h}(n) = n \neq \boldsymbol{u}$$

By definition of term evaluation the former implies

$$\sigma^h(\{\vec{x}:\psi(\vec{x})\}) \neq \boldsymbol{u}$$

and, by the definition of coherent interpretation, this implies

$$\begin{aligned} \sigma^{h}(\{\vec{x}:\psi(\vec{x})\}) &= \sigma^{t}(\{\vec{x}:\psi(\vec{x})\}) \\ &= \{ \sigma^{h}(\vec{\tau}[\vec{x}/\vec{c}]) \mid \mathcal{I}, h \models_{\mathcal{S}} \psi(\vec{c}) \text{ for some } \vec{c} \in \mathcal{D}^{|\vec{x}|} \} \\ &= \{ \sigma^{t}(\vec{\tau}[\vec{x}/\vec{c}]) \mid \mathcal{I}, t \models_{\mathcal{S}} \psi(\vec{c}) \text{ for some } \vec{c} \in \mathcal{D}^{|\vec{x}|} \} \end{aligned}$$

and, thus, $\mathcal{I}, h \models \psi(\vec{c})$ iff $\mathcal{I}, t \models \psi(\vec{c})$ iff $T \models_{cl} \psi(\vec{c})$ (Proposition 9) for all $\vec{c} \in \mathcal{D}^{|\vec{x}|}$. This implies

$$\mathcal{I} \models \bigwedge \operatorname{Gr}_{T}^{+}(\psi(\vec{x})) = \bigwedge \{ \psi(\vec{c}) \in \operatorname{Gr}(T) \mid \text{ and } T \models_{cl} \psi(\vec{c}) \}$$

Since this is a (i-1)-formula, by induction hypothesis, we get

$$H\models_{cl} \left(\ \bigwedge \operatorname{Gr}_T^+(\psi(\vec{x})) \ \right)^T = A^T$$

Assume now that $H \models_{cl} A^T$, then $T \models_{cl} A$ and we get

$$\hat{f}(\{\vec{c} \in \mathcal{D}^{|\vec{x}|} \mid T \models_{cl} \psi(\vec{c})\}) \leq n$$

which implies $\hat{f}(\{\vec{c} \in \mathcal{D}^{|\vec{x}|} \mid \mathcal{I}, t \models_{s} \psi(\vec{c})\}) \leq n$. From this and Definition 8, we get $\hat{f}(\sigma^{t}(\{\vec{x}:\psi(\vec{x})\})) \leq n$ and, in its turn, from this and Definition 11 we get

$$\sigma^t(f\{\vec{x}:\psi(\vec{x})\}) \trianglelefteq \sigma^t(n)$$

Hence, we obtain that $\mathcal{I}, t \models A$. Furthermore, $H \models_{cl} A^T = \left(\bigwedge \operatorname{Gr}_T^+(\psi(\vec{x})) \right)^T$ implies that, for all $\vec{c} \in \mathcal{D}^{|\vec{x}|}, H \models_{cl} \psi(\vec{c})^T$ whenever $T \models_{cl} \psi(\vec{c})$. By induction hypothesis, this implies that $\mathcal{I} \models \psi(\vec{c})^T$ holds whenever $T \models_{cl} \psi(\vec{c})$ and, thus, we get that $\mathcal{I}, t \models_s \psi(\vec{c})$ implies $\mathcal{I} \models_s \psi(\vec{c})$ for all $\vec{c} \in \mathcal{D}^{|\vec{x}|}$. Hence,

$$\sigma^t(\{\vec{x}:\psi(\vec{x})\}) = \sigma^h(\{\vec{x}:\psi(\vec{x})\})$$

and, thus, that $\mathcal{I} \models A$.

The cases for connective \land , \lor and \rightarrow follow by structural induction as in Lemma 1 from (?): $\mathcal{I} \models \varphi_1 \land \varphi_2$ (resp. $\mathcal{I} \models \varphi_1 \land \varphi_2$) iff $\mathcal{I} \models \varphi_1$ and (resp. or) $\mathcal{I} \models \varphi_2$ iff $H \models_{cl} \varphi_1^T$ and (resp. or) $H \models_{cl} \varphi_2^t$ iff $H \models_{cl} \varphi_1^T \land \varphi_2^T$ (resp. $H \models_{cl} \varphi_1^T \lor \varphi_2^T$) iff $H \models_{cl} (\varphi_1 \land \varphi_2)^T$ (resp. $H \models_{cl} (\varphi_1 \lor \varphi_2)^T$).

Finally, $\mathcal{I} \models \varphi_1 \rightarrow \varphi_2$

 $\begin{array}{l} \text{iff both } \mathcal{I}, h \not\models \varphi_1 \text{ or } \mathcal{I}, h \models \varphi_2 \text{ and } \mathcal{I}, t \not\models \varphi_1 \text{ or } \mathcal{I}, t \models \varphi_2 \\ \text{iff both } \mathcal{I} \not\models \varphi_1 \text{ or } \mathcal{I} \models_{cl} \varphi_2 \text{ and } T \not\models_{cl} \varphi_1 \text{ or } T \models_{cl} \varphi_2 \\ \text{iff both } H \not\models_{cl} \varphi_1^T \text{ or } H \models_{cl} \varphi_2^T \text{ and } T \not\models_{cl} \varphi_1 \text{ or } T \models_{cl} \varphi_2 \\ \text{iff both } H \not\models_{cl} \varphi_1^T \to \varphi_2^T \text{ and } T \models_{cl} \varphi_1 \to \varphi_2 \\ \text{iff both } H \not\models_{cl} \varphi_1^T \to \varphi_2^T \text{ and } \varphi^T = \varphi_1^T \to \varphi_2^T \\ \text{iff } H \models_{cl} \varphi^T & \Box \end{array}$

Lemma 2. Let Γ be any GZ-theory and let \mathcal{I} be any coherent interpretation and T be a set of atoms. Then,

i) $\mathcal{I} \models \Gamma$ iff $\mathcal{I} \models \operatorname{Gr}(\Gamma)$, ii) T is a stable model of Γ iff T is a stable model of $\operatorname{Gr}(\Gamma)$.

Proof

By definition, we get: $\mathcal{I} \models \Gamma$ iff $\mathcal{I} \models \forall \vec{x} \varphi(\vec{x})$ for all $\varphi(\vec{x}) \in \Gamma$ iff $\mathcal{I} \models \varphi(\vec{c})$ for all $\varphi(\vec{x}) \in \Gamma$ and all $\vec{c} \in \mathcal{D}^{|\vec{x}|}$ iff $\mathcal{I} \models \varphi(\vec{c})$ for all $\varphi(\vec{x}) \in \operatorname{Gr}(\Gamma) = \{ \varphi(\vec{c}) \mid \forall \vec{x} \varphi(\vec{x}) \in \Gamma \text{ and } \vec{c} \in \mathcal{D}^{|\vec{x}|} \}$ iff $\mathcal{I} \models \operatorname{Gr}(\Gamma)$.

Furthermore, T is a stable model of Γ iff there is some total coherent interpretation $\mathcal{I} = \langle \sigma, T \rangle$ which is an equilibrium model of Γ iff there is some total coherent interpretation $\mathcal{I} = \langle \sigma, T \rangle$ which is an \prec -minimal model of Γ iff there is some total coherent interpretation $\mathcal{I} = \langle \sigma, T \rangle$ which is an \prec -minimal model of $\operatorname{Gr}(\Gamma)$

iff T is a stable model of Γ . \Box

Proof of Theorem 1. First note that, from Definition 13 and Lemma 2, we have that T is a stable model of Γ iff T is a stable model of $Gr(\Gamma)$ according to both Definitions. Hence, we assume without loss of generality that Γ is ground.

Let $\mathcal{I} = \langle \sigma, T \rangle$ be a total coherent interpretation. Then, from Proposition 10, we get that $\mathcal{I} \models \Gamma$ iff $T \models_{cl} \Gamma^T$. Let us show now that if T is the \subseteq -minimal model of Γ^T , then \mathcal{I} is an equilibrium model of Γ . Suppose, for the sake of contradiction, that this does not hold. Then, there is a some coherent interpretation $\mathcal{I}' = \langle \sigma^h, \sigma^t, H, T \rangle$ such that $\mathcal{I}' \preceq \mathcal{I}$ and $\mathcal{I} \models \Gamma$, but $\mathcal{I}' \not\succeq \mathcal{I}$. Note that, from Proposition 10, $\mathcal{I}' \models \Gamma$ implies $H \models_{cl} \Gamma^T$ while, since \mathcal{I}' is coherent, $\mathcal{I}' \preceq \mathcal{I}$ and $\mathcal{I}' \not\succeq \mathcal{I}$ imply $H \subset T$ (note that all evaluable functions are aggregates and, thus, σ^h and σ^t are fully determined by H and T, respectively) which is a contradiction with the assumption.

The other way around. Suppose, for the sake of contradiction, that \mathcal{I} is an equilibrium model of Γ , but T is not the \subseteq -minimal model of Γ^T . Then there is some set $H \subset T$ that satisfies $H \models_{cl} \Gamma^T$ and, from Proposition 10, this implies $\mathcal{I}' = \langle \sigma^h, \sigma^t, H, T \rangle \models \Gamma$ and that $\mathcal{I}' \prec \mathcal{I}$ which contradicts the fact that \mathcal{I} is a stable model of Γ . \Box

Proof of Proposition 8. Let $\mathcal{I} = \langle \sigma^h, \sigma^t, I^h, I^t \rangle$ be some coherent interpretation. If φ is an atom, by definition, we have that $\mathcal{I} \models_s \exists x, x = \tau_i \land p(\tau_1, \dots, x, \dots, \tau_n)$ iff $\mathcal{I} \models_s c = \tau_i \land p(\tau_1, \dots, c, \dots, \tau_n)$ for some $c \in Terms^0(\mathcal{C})$ iff $\mathcal{I} \models_s c = \tau_i$ and $\mathcal{I} \models_s p(\tau_1, \dots, c, \dots, \tau_n)$ for some $c \in Terms^0(\mathcal{C})$ iff $\sigma^h(c) = \sigma^h(\tau_i) \neq u$ and $p(\sigma^h(\tau_1), \dots, \sigma^h(c), \dots, \sigma^h(\tau_n)) \in I^h$ for some constant $c \in Terms^0(\mathcal{C})$ iff $\sigma^h(c) = \sigma^h(\tau_i) \neq u$ and $p(\sigma^h(\tau_1), \dots, \sigma^h(\tau_i), \dots, \sigma^h(\tau_n)) \in I^h$ for some constant $c \in Terms^0(\mathcal{C})$ iff $\sigma^h(\tau_i) \neq u$ and $p(\sigma^h(\tau_1), \dots, \sigma^h(\tau_i)) \in I^h$ for some constant $c \in Terms^0(\mathcal{C})$ iff $\sigma^h(\tau_i) \neq u$ and $p(\sigma^h(\tau_1), \dots, \sigma^h(\tau_i)) \in I^h$ for some constant $c \in Terms^0(\mathcal{C})$ iff $\sigma^h(\tau_i) \neq u$ and $p(\sigma^h(\tau_1), \dots, \sigma^h(\tau_i)) \in I^h$ iff $p(\sigma^h(\tau_1), \dots, \sigma^h(\tau_i)) \in I^h$ iff $\mathcal{I} \models_s p(\tau_1, \dots, \tau_i, \dots, \tau_n)$.

22