
Online appendix for the paper

Computing LPMLN Using ASP and MLN Solvers
published in Theory and Practice of Logic Programming

Joohyung Lee, Samidh Talsania, and Yi Wang
School of Computing, Informatics and Decision Systems Engineering

Arizona State University, Tempe, AZ, USA

Appendix A Bayesian Network in LPMLN

It is easy to represent Bayesian networks in LPMLN similar to the way Bayesian networks are
represented by weighted Boolean formulas (Sang et al. 2005).

We assume all random variables are Boolean. Each conditional probability table associated
with the nodes can be represented by a set of probabilistic facts. For each CPT entry P (V = t |
V1 = S1, . . . , Vn = Sn) = p where S1, . . . , Sn ∈ {t, f}, we include a set of weighted facts

• ln(p/(1− p)) : PF (V, S1, . . . , Sn) if 0 < p < 1;
• α : PF (V, S1, . . . , Sn) if p = 1;
• α : ← not PF (V, S1, . . . , Sn) if p = 0.

For each node V whose parents are V1, . . . , Vn, the directed edges can be represented by rules

α : V ← V S1
1 , . . . , V Snn , PF (V, S1, . . . , Sn) (S1, . . . , Sn ∈ {t, f})

where V Sii is Vi if Si is t, and not Vi otherwise.
For example, in the firing example in Figure A 1, the conditional probability table for the node

“alarm” can be represented by

@log(0.5/0.5) pf(a,t1f1).
@log(0.85/0.15) pf(a,t1f0).

@log(0.99/0.01) pf(a,t0f1).
@log(0.0001/0.0009) pf(a,t0f0).

The directed edges can be represented by hard rules as follows:

tampering :- pf(t).

fire :- pf(f).

alarm :- tampering, fire, pf(a,t1f1).
alarm :- tampering, not fire, pf(a,t1f0).
alarm :- not tampering, fire, pf(a,t0f1).
alarm :- not tampering, not fire, pf(a,t0f0).

smoke :- fire, pf(s,f1).
smoke :- not fire, pf(s,f0).

leaving :- alarm, pf(l,a1).
leaving :- not alarm, pf(l,a0).

report :- leaving, pf(r,l1).
report :- not leaving, pf(r,l0).

Theorem 4
For any Bayesian network whose random variables are Boolean and any interpretation I , the
probability of I according to the Bayesian network semantics coincides with the probability of I
for the translated LPMLN program.

2 Lee, Talsania & Wang

Fig. A 1. Bayes Net Example

Since Bayesian networks are represented by directed acyclic graphs, LPMLN programs that
represent them are always tight. So both LPMLN2ASP and LPMLN2MLN can be used to compute
Bayesian networks.

• Diagnostic Inference is to compute the probability of the cause given the effect. For exam-
ple, to compute P (fire = t | leaving = t), the user can invoke

lpmln2asp -i fire-bayes.lpmln -e evid.db -q fire

where evid.db contains the line

:- not leaving.

This outputs

fire 0.352151116689

• Predictive Inference is to compute the probability of the effect given the cause. For exam-
ple, to compute P (leaving = t | fire = t), the user can invoke

lpmln2asp -i fire-bayes.lpmln -e evid.db -q leaving

where evid.db contains the line

:- not fire.

This outputs

leaving 0.862603541626

• Mixed Inference is to combine predictive and diagnostic inference. For example, to com-
pute P (alarm = t | fire = f , leaving = t), the user can invoke

lpmln2asp -i fire-bayes.lpmln -e evid.db -q alarm

where evid.db contains two lines

:- fire.
:- not leaving.

This outputs

alarm 0.938679679707

Appendix: Computing LPMLN Using ASP and MLN Solvers 3

• Intercausal Inference is to compute the probability of a cause given an effect common to
multiple causes. For example, to compute P (tampering = t | fire = t, alarm = t),
the user can invoke

lpmln2asp -i fire-bayes.lpmln -e evid.db -q tampering

where evid.db contains two lines

:- not fire.
:- not alarm.

This outputs

tampering 0.0102021964693

• Explaining away: Suppose we know that alarm rang. Then we can use Diagnostic Infer-
ence to calculate P (tampering = t | alarm = t). But what happens if we now know
that there was a fire as well? In this case P (tampering = t | alarm = t) will change to
P (tampering = t | fire = t, alarm = t). In this case, knowing that there was a fire
explains away alarm, and hence affecting the probability of tampering. For example, to
compute P (tampering = t | alarm = t), the user can invoke

lpmln2asp -i fire-bayes.lpmln -e evid.db -q tampering

where evid.db contains line

:- not alarm.

This outputs

tampering 0.633397289908

If we compare this result with the result of Intercausal Inference, we see thatP (tampering =

t | alarm = t) > P (tampering = t | fire = t, alarm = t). Observing the value of
fire explains away the tampering i.e., the probability of tampering decreases.

Appendix B Proof of Theorem 1

Theorem 1 For any LPMLN program Π and any interpretation I ,

WΠ(I) ∝W pnt
Π (I) and PΠ(I) = P pnt

Π (I).

Proof. Let

TWΠ = exp

(∑
w:F∈Π

w

)
.

We first show that WΠ(I) = TWΠ ·W pnt
Π (I). This is obvious when I /∈ SM[Π].

4 Lee, Talsania & Wang

When I ∈ SM[Π], we have

WΠ(I) = exp

(∑
w : F ∈ Π and I |= F

w

)

= exp

(∑
w:F∈Π

w −
∑

w : F ∈ Π and I 6|= F

w)

= exp

(∑
w:F∈Π

w

)
· exp

(
−

∑
w : F ∈ Π and I 6|= F

w

)

= TWΠ · exp
(
−

∑
w : F ∈ Π and I 6|= F

w

)
= TWΠ ·W pnt

Π (I).

Consequently,

PΠ(I) =
WΠ(I)∑
JWΠ(J)

=
TWΠ ·W pnt

Π (I)∑
J TWΠ ·W pnt

Π (J)

=
W pnt

Π (I)∑
JW

pnt
Π (J)

· TWΠ

TWΠ

=
W pnt

Π (I)∑
JW

pnt
Π (J)

= P pnt
Π (I).

Appendix C Proof of Theorem 2

We divide the ground program obtained from lpmln2asprwd(Π) into three parts:

SAT (Π) ∪ORIGIN(Π) ∪WC(Π)

where

SAT (Π) ={sat(i, wi, c)← Headi(c) | wi : Headi(c)← Bodyi(c) ∈ Gr(Π)} ∪
{sat(i, wi, c)← not Bodyi(c) | wi : Headi(c)← Bodyi(c) ∈ Gr(Π)}

ORIGIN(Π) = {Headi(c)← Bodyi(c), not not sat(i, wi, c) | wi : Headi(c)← Bodyi(c) ∈ Gr(Π)}
and

WC(Π) = {:∼ sat(i, wi, c). [−wi@l, i, c] | wi : Headi(c)← Bodyi(c) ∈ Gr(Π)}

Lemma 1
For any LPMLN program Π,

φ(I) = I ∪ {sat(i, wi, c) | wi : Headi(c)← Bodyi(c) ∈ Gr(Π), I |= Headi(c)← Bodyi(c)}

is a 1-1 correspondence between SM[Π] and the stable models of SAT (Π) ∪ORIGIN(Π).

Appendix: Computing LPMLN Using ASP and MLN Solvers 5

Proof. Let σ be the signature of Π, and let σsat be the set

{sat(i, wi, c) | wi : Headi(c)← Bodyi(c) ∈ Gr(Π)}.

It can be seen that

• each strongly connected component of the dependency graph of SAT (Π)∪ORIGIN(Π)

w.r.t. σ ∪ σsat is a subset of σ or a subset of σsat;
• no atom in σsat has a strictly positive occurrence in ORIGIN(Π);
• no atom in σ has a strictly positive occurrence in SAT (Π).

Thus, according to the splitting theorem, φ(I) is a stable model of SAT (Π) ∪ ORIGIN(Π) if
and only if φ(I) is a stable model of SAT (Π) w.r.t. σsat and is a stable model of ORIGIN(Π)

w.r.t. σ.
First, assuming that I belongs to SM[Π], we will prove that φ(I) is a stable model of SAT (Π)∪

ORIGIN(Π). Let I be a member of SM[Π].

• φ(I) is a stable model of SAT (Π) w.r.t. σsat. By the definition of φ, sat(i, wi, c) ∈
φ(I) if and only if I |= Headi(c) ← Bodyi(c), in which case either I |= Headi(c) or
I 6|= Bodyi(c). This means

φ(I) |= SAT (Π)∪{sat(i, wi, c)→ Headi(c)∨¬Bodyi(c) | wi : Headi(c)← Bodyi(c) ∈ Gr(Π)},

which is the completion of SAT (Π). It is obvious that SAT (Π) is tight on σsat. So φ(I)

is a stable model of SAT (Π) w.r.t. σsat.
• φ(I) is a stable model ofORIGIN(Π) w.r.t. σ. It is clear that φ(I) satisfiesORIGIN(Π).

Assume for the sake of contradiction that there is an interpretation J ⊂ φ(I) such that J
and φ(I) agree on σsat and J |= ORIGIN(Π)φ(I). Then

J |= Headi(c)φ(I) ← Bodyi(c)φ(I), (not not sat(i, wi, c))φ(I)

for every rule

Headi(c)← Bodyi(c), not not sat(i, wi, c)

in ORIGIN(Π). Since φ(I) satisfies SAT (Π), it follows that for every rule Headi(c)←
Bodyi(c) satisfied by φ(I), we have (not not sat(i, wi, c))φ(I) = > so that J |=
Headi(c)φ(I) ← Bodyi(c)φ(I), or equivalently, J |= Headi(c)I ← Bodyi(c)I , which
contradicts that I is a stable model of ΠI .

Consequently, by the splitting theorem, φ(I) is a stable model of SAT (Π) ∪ORIGIN(Π).

Next, assuming φ(I) is a stable model of SAT (Π) ∪ ORIGIN(Π), we will prove that I
belongs to SM[Π].

Let φ(I) be a stable model of SAT (Π) ∪ ORIGIN(Π). By the splitting theorem, φ(I) is a
stable model of SAT (Π) w.r.t. σsat and φ(I) is a stable model of ORIGIN(Π) w.r.t. σ.

It is clear that I |= ΠI .
Assume for the sake of contradiction that there is an interpretation J ⊂ I such that J |= (ΠI)

I .
Take any rule

(Headi(c))φ(I) ← (Bodyi(c))φ(I), (not not sat(i, wi, c))φ(I) (C1)

in (ORIGIN(Π))φ(I).

Case 1: φ(I) 6|= sat(i, wi, c). Clearly, J |= (C1).

6 Lee, Talsania & Wang

Case 2: φ(I) |= sat(i, wi, c). Since Headi(c) and Bodyi(c) do not contain sat predicates, (C1)
is equivalent to

(Headi(c))I ← (Bodyi(c))I . (C2)

Since φ(I) is a stable model of SAT (Π) w.r.t. σsat, we have φ(I) |= Headi(c)← Bodyi(c), or
equivalently, I |= Headi(c) ← Bodyi(c). So, Headi(c) ← Bodyi(c) ∈ ΠI , and Headi(c)I ←
Bodyi(c)I ∈ (ΠI)

I . Since J |= (ΠI)
I , it follows that J |= (C1) as well.

Since J ⊂ φ(I), φ(I) is not a stable model of ORIGIN(Π) w.r.t. σ, which contradicts the
assumption that it is. Thus we conclude that I is a stable model of ΠI , i.e., I belongs to SM[Π].

Theorem 2 For any LPMLN program Π, there is a 1-1 correspondence φ between SM[Π] 6 and
the set of stable models of lpmln2asprwd(Π), where

φ(I) = I ∪{sat(i, wi, c) | wi : Headi(c)← Bodyi(c) in Gr(Π), I |= Bodyi(c)→ Headi(c)}.

Furthermore,

WΠ(I) = exp

(∑
sat(i,wi,c)∈φ(I)

wi

)
.

Also, φ is a 1-1 correspondence between the most probable stable models of Π and the optimal
stable models of lpmln2asprwd(Π).

Proof. By Lemma 1, φ is a 1-1 correspondence between SM[Π] and the set of stable models
of lpmln2asprwd(Π).

The fact

WΠ(I) = exp

(∑
sat(i,wi,c)∈φ(I)

wi

)
(C3)

can be easily seen from the way φ(I) is defined.
It remains to show that φ is a 1-1 correspondence between the most probable stable models

of Π and the optimal stable models of lpmln2asprwd(Π). For any interpretation I of lpmln2asprwd(Π),
we use PenaltyΠ(I, l) to denote the total penalty it receives at level l defined by weak con-
straints:

PenaltyΠ(I, l) =
∑

:∼sat(i,wi,c).[−w′i@l,i,c]∈WC(Π),
I|=sat(i,wi,c)

−wi

Let φ(I) be a stable model of lpmln2asprwd(Π). By Lemma 1, I ∈ SM[Π]. So it is sufficient to
prove

I ∈ argmax
J:J∈ argmax

K:K∈SM[Π]

W
Πhard (K)

WΠsoft(J)

iff (C4)

φ(I) ∈ argmin
J′:J′∈ argmin

K′:K
′ is a stable model of
lpmln2asprwd(Π)

Penalty
lpmln2asprwd(Π)

(K′,1)

Penaltylpmln2asprwd(Π)(J
′, 0).

6 Recall the definition in Section 2.1.

Appendix: Computing LPMLN Using ASP and MLN Solvers 7

This is true because (we abbreviate Headi(c)← Bodyi(c) as Fi(c))

I ∈ argmax
J: J∈ argmax

K: K∈SM[Π]

W
Πhard (K)

WΠsoft(J)

iff

I ∈ argmax
J: J∈ argmax

K: K∈SM[Π]

exp
(∑
α:Fi(c) ∈ (Πhard)K

α
) exp(∑

wi:Fi(c) ∈ (Πsoft)J

wi

)
iff

I ∈ argmax
J: J∈ argmax

K: K∈SM[Π]

exp
(∑
α:Fi(c) ∈ Πhard,K|=Fi(c)

1
) exp(∑

wi:Fi(c) ∈ Πsoft,J|=Fi(c)

wi

)
iff

I ∈ argmin
J: J∈ argmin

K: K∈SM[Π]

(∑
α:Fi(c) ∈ Πhard,K|=Fi(c)

−1
) (∑

wi:Fi(c) ∈ Πsoft,J|=Fi(c)

−wi
)

iff (by Lemma 1 and by definition of φ(I))

φ(I) ∈ argmin

J′: J′∈ argmin
K′: K′ is a stable model of

lpmln2asprwd(Π)

(∑
:∼sat(i,wi,c).[−1@1,i,c]

∈ lpmln2asprwd(Π),
K′|=sat(i,wi,c)

−1

)(∑
:∼sat(i,wi,c).[−wi@0,i,c]

∈ lpmln2asprwd(Π),
J′|=sat(i,wi,c)

−wi
)

iff
φ(I) ∈ argmin

J′: J′∈ argmin
K′: K′ is a stable model of

lpmln2asprwd(Π)

Penalty
lpmln2asprwd(Π)

(K′,1)

Penaltylpmln2asprwd(Π)(J
′, 0).

Appendix D Proof of Proposition 1

For any MLN L and any interpretation I , we define

W ′L(I) =

{
exp(

∑
w:F∈Lsoft,I�F) w) if I � Lhard

0 otherwise.

Lemma 2

For any MLN L such that Lhard has at least one model, we have

PL(I) =
W ′L(I)∑
JW

′
L(J)

for any interpretation I .

8 Lee, Talsania & Wang

Proof. Case 1: Suppose I � Lhard.

PL(I) = lim
α→∞

WL(I)∑
JWL(J)

= lim
α→∞

exp(
∑
w:F∈L,I�F w)∑

J exp(
∑
w:F∈L,J�F w)

= lim
α→∞

exp(|Lhard|α) · exp(
∑
w:F∈L\Lhard,I�F w)∑

J�Lhard exp(|Lhard|α) · exp(
∑
w:F∈L\Lhard,I�F w) +

∑
J2Lhard exp(

∑
w:F∈L,I�F w)

= lim
α→∞

exp(
∑
w:F∈L\Lhard,I�F w)∑

J�Lhard exp(
∑
w:F∈L\Lhard,I�F w) + 1

exp(|Lhard|α)

∑
J2Lhard exp(

∑
w:F∈L,I�F w)

.

Since there is at least one hard formula in Lhard not satisfied by those J that do not satisfy Lhard,
we have

1

exp(|Lhard|α)

∑
J2Lhard

exp(
∑

w:F∈L,I�F
w)

≤ 1

exp(|Lhard|α)

∑
J2Lhard

exp((|Lhard| − 1)α+
∑

w:F∈L\Lhard,I�F

w)

=
1

exp(α)

∑
J2Lhard

exp(
∑

w:F∈L\Lhard,I�F

w).

This, along with the fact that
∑
J2Lhard exp(

∑
w:F∈L\Lhard,I�F w) does not contain α, we have

PL(I) = lim
α→∞

exp(
∑
w:F∈L\Lhard,I�F w)∑

J�Lhard exp(
∑
w:F∈L\Lhard,I�F w) + 1

exp(|Lhard|α)

∑
J2Lhard exp(

∑
w:F∈L,I�F w)

=
exp(

∑
w:F∈L\Lhard,I�F w)∑

J�Lhard exp(
∑
w:F∈L\Lhard,I�F w)

=
exp(

∑
w:F∈Lsoft,I�F w)∑

J�Lhard exp(
∑
w:F∈Lsoft,I�F w)

=
W ′L(I)∑
JW

′
L(J)

.

Case 2: Suppose I does not satisfy Lhard. Let K be an interpretation that satisfies Lhard. We
have

PL(I) = lim
α→∞

WL(I)∑
JWL(J)

= lim
α→∞

exp(
∑
w:F∈L,I�F w)∑

J exp(
∑
w:F∈L,J�F w)

≤ lim
α→∞

exp(
∑
w:F∈L,I�F w)

exp(
∑
w:F∈L,K�F w)

= lim
α→∞

exp(
∑
w:F∈L,I�F w)

exp(|Lhard|α) · exp(
∑
w:F∈Lsoft,K�F w)

.

Appendix: Computing LPMLN Using ASP and MLN Solvers 9

Since I does not satisfy Lhard, I satisfies at most Lhard− 1 hard formulas in Lhard. So we have

PL(I) ≤ lim
α→∞

exp(
∑
w:F∈L,I�F w)

exp(|Lhard|α) · exp(
∑
w:F∈Lsoft,K�F w)

≤ lim
α→∞

(exp(|Lhard| − 1)α) · exp(
∑
w:F∈Lsoft,I�F w)

(exp(|Lhard|α) · exp(
∑
w:F∈Lsoft,K�F w)

= lim
α→∞

exp(
∑
w:F∈Lsoft,I�F w)

exp(α) · exp(
∑
w:F∈Lsoft,K�F w)

= 0.

So PL(I) = 0, which is equivalent to W ′L(I)∑
J W

′
L(J) as W ′L(I) = 0.

Proposition 1 For any MLN L of signature σ, let F (x) be a subformula of some formula in
L where x is the list of all free variables of F (x), and let LFAux be the MLN program obtained
from L by replacing F (x) with a new predicate Aux(x) and adding the formula

α : Aux(x)↔ F (x).

For any interpretation I of L, let IAux be the extension of I of signature σ ∪ {Aux} defined by
IAux(Aux(c)) = (F (c))I for every list c of elements in the Herbrand universe. When Lhard
has at least one model, we have

PL(I) = PLFAux(IAux).

Proof. For any formulaG, letGFAux be the formulas obtained fromG by replacing subformulas
F (x) with AuxF (x). According to Lemma 2, we have

PL(I) =
W ′L(I)∑
JW

′
L(J)

.

Case 1: Suppose I satisfies Lhard. Then we have

PL(I) =
exp(

∑
w:G∈Lsoft,I�F w)∑

J�Lhard exp(
∑
w:G∈Lsoft,J�F w)

.

From the way IAux is defined, we have

PL(I) =
exp(

∑
w:GFAux∈(LFAux)soft,IAux�GFAux

w)∑
JAux�(LFAux)hard

exp(
∑
w:GFAux∈(LFAux)soft,JAux�GFAux

w)

= PLFAux(IAux).

Case 2: Suppose I does not satisfy G ∈ Lhard. From the way IAux is defined, IAux does not
satisfyGFAux ∈ (LFAux)hard. SoW ′L(I) = W ′LFAux

(IAux) = 0 and thus PL(I) = PLFAux(IAux) =

0.

10 Lee, Talsania & Wang

Appendix E More Experiments

E.1 Link Prediction in Biological Networks - Another Comparison with PROBLOG2 on a
Real World Problem

Public biological databases contain huge amounts of rich data, such as annotated sequences,
proteins, genes and gene expressions, gene and protein interactions, scientific articles, and on-
tologies. Biomine (Eronen and Toivonen 2012) is a system that integrates cross-references from
several biological databases into a graph model with multiple types of edges. Edges are weighted
based on their type, reliability, and informativeness.

We use graphs extracted from the Biomine network. The graphs are extracted around genes
known to be connected to the Alzheimer’s disease (HGNC ids 620, 582, 983, and 8744). A
typical query on such a database of biological concepts is whether a given gene is connected
to a given disease. In a probabilistic graph, the importance of the connection can be measured
as the probability that a path exists between the two given nodes, assuming that each edge is
true with the specified probability, and that edges are mutually independent (Sevon et al. 2006).
Nodes in the graph correspond to different concepts such as gene, protein, domain, phenotype,
biological process, tissue, and edges connect related concepts. Such a program can be expressed
in the language of PROBLOG2 as

p(X,Y) :- drc(X,Y).
p(X,Y) :- drc(X, Z), Z \== Y, p(Z, Y).

The LPMLN2ASP encoding for the same problem is

p(X,Y) :- drc(X,Y).
p(X,Y) :- drc(X, Z), Z != Y, p(Z, Y).

The evidence file contains weighted edges drc/2 encoded as

0.942915444848::drc(’hgnc_983’,’pubmed_11749053’).
0.492799999825::drc(’pubmed_10075692’,’hgnc_620’).
0.434774330065::drc(’hgnc_620’,’pubmed_10460257’).
...

The same evidence used for PROBLOG2 is processed to work with the syntax of LPMLN2ASP as

0.942915444848 drc(’hgnc_983’,’pubmed_11749053’).
0.492799999825 drc(’pubmed_10075692’,’hgnc_620’).
0.434774330065 drc(’hgnc_620’,’pubmed_10460257’).
...

We test the systems on varying graph sizes ranging from 366 nodes, 363 edges to 5646 nodes,
64579 edges. The experiment was run on a 40 core Intel(R) Xeon(R) CPU E5-2640 v4 @
2.40GHz machine with 128 GB of RAM. The timeout for the experiment was set to 20 min-
utes.

We perform MAP inference for comparison. Table E.1 shows the results of the experiment.
Apart from the smaller graph instances where PROBLOG2 is faster than LPMLN2ASP, LPMLN2ASP

significantly outperforms PROBLOG2 for medium to large graphs for MAP inference. In fact, for
graphs with nodes greater than 1980 PROBLOG2 times out. For Marginal inference, to check for
the probability of path between two genes, LPMLN2ASP times out with just 25 nodes and there-
fore it is infeasible to experiment for marginal probability on LPMLN2ASP . The sampling based
approach of PROBLOG2 computes the probability of a path from ’hgnc_983’ to ’hgnc_620’

Appendix: Computing LPMLN Using ASP and MLN Solvers 11

Nodes Edges LPMLN2ASP PROBLOG2
366 363 0.37 0.152

1677 2086 9.77 1.7406
1982 4143 14 Timeout
2291 6528 19.71 Timeout
2588 9229 25.92 Timeout
2881 12248 33.05 Timeout
3168 15583 42.21 Timeout
3435 19204 49.91 Timeout
3724 23135 59.56 Timeout
3989 27370 69.72 Timeout
4252 31891 82.04 Timeout
4501 36690 93.23 Timeout
4750 41761 105.4 Timeout
4983 47094 116.79 Timeout
5200 52673 129.27 Timeout
5431 58506 142.2 Timeout
5646 64579 157.77 Timeout

Table E 2. PROBLOG2 vs. LPMLN2ASP Comparison on Biomine Network

in 13 seconds. This experiment goes on to show that for MAP inference, our implementation
far outperforms the current implementation of PROBLOG2 while being significantly slower in
computing Marginal and Conditional probabilities.

E.2 Social influence of smokers - Computing MLN using LPMLN2ASP

Following Section 3.5, we compare the scalability of LPMLN2ASP for MAP inference on MLN
encodings and compare with the MLN solvers ALCHEMY, TUFFY and ROCKIT used in LPMLN2MLN.
We scale the example by increasing the number of people and relationships among them.

The LPMLN2ASP encoding of the example used in the experiment is

1.1 cancer(X) :- smokes(X).
1.5 smokes(Y) :- smokes(X), influences(X, Y).
{smokes(X)} :- person(X).
{cancer(X)} :- person(X).

The ALCHEMY encoding of the example is

smokes(node)
influences(node,node)
cancer(node)

1.1 smokes(x) => cancer(x)
1.5 smokes(x) ˆ influences(x,y) => smokes(y)

and is run with the command line

infer -m -i input -e evidence -r output -q cancer -ow smokes,cancer

The TUFFY encoding of the example is7

7 * makes the predicate closed world assumption

12 Lee, Talsania & Wang

smokes(node)

*influences(node,node)
cancer(node)

1.1 smokes(x) => cancer(x)
1.5 smokes(x) , influences(x,y) => smokes(y)

and is run with the command line

java -jar tuffy.jar -i input -e evidence -r output -q cancer

The ROCKIT encoding of the example is

smokes(node)

*influences(node,node)
cancer(node)

1.1 !smokes(x) v cancer(x)
1.5 !smokes(x) v !influences(x,y) v smokes(y)

and is run with the command line

java -jar rockit.jar -input input -data evidence -output output

The data was generated such that for each person p, the person smokes with an 80% probability,
and p influences every other person with a 60% probability. We generate evidence instances
based on different number of persons ranging from 10 to 1000. We compare the performance of
the solvers based on the time it takes to compute the MAP estimate. The experiment was run on
a 40 core Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz machine with 128 GB of RAM. The
timeout for the experiment was set to 20 minutes.

of Persons LPMLN2ASP w. CLINGO 4.5 ALCHEMY 2.0 TUFFY 0.3 ROCKIT 0.5
10 0 0.04 1.014 0.465
50 0.03 1.35 1.525 0.676
100 0.10 18.87 1.560 0.931
200 0.32 435.71 2.672 1.196
300 0.7 Timeout 4.054 1.660
400 1.070 Timeout 4.505 1.914
500 1.730 Timeout 5.935 2.380
600 2.760 Timeout 7.683 2.822
700 3.560 Timeout 10.390 3.274
800 4.72 Timeout 11.384 3.727
900 Timeout Timeout 12.056 4.012

1000 Timeout Timeout 12.958 4.678

Table E 3: Performance of solvers on MLN program

Table E 3 lists the computation time in seconds for each of the four solvers on instances of
domains of varying size. LPMLN2ASP is the best performer for the number of people till 600.

Appendix: Computing LPMLN Using ASP and MLN Solvers 13

ALCHEMY is the worst performer out of all 4 and for instances with number of people greater than
200 it times out. As expected, for ALCHEMY, grounding is the major bottleneck. For the instance
with 200 persons, ALCHEMY grounds it in 422.85 seconds and only takes 9 seconds to compute
the MAP estimate. TUFFY and ROCKIT have more scalable grounding times. ROCKIT has the
best results amongst all the solvers. This experiment shows that for medium sized instances,
our implementation is comparable to the fastest available solver for MAP inference on MLN
programs.

References

SANG, T., BEAME, P., AND KAUTZ, H. 2005. Solving bayesian networks by weighted model counting. In
Proceedings of the Twentieth National Conference on Artificial Intelligence (AAAI-05). Vol. 1. 475–482.

ERONEN, L. AND TOIVONEN, H. 2012. Biomine: predicting links between biological entities using net-
work models of heterogeneous databases. BMC bioinformatics 13, 1, 119.

SEVON, P., ERONEN, L., HINTSANEN, P., KULOVESI, K., AND TOIVONEN, H. 2006. Link discovery
in graphs derived from biological databases. In International Workshop on Data Integration in the Life
Sciences. Springer, 35–49.

