Online appendix for the paper *Program Completion in the Input Language of GRINGO*

published in Theory and Practice of Logic Programming

AMELIA HARRISON, VLADIMIR LIFSCHITZ

DHANANJAY RAJU

University of Texas (e-mail: ameliaj, vl, draju@cs.utexas.edu)

Appendix B Proofs

B.1 Relationship between ϕ and τ

To prove Theorems 1 and 2, we need to investigate the relationship between the operator ϕ used in the definition of completion (Section 5) and the operator τ that the semantics of programs is based on (Section A.2).

If C is a conjunction of ground literals and ground comparisons then the formula τC is finite, and we can ask whether it is equivalent to ϕC in the sense of Section 3. The answer to this question is yes:

Lemma 1

For any conjunction C of ground literals and ground comparisons, τC is equivalent to ϕC .

Proof

It is sufficient to prove this assertion assuming that C is a single ground literal or a single ground comparison.

Case 1: C is a ground atom $p(t_1, \ldots, t_n)$. Then ϕC is

$$\exists x_1 \dots x_n (x_1 \in t_1 \wedge \dots \wedge x_n \in t_n \wedge p(x_1, \dots, x_n)).$$

In view of Observation 1, this formula is equivalent to

$$\exists x_1 \dots x_n \left(\left(\bigvee_{r_1 \in [t_1]} x_1 = r_1 \right) \land \dots \land \left(\bigvee_{r_n \in [t_n]} x_n = r_n \right) \land p(x_1, \dots, x_n) \right),$$

and consequently to

$$\bigvee_{r_1 \in [t_1], \dots, r_n \in [t_n]} p(r_1, \dots, r_n).$$

The last formula is τC .

Case 2: C is a negative ground literal $\neg p(t_1, \ldots, t_n)$. The proof is similar.

Case 3: C is a ground comparison $t_1 \prec t_2$. Then Then ϕ C is

$$\exists x_1 x_2 (x_1 \in t_1 \land x_2 \in t_2 \land x_1 \prec x_2).$$

In view of Observation 1, this formula is equivalent to

$$\exists x_1 x_2 \left(\left(\bigvee_{r_1 \in [t_1]} x_1 = r_1 \right) \land \left(\bigvee_{r_2 \in [t_2]} x_2 = r_2 \right) \land x_1 \prec x_2 \right),$$

and consequently to

$$\bigvee_{r_1 \in [t_1], r_2 \in [t_2]} r_1 \prec r_2.$$

If the relation \prec holds between some terms r_1, r_2 such that $r_1 \in [t_1]$ and $r_2 \in [t_2]$ then one of the disjunctive terms in the last formula is \top , and the formula is equivalent to \top ; otherwise each disjunctive term is \bot , and the formula is equivalent to \bot . In both cases, it is equivalent to $\tau \mathbf{C}$. \Box

Lemma 2

For any closed aggregate expression E and any list **X** of distinct variables containing all variables that occur in E, the infinitary formula τE is satisfied by the same interpretations of the vocabulary of E as the EG formula $\phi^{\mathbf{X}} E$.

Proof

Let *E* be a closed aggregate expression (23). Without loss of generality we can assume that the list **X** contains only variables occurring in *E*. As defined in Section A.2, τE is the conjunction of formulas (A1), where *A* stands for the set of tuples of precomputed terms of the same length as **X**, over the subsets Δ of *A* that do not justify *E*.

Note first that τE is classically equivalent to the disjunction of formulas

$$\bigwedge_{\mathbf{r}\in\Delta}\tau(\mathbf{C}_{\mathbf{r}}^{\mathbf{X}})\wedge\bigwedge_{\mathbf{r}\in A\setminus\Delta}\neg\tau(\mathbf{C}_{\mathbf{r}}^{\mathbf{X}})\tag{1}$$

over the subsets Δ of A that justify E. Indeed, call this disjunction D^+ , and let D^- be the disjunction of formulas (1) over all other subsets Δ of A. It is clear that D^- is classically equivalent to $\neg D^+$; on the other hand, $\neg D^-$ is classically equivalent to the conjunction τE .

Consider now an interpretation \mathcal{I} of the vocabulary of E. Set A has exactly one subset Δ for which \mathcal{I} satisfies (1): the set of all tuples \mathbf{r} for which $\mathcal{I} \models \tau(\mathbf{C}_{\mathbf{r}}^{\mathbf{X}})$. Consequently \mathcal{I} satisfies τE iff this subset Δ justifies E. In other words, \mathcal{I} satisfies τE iff

$$\widehat{\alpha} \left(\bigcup_{\mathbf{r}: \mathcal{I} \models \tau(\mathbf{C}_{\mathbf{r}}^{\mathbf{X}})} [\mathbf{t}_{\mathbf{r}}^{\mathbf{X}}] \right) \prec s.$$
(2)

By Lemma 1, the condition $\mathcal{I} \models \tau(\mathbf{C}_{\mathbf{r}}^{\mathbf{X}})$ in this expression can be equivalently replaced by $\mathcal{I} \models \phi(\mathbf{C}_{\mathbf{r}}^{\mathbf{X}})$, and consequently by $\mathcal{I} \models (\phi \mathbf{C})_{\mathbf{r}}^{\mathbf{X}}$. Hence (2) holds iff

$$\widehat{\alpha}\{\mathbf{q}: \text{ there exists } \mathbf{r} \text{ such that } \mathbf{q} \in [\mathbf{t}_{\mathbf{r}}^{\mathbf{X}}] \text{ and } \mathcal{I} \models (\phi \mathbf{C})_{\mathbf{r}}^{\mathbf{X}}\} \prec s.$$
(3)

On the other hand, $\phi^{\mathbf{X}} E$ is

$$\exists Y(\alpha \{ \mathbf{Z} \mid \exists \mathbf{X} (\mathbf{Z} \in \mathbf{t} \land \phi \mathbf{C}) \} \prec Y \land Y \in s),$$

and \mathcal{I} satisfies this formula iff

$$\mathcal{I} \models \alpha \{ \mathbf{Z} \mid \exists \mathbf{X} (\mathbf{Z} \in \mathbf{t} \land \phi \mathbf{C}) \} \prec s$$

Online appendix

This condition can be rewritten as

$$\widehat{\alpha}\{\mathbf{q}: \mathcal{I} \models \exists \mathbf{X} (\mathbf{q} \in \mathbf{t} \land \phi \mathbf{C})\} \prec s,$$

which is equivalent to (3).

From Lemmas 1 and 2 we conclude:

Lemma 3

For any conjunction C of ground literals, ground comparisons, and closed aggregate expressions, and for any list X of distinct variables containing all variables that occur in C, the infinitary formula τC is satisfied by the same interpretations of the vocabulary of C as the formula $\phi^{X}C$.

B.2 Relation to Infinitary Programs

An *infinitary rule* is an implication $F \to A$ such that F is an infinitary formula and A is an atom. An *infinitary program* is a conjunction of (possibly infinitely many) infinitary rules. We will prove Theorems 1 and 2 using properties of infinitary programs proved by Lifschitz and Yang (2013). The result of applying transformation τ to an EG program is, generally, not an infinitary program, and the following definitions will be useful.

For any EG program Γ , by $\tau_1 \Gamma$ we denote the conjunction of

• the infinitary rules

$$\tau(Body) \to p(\mathbf{r})$$
 (4)

for all instances (3) of the basic rules of Γ and all \mathbf{r} in $[\mathbf{t}]$, and

• the infinitary rules

$$\tau(Body) \land \neg \neg p(\mathbf{r}) \to p(\mathbf{r}) \tag{5}$$

for all instances (7) of the choice rules of Γ and all **r** in [t].

By $\tau_2 \Gamma$ we denote the conjunction of the infinitary formulas $\neg \tau \mathbf{C}$ for all instances $\leftarrow \mathbf{C}$ of the constraints of Γ .

Lemma 4

Stable models of an EG program Γ can be characterized as the stable models of the infinitary program $\tau_1\Gamma$ that satisfy $\tau_2\Gamma$.

Proof

The infinitary formula obtained by applying τ to a closed basic rule (3) is strongly equivalent to the conjunction of the infinitary rules (4) for all **r** in [**t**], because these two formulas are equivalent in the deductive system HT^{∞} (Harrison et al. 2015, Section 6). Similarly, the infinitary formula obtained by applying τ to a closed choice rule (7) is strongly equivalent to the conjunction of the infinitary rules (5) for all **r** in [**t**]. It follows that Γ has the same stable models as $\tau_1 \Gamma \cup \tau_2 \Gamma$. We know, on the other hand, that for any infinitary formula F and any conjunction G of infinitary formulas that begin with negation, stable models of $F \wedge G$ can be characterized as the stable models of F that satisfy G. (This is a straightforward extension of Proposition 4 from Ferraris and Lifschitz (2005) to infinitary formulas.) It remains to apply this general fact to $\tau_1 \Gamma$ as F and $\tau_2 \Gamma$ as G.

For any infinitary program Π and any atom A, by $\Pi|_A$ we denote the set of formulas F such that $F \to A$ is a rule of Π . The *completion* of Π is the conjunction of the formulas $A \leftrightarrow (\Pi|_A)^{\vee}$ for all atoms A in the underlying signature.

Lemma 5

For any finite EG program Γ , the completion of the infinitary program $\tau_1\Gamma$ is satisfied by the same interpretations of the vocabulary of Γ as the set of completed definitions of the predicate symbols occurring in Γ .

Proof

We will show, for every predicate symbol p/n occurring in Γ , that its completed definition (11) is satisfied by the same interpretations of the vocabulary of Γ as the conjunction of the formulas

$$p(\mathbf{r}) \leftrightarrow (\tau_1 \Gamma|_{p(\mathbf{r})})^{\vee}$$

over all tuples **r** of precomputed terms of length n. An interpretation satisfies (11) iff it satisfies the formulas

$$p(\mathbf{r}) \leftrightarrow \bigvee_{i=1}^{k} \exists \mathbf{U}_{i}(F_{i})_{\mathbf{r}}^{\mathbf{V}}$$

for all tuples \mathbf{r} of precomputed terms of length n. Consequently it is sufficient to check that for every such tuple \mathbf{r} , the infinitary formula

$$(\tau_1 \Gamma|_{p(\mathbf{r})})^{\vee} \tag{6}$$

and the EG formula

$$\bigvee_{i=1}^{k} \exists \mathbf{U}_{i}(F_{i})_{\mathbf{r}}^{\mathbf{V}}$$
(7)

are satisfied by the same interpretations.

The rules of $\tau_1 \Gamma$ with the consequent $p(\mathbf{r})$ are obtained as described in the definition of τ_1 above from instances of the rules R_1, \ldots, R_k that define p/n in Γ . If R_i is a basic rule

$$p(\mathbf{t}_i) \leftarrow Body_i$$
 (8)

then its instances have the form

$$p\left((\mathbf{t}_i)_{\mathbf{s}}^{\mathbf{U}_i}\right) \leftarrow (Body_i)_{\mathbf{s}}^{\mathbf{U}_i}$$

where s is a tuple of precomputed terms of the same length as U_i . The infinitary rules with the consequent $p(\mathbf{r})$ contributed by this instance to $\tau_1 \Gamma$ have the form

$$\tau\left((\textit{Body}_i)_{\mathbf{s}}^{\mathbf{U}_i}\right) \to p(\mathbf{r})$$

where s satisfies the condition $\mathbf{r} \in [(\mathbf{t}_i)_{\mathbf{s}}^{\mathbf{U}_i}]$. If R_i is a choice rule

$$\{p(\mathbf{t}_i)\} \leftarrow Body_i \tag{9}$$

then its instances have the form

$$\{p\left((\mathbf{t}_i)_{\mathbf{s}}^{\mathbf{U}_i}\right)\} \leftarrow (Body_i)_{\mathbf{s}}^{\mathbf{U}_i}$$

and the corresponding rules of $\tau_1 \Gamma$ with the consequent $p(\mathbf{r})$ have the form

$$\tau\left((\operatorname{Body}_i)_{\mathbf{s}}^{\mathbf{U}_i}\right) \wedge \neg \neg p(\mathbf{r}) \to p(\mathbf{r}).$$

Let G_i stand for $\tau(Body_i)$ if R_i is a basic rule (8), and for $\tau(Body_i) \land \neg \neg p(\mathbf{r})$ if R_i is a choice

rule (9). Using this notation, we can represent formula (6) as

$$\bigvee_{i=1}^k \bigvee_{\mathbf{s}:\mathbf{r} \in [(\mathbf{t}_i)_{\mathbf{s}}^{\mathbf{U}_i}]} (G_i)_{\mathbf{s}}^{\mathbf{U}_i}$$

An interpretation \mathcal{I} satisfies this formula iff

for some
$$i \in \{1, \dots, k\}$$
 and some **s** such that $\mathbf{r} \in [(\mathbf{t}_i)_{\mathbf{s}}^{\mathbf{U}_i}], \ \mathcal{I} \models (G_i)_{\mathbf{s}}^{\mathbf{U}_i}.$ (10)

On the other hand, F_i in disjunction (7) is

$$\mathbf{V} \in \mathbf{t_i} \land \phi^{\mathbf{X}_i}(Body_i)$$

if R_i is a basic rule (8), and

$$\mathbf{V} \in \mathbf{t_i} \land \phi^{\mathbf{X}_i}(\textit{Body}_i) \land p(\mathbf{V})$$

if R_i is a choice rule (9), where \mathbf{X}_i is the list of local variables of rule R_i . Let H_i stand for $\phi^{\mathbf{X}_i}(Body_i)$ if R_i is (8), and for $\phi^{\mathbf{X}_i}(Body_i) \wedge p(\mathbf{r})$ if R_i is (9). Formula (7) can be written as

$$\bigvee_{i=1}^k \exists \mathbf{U}_i (\mathbf{r} \in \mathbf{t}_i \wedge H_i)$$

An intepretation $\mathcal I$ satisfies this formula iff

for some
$$i \in \{1, \dots, k\}$$
 and some \mathbf{s} , $\mathbf{r} \in [(\mathbf{t}_i)_{\mathbf{s}}^{\mathbf{U}_i}]$ and $\mathcal{I} \models (H_i)_{\mathbf{s}}^{\mathbf{U}_i}$. (11)

Lemma 3 shows that formulas $(G_i)_{\mathbf{s}}^{\mathbf{U}_i}$ and $(H_i)_{\mathbf{s}}^{\mathbf{U}_i}$ are satisfied by the same interpretations. Consequently condition (11) is equivalent to condition (10).

Lemma 6

For any EG program Γ , the infinitary formula $\tau_2\Gamma$ is satisfied by the same interpretations of the vocabulary of Γ as the conjunction of the universal closures of the formula representations of the constraints of Γ .

Proof

We will show, for every constraint $\leftarrow Body$ from Γ , that the universal closure of its formula representation $\phi(\leftarrow Body)$ is satisfied by the same interpretations of the vocabulary of Γ as the conjunction of the formulas

$$\neg \tau (Body_{\mathbf{r}}^{\mathbf{U}}) \tag{12}$$

for all tuples **r** of precomputed terms of the same length as the tuple **U** of the global variables of $\leftarrow Body$. Recall that $\phi(\leftarrow Body)$ is defined as $\neg \phi^{\mathbf{X}}(Body)$, where **X** is the list of local variables of $\leftarrow Body$. An interpretation \mathcal{I} satisfies the universal closure of this formula iff it satisfies the formulas

$$\neg \phi^{\mathbf{X}}(Body^{\mathbf{U}}_{\mathbf{r}}) \tag{13}$$

for all tuples **r** of precomputed terms of the same length as **U**. By Lemma 3, formulas (12) and (13) are satisfied by the same interpretations. \Box

Harrison, Lifschitz, and Raju

B.3 Proof of Theorem 1

An interpretation \mathcal{I} is supported by an infinitary program Π if for each atom A in \mathcal{I} there exists an infinitary formula F such that $F \to A$ is a rule of Π and \mathcal{I} satisfies F. Every stable model of an infinitary program is supported by it (Lifschitz and Yang 2013, Lemma B).¹ It is easy to see that an interpretation \mathcal{I} satisfies the completion of Π iff \mathcal{I} satisfies Π and is supported by Π . We conclude:

Lemma 7

Every stable model of an infinitary program satisfies its completion.

To prove Theorem 1, assume that \mathcal{I} is a stable model of an EG program Γ . Then \mathcal{I} is a stable model of $\tau_1\Gamma$, and \mathcal{I} satisfies $\tau_2\Gamma$ (Lemma 4). Consequently \mathcal{I} satisfies the completion of $\tau_1\Gamma$ (Lemma 7). It follows that \mathcal{I} satisfies the completed definitions of all predicate symbols occurring in Γ (Lemma 5). On the other hand, since \mathcal{I} satisfies $\tau_2\Gamma$, it satisfies also the universal closures of the formula representations of the constraints of Γ (Lemma 6).

B.4 Proof of Theorem 2

The proof of Theorem 2 below refers to the concept of a tight infinitary program (Lifschitz and Yang 2013). We first define the set Pnn(F) of positive nonnegated atoms of an infinitary formula F and the set Nnn(F) of negative nonnegated atoms of F:

- $\operatorname{Pnn}(\bot) = \emptyset$.
- For any atom A, $Pnn(A) = \{A\}$.
- $\operatorname{Pnn}(\mathcal{H}^{\wedge}) = \operatorname{Pnn}(\mathcal{H}^{\vee}) = \bigcup_{H \in \mathcal{H}} \operatorname{Pnn}(H).$ $\operatorname{Pnn}(G \to H) = \begin{cases} \emptyset & \text{if } H = \bot, \\ \operatorname{Nnn}(G) \cup \operatorname{Pnn}(H) & \text{otherwise.} \end{cases}$
- Nnn(\perp) = \emptyset .
- For any atom A, $Nnn(A) = \emptyset$.
- $\operatorname{Nnn}(\mathcal{H}^{\wedge}) = \operatorname{Nnn}(\mathcal{H}^{\vee}) = \bigcup_{H \in \mathcal{H}} \operatorname{Nnn}(H).$ $\operatorname{Nnn}(G \to H) = \begin{cases} \emptyset & \text{if } H = \bot, \\ \operatorname{Pnn}(G) \cup \operatorname{Nnn}(H) & \text{otherwise.} \end{cases}$

Let Π be an infinitary program, and \mathcal{I} an interpretation of its signature. About atoms $A, B \in \mathcal{I}$ we say that B is a parent of A relative to Π and \mathcal{I} if there exists a formula F such that $F \to A$ is a rule of Π, \mathcal{I} satisfies F, and B is a positive nonnegated atom of F. We say that Π is tight on \mathcal{I} if there is no infinite sequence A_0, A_1, \ldots of elements of \mathcal{I} such that for every i, A_{i+1} is a parent of A_i relative to Π and \mathcal{I} .

If an infinitary program Π is tight on an interpretation \mathcal{I} that satisfies Π and is supported by Π then \mathcal{I} is a stable model of Π (Lifschitz and Yang 2013, Lemma 2). We conclude:

Lemma 8

If an infinitary program Π is tight on an interpretation \mathcal{I} that satisfies the completion of Π then \mathcal{I} is a stable model of Π .

¹ See the long version of the paper, http://www.cs.utexas.edu/users/ai-lab/?ltc.

Online appendix

Lemma 9

For any conjunction **C** of ground literals, ground comparisons, and closed aggregate expressions, if $p(t_1, \ldots, t_n)$ is a positive nonnegated atom of $\tau \mathbf{C}$ then p/n occurs in a positive literal or in an aggregate expression in **C**.

Proof

Consider the conjunctive term C of **C** such that $p(t_1, \ldots, t_n)$ is a positive nonnegated atom of τC . It is clear from the definition of τ that p/n occurs in C. On the other hand, the formulas obtained by applying τ to negative literals and comparisons have no positive nonnegated atoms. Consequently C is either a positive literal or an aggregate expression.

Lemma 10

If an EG program Γ is tight then $\tau_1 \Gamma$ is tight on all interpretations.

Proof

Assume that $\tau_1 \Gamma$ is not tight on an interpretation \mathcal{I} , and consider an infinite sequence

$$p_0(\mathbf{t}_0), p_1(\mathbf{t}_1), \ldots$$

of atoms such that for every i, $p_{i+1}(\mathbf{t}_{i+1})$ is a parent of $p_i(\mathbf{t}_i)$ relative to $\tau_1\Gamma$ and \mathcal{I} . We will show that for every i, the graph $G_{\tau_1\Gamma}$ has an edge from p_i/n_i to p_{i+1}/n_{i+1} , where n_i is the length of \mathbf{t}_i . The the assertion of the lemma will follow, because an infinite path $p_0/n_0, p_1/n_1, \ldots$ in the finite graph $G_{\tau_1\Gamma}$ is impossible if that graph is acyclic.

Consider a rule $F_i \rightarrow p_i(\mathbf{t}_i)$ of $\tau_1 \Gamma$ such that $p_{i+1}(\mathbf{t}_{i+1})$ is a positive nonnegated atom of F_i . This rule has either the form (4) or the form (5). In both cases, $p_{i+1}(\mathbf{t}_{i+1})$ is a positive nonnegated atom of $\tau(Body)$, and we can conclude, by Lemma 9, that p_{i+1}/n_{i+1} occurs in a positive literal or in an aggregate expression in *Body*. It remains to observe that *Body* is the body of an instance of a rule of $\tau_1 \Gamma$ that contains t_i/n_i in the head.

Proof of Theorem 2 Let Γ be a finite tight EG program. Given Theorem 1, we only need to establish the "if" direction of Theorem 2: if an interpretation of the vocabulary of Γ satisifies the completion of Γ then it is a stable model of Γ .

Let \mathcal{I} be an interpretation of the vocabulary of Γ that satisfies the completion of Γ . Then \mathcal{I} satisfies the completion of $\tau_1\Gamma$ (Lemma 5). But $\tau_1\Gamma$ is tight on \mathcal{I} (Lemma 10); consequently \mathcal{I} is a stable model of $\tau_1\Gamma$ (Lemma 8). On the other hand, \mathcal{I} satisfies $\tau_2\Gamma$ (Lemma 6). It follows that \mathcal{I} is a stable model of Γ (Lemma 4).