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Appendix B Proofs

B.1 Relationship between φ and τ

To prove Theorems 1 and 2, we need to investigate the relationship between the operator φ used
in the definition of completion (Section 5) and the operator τ that the semantics of programs is
based on (Section A.2).

If C is a conjunction of ground literals and ground comparisons then the formula τC is finite,
and we can ask whether it is equivalent to φC in the sense of Section 3. The answer to this
question is yes:

Lemma 1
For any conjunction C of ground literals and ground comparisons, τC is equivalent to φC.

Proof
It is sufficient to prove this assertion assuming that C is a single ground literal or a single ground
comparison.

Case 1: C is a ground atom p(t1, . . . , tn). Then φC is

∃x1 . . . xn(x1 ∈ t1 ∧ · · · ∧ xn ∈ tn ∧ p(x1, . . . , xn)).

In view of Observation 1, this formula is equivalent to

∃x1 . . . xn

 ∨
r1∈[t1]

x1 = r1

 ∧ · · · ∧
 ∨
rn∈[tn]

xn = rn

 ∧ p(x1, . . . , xn)

 ,

and consequently to ∨
r1∈[t1],...,rn∈[tn]

p(r1, . . . , rn).

The last formula is τC.

Case 2: C is a negative ground literal ¬p(t1, . . . , tn). The proof is similar.

Case 3: C is a ground comparison t1 ≺ t2. Then Then φC is

∃x1x2(x1 ∈ t1 ∧ x2 ∈ t2 ∧ x1 ≺ x2).
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In view of Observation 1, this formula is equivalent to

∃x1x2

 ∨
r1∈[t1]

x1 = r1

 ∧
 ∨
r2∈[t2]

x2 = r2

 ∧ x1 ≺ x2

 ,

and consequently to ∨
r1∈[t1],r2∈[t2]

r1 ≺ r2.

If the relation ≺ holds between some terms r1, r2 such that r1 ∈ [t1] and r2 ∈ [t2] then one of
the disjunctive terms in the last formula is >, and the formula is equivalent to >; otherwise each
disjunctive term is ⊥, and the formula is equivalent to ⊥. In both cases, it is equivalent to τC. �

Lemma 2
For any closed aggregate expression E and any list X of distinct variables containing all vari-
ables that occur in E, the infinitary formula τE is satisfied by the same interpretations of the
vocabulary of E as the EG formula φXE.

Proof
Let E be a closed aggregate expression (23). Without loss of generality we can assume that the
list X contains only variables occurring in E. As defined in Section A.2, τE is the conjunction
of formulas (A1), where A stands for the set of tuples of precomputed terms of the same length
as X, over the subsets ∆ of A that do not justify E.

Note first that τE is classically equivalent to the disjunction of formulas∧
r∈∆

τ(CX
r ) ∧

∧
r∈A\∆

¬τ(CX
r ) (1)

over the subsets ∆ of A that justify E. Indeed, call this disjunction D+, and let D− be the dis-
junction of formulas (1) over all other subsets ∆ ofA. It is clear thatD− is classically equivalent
to ¬D+; on the other hand, ¬D− is classically equivalent to the conjunction τE.

Consider now an interpretation I of the vocabulary of E. Set A has exactly one subset ∆ for
which I satisfies (1): the set of all tuples r for which I |= τ(CX

r ). Consequently I satisfies τE
iff this subset ∆ justifies E. In other words, I satisfies τE iff

α̂

 ⋃
r : I|=τ(CX

r )

[tXr ]

 ≺ s. (2)

By Lemma 1, the condition I |= τ(CX
r ) in this expression can be equivalently replaced by

I |= φ(CX
r ), and consequently by I |= (φC)Xr . Hence (2) holds iff

α̂{q : there exists r such that q ∈ [tXr ] and I |= (φC)Xr } ≺ s. (3)

On the other hand, φXE is

∃Y (α{Z | ∃X(Z ∈ t ∧ φC)} ≺ Y ∧ Y ∈ s),

and I satisfies this formula iff

I |= α{Z | ∃X(Z ∈ t ∧ φC)} ≺ s.
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This condition can be rewritten as

α̂{q : I |= ∃X(q ∈ t ∧ φC)} ≺ s,

which is equivalent to (3). �

From Lemmas 1 and 2 we conclude:

Lemma 3
For any conjunction C of ground literals, ground comparisons, and closed aggregate expressions,
and for any list X of distinct variables containing all variables that occur in C, the infinitary
formula τC is satisfied by the same interpretations of the vocabulary of C as the formula φXC.

B.2 Relation to Infinitary Programs

An infinitary rule is an implication F → A such that F is an infinitary formula and A is an atom.
An infinitary program is a conjunction of (possibly infinitely many) infinitary rules. We will
prove Theorems 1 and 2 using properties of infinitary programs proved by Lifschitz and Yang
(2013). The result of applying transformation τ to an EG program is, generally, not an infinitary
program, and the following definitions will be useful.

For any EG program Γ, by τ1Γ we denote the conjunction of

• the infinitary rules

τ(Body)→ p(r) (4)

for all instances (3) of the basic rules of Γ and all r in [t], and
• the infinitary rules

τ(Body) ∧ ¬¬p(r)→ p(r) (5)

for all instances (7) of the choice rules of Γ and all r in [t].

By τ2Γ we denote the conjunction of the infinitary formulas ¬τC for all instances← C of the
constraints of Γ.

Lemma 4
Stable models of an EG program Γ can be characterized as the stable models of the infinitary
program τ1Γ that satisfy τ2Γ.

Proof
The infinitary formula obtained by applying τ to a closed basic rule (3) is strongly equivalent to
the conjunction of the infinitary rules (4) for all r in [t], because these two formulas are equivalent
in the deductive system HT∞ (Harrison et al. 2015, Section 6). Similarly, the infinitary formula
obtained by applying τ to a closed choice rule (7) is strongly equivalent to the conjunction of the
infinitary rules (5) for all r in [t]. It follows that Γ has the same stable models as τ1Γ ∪ τ2Γ. We
know, on the other hand, that for any infinitary formula F and any conjunction G of infinitary
formulas that begin with negation, stable models of F ∧ G can be characterized as the stable
models of F that satisfy G. (This is a straightforward extension of Proposition 4 from Ferraris
and Lifschitz (2005) to infinitary formulas.) It remains to apply this general fact to τ1Γ as F and
τ2Γ as G. �

For any infinitary program Π and any atom A, by Π|A we denote the set of formulas F such
that F → A is a rule of Π. The completion of Π is the conjunction of the formulas A↔ (Π|A)∨

for all atoms A in the underlying signature.
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Lemma 5
For any finite EG program Γ, the completion of the infinitary program τ1Γ is satisfied by the
same interpretations of the vocabulary of Γ as the set of completed definitions of the predicate
symbols occurring in Γ.

Proof
We will show, for every predicate symbol p/n occurring in Γ, that its completed definition (11)
is satisfied by the same interpretations of the vocabulary of Γ as the conjunction of the formulas

p(r)↔ (τ1Γ|p(r))
∨

over all tuples r of precomputed terms of length n. An interpretation satisfies (11) iff it satisfies
the formulas

p(r)↔
k∨
i=1

∃Ui(Fi)
V
r

for all tuples r of precomputed terms of length n. Consequently it is sufficient to check that for
every such tuple r, the infinitary formula

(τ1Γ|p(r))
∨ (6)

and the EG formula
k∨
i=1

∃Ui(Fi)
V
r (7)

are satisfied by the same interpretations.
The rules of τ1Γ with the consequent p(r) are obtained as described in the definition of τ1

above from instances of the rules R1, . . . , Rk that define p/n in Γ. If Ri is a basic rule

p(ti)← Bodyi (8)

then its instances have the form

p
(
(ti)

Ui
s

)
← (Bodyi)

Ui
s

where s is a tuple of precomputed terms of the same length as Ui. The infinitary rules with the
consequent p(r) contributed by this instance to τ1Γ have the form

τ
(
(Bodyi)

Ui
s

)
→ p(r)

where s satisfies the condition r ∈ [(ti)
Ui
s ]. If Ri is a choice rule

{p(ti)} ← Bodyi (9)

then its instances have the form

{p
(
(ti)

Ui
s

)
} ← (Bodyi)

Ui
s

and the corresponding rules of τ1Γ with the consequent p(r) have the form

τ
(
(Bodyi)

Ui
s

)
∧ ¬¬p(r)→ p(r).

Let Gi stand for τ(Bodyi) if Ri is a basic rule (8), and for τ(Bodyi) ∧ ¬¬p(r) if Ri is a choice
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rule (9). Using this notation, we can represent formula (6) as

k∨
i=1

∨
s : r∈[(ti)

Ui
s ]

(Gi)
Ui
s .

An interpretation I satisfies this formula iff

for some i ∈ {1, . . . , k} and some s such that r ∈ [(ti)
Ui
s ], I |= (Gi)

Ui
s . (10)

On the other hand, Fi in disjunction (7) is

V ∈ ti ∧ φXi(Bodyi)

if Ri is a basic rule (8), and

V ∈ ti ∧ φXi(Bodyi) ∧ p(V)

if Ri is a choice rule (9), where Xi is the list of local variables of rule Ri. Let Hi stand for
φXi(Bodyi) if Ri is (8), and for φXi(Bodyi) ∧ p(r) if Ri is (9). Formula (7) can be written as

k∨
i=1

∃Ui(r ∈ ti ∧Hi).

An intepretation I satisfies this formula iff

for some i ∈ {1, . . . , k} and some s, r ∈ [(ti)
Ui
s ] and I |= (Hi)

Ui
s . (11)

Lemma 3 shows that formulas (Gi)
Ui
s and (Hi)

Ui
s are satisfied by the same interpretations.

Consequently condition (11) is equivalent to condition (10). �

Lemma 6
For any EG program Γ, the infinitary formula τ2Γ is satisfied by the same interpretations of the
vocabulary of Γ as the conjunction of the universal closures of the formula representations of the
constraints of Γ.

Proof
We will show, for every constraint ← Body from Γ, that the universal closure of its formula
representation φ(← Body) is satisfied by the same interpretations of the vocabulary of Γ as the
conjunction of the formulas

¬τ(BodyUr ) (12)

for all tuples r of precomputed terms of the same length as the tuple U of the global variables of
← Body. Recall that φ(← Body) is defined as ¬φX(Body), where X is the list of local variables
of← Body. An interpretation I satisfies the universal closure of this formula iff it satisfies the
formulas

¬φX(BodyUr ) (13)

for all tuples r of precomputed terms of the same length as U. By Lemma 3, formulas (12)
and (13) are satisfied by the same interpretations. �
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B.3 Proof of Theorem 1

An interpretation I is supported by an infinitary program Π if for each atom A in I there exists
an infinitary formula F such that F → A is a rule of Π and I satisfies F . Every stable model of
an infinitary program is supported by it (Lifschitz and Yang 2013, Lemma B).1 It is easy to see
that an interpretation I satisfies the completion of Π iff I satisfies Π and is supported by Π. We
conclude:

Lemma 7
Every stable model of an infinitary program satisfies its completion.

To prove Theorem 1, assume that I is a stable model of an EG program Γ. Then I is a stable
model of τ1Γ, and I satisfies τ2Γ (Lemma 4). Consequently I satisfies the completion of τ1Γ

(Lemma 7). It follows that I satisfies the completed definitions of all predicate symbols occurring
in Γ (Lemma 5). On the other hand, since I satisfies τ2Γ, it satisfies also the universal closures
of the formula representations of the constraints of Γ (Lemma 6). �

B.4 Proof of Theorem 2

The proof of Theorem 2 below refers to the concept of a tight infinitary program (Lifschitz
and Yang 2013). We first define the set Pnn(F ) of positive nonnegated atoms of an infinitary
formula F and the set Nnn(F ) of negative nonnegated atoms of F :

• Pnn(⊥) = ∅.
• For any atom A, Pnn(A) = {A}.
• Pnn(H∧) = Pnn(H∨) =

⋃
H∈H Pnn(H).

• Pnn(G→ H) =

{
∅ if H = ⊥,
Nnn(G) ∪ Pnn(H) otherwise.

• Nnn(⊥) = ∅.
• For any atom A, Nnn(A) = ∅.
• Nnn(H∧) = Nnn(H∨) =

⋃
H∈H Nnn(H).

• Nnn(G→ H) =

{
∅ if H = ⊥,
Pnn(G) ∪ Nnn(H) otherwise.

Let Π be an infinitary program, and I an interpretation of its signature. About atomsA,B ∈ I
we say that B is a parent of A relative to Π and I if there exists a formula F such that F → A is
a rule of Π, I satisfies F , and B is a positive nonnegated atom of F . We say that Π is tight on I
if there is no infinite sequence A0, A1, . . . of elements of I such that for every i, Ai+1 is a parent
of Ai relative to Π and I.

If an infinitary program Π is tight on an interpretation I that satisfies Π and is supported by Π

then I is a stable model of Π (Lifschitz and Yang 2013, Lemma 2). We conclude:

Lemma 8
If an infinitary program Π is tight on an interpretation I that satisfies the completion of Π then I
is a stable model of Π.

1 See the long version of the paper, http://www.cs.utexas.edu/users/ai-lab/?ltc.
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Lemma 9
For any conjunction C of ground literals, ground comparisons, and closed aggregate expressions,
if p(t1, . . . , tn) is a positive nonnegated atom of τC then p/n occurs in a positive literal or in an
aggregate expression in C.

Proof
Consider the conjunctive term C of C such that p(t1, . . . , tn) is a positive nonnegated atom
of τC. It is clear from the definition of τ that p/n occurs in C. On the other hand, the formulas
obtained by applying τ to negative literals and comparisons have no positive nonnegated atoms.
Consequently C is either a positive literal or an aggregate expression. �

Lemma 10
If an EG program Γ is tight then τ1Γ is tight on all interpretations.

Proof
Assume that τ1Γ is not tight on an interpretation I, and consider an infinite sequence

p0(t0), p1(t1), . . .

of atoms such that for every i, pi+1(ti+1) is a parent of pi(ti) relative to τ1Γ and I. We will show
that for every i, the graph Gτ1Γ has an edge from pi/ni to pi+1/ni+1, where ni is the length of
ti. The the assertion of the lemma will follow, because an infinite path p0/n0, p1/n1, . . . in the
finite graph Gτ1Γ is impossible if that graph is acyclic.

Consider a rule Fi → pi(ti) of τ1Γ such that pi+1(ti+1) is a positive nonnegated atom of Fi.
This rule has either the form (4) or the form (5). In both cases, pi+1(ti+1) is a positive nonnegated
atom of τ(Body), and we can conclude, by Lemma 9, that pi+1/ni+1 occurs in a positive literal
or in an aggregate expression in Body. It remains to observe that Body is the body of an instance
of a rule of τ1Γ that contains ti/ni in the head. �

Proof of Theorem 2 Let Γ be a finite tight EG program. Given Theorem 1, we only need to
establish the “if” direction of Theorem 2: if an interpretation of the vocabulary of Γ satisifies the
completion of Γ then it is a stable model of Γ.

Let I be an interpretation of the vocabulary of Γ that satisfies the completion of Γ. Then I
satisfies the completion of τ1Γ (Lemma 5). But τ1Γ is tight on I (Lemma 10); consequently I
is a stable model of τ1Γ (Lemma 8). On the other hand, I satisfies τ2Γ (Lemma 6). It follows
that I is a stable model of Γ (Lemma 4). �


