
1

Online appendix for the paper

Ticker: A System for Incremental ASP-based Stream
Reasoning

published in Theory and Practice of Logic Programming

Harald Beck, Thomas Eiter, and Christian Folie
Institute of Information Systems, Vienna University of Technology

Favoritenstraße 9-11, A-1040 Vienna, Austria
{beck,eiter}@kr.tuwien.ac.at, christian.folie@outlook.com

Appendix A Notes on the Use of Clingo

Reactive features. We established techniques that allow for incrementally updating a program
P̂k for time or count increment, where Alg. 3 identifies at each tick new rules G+ that have to be
added to the previous translation, and expired ones G− that must be deleted.

In search of existing systems that might allow such incremental program update, we consid-
ered the state-of-the-art ASP solver Clingo (Gebser et al. 2014), which comes with an API for
reactive/multi-shot solving.1 These functionalities are based on (Gebser et al. 2011), have since
evolved (Gebser et al. 2012; Gebser et al. 2014) and successfully applied; e.g. viz. (Gebser et al.
2015). Unfortunately, for our purposes, control features in Clingo are not applicable.

First, the control features in Clingo allow addition of new rules, but not removal of existing
ones. Technically, removing might be simulated by setting a designated switch atom to false.
However, this approach would imply that the program grows over time. Second, we considered
using reactive features as illustrated for Rule r of Ex. 5, using a program part that is parameterized
for stream variables, including that of tick (t,c).

#program tick(t, c, v).

#external now(t).

#external cnt(c).

#external alpha at(v,t).

high at(t) :- w time 2 alpha(v,t), t >= 18.

w time 2 alpha(v,t) :- now(t), alpha at(v,t).

w time 2 alpha(v,t) :- now(t), alpha at(v,t-1).

w time 2 alpha(v,t) :- now(t), alpha at(v,t-2).

However, this encoding is not applicable, since atoms in rule heads cannot be redefined, i.e., they
cannot be grounded more than once.

Model update. For stratified programs (which have a unique model), repeatedly calling Clingo
(by standard one-shot solving) on the encoded program P̂ is a practical solution. However, when
a program has multiple models, we then have no link between the output of successive ticks, i.e.,
the model may arbitrarily change. For instance, consider program

a :- not b, not c. b :- not a, not c. c :- not a, not b.

1 Clingo 5.1.0. API: https://potassco.org/clingo/python-api/current/clingo.html

2

Using Clingo 5.1.0, the answer set of the program that is returned first is {a}, which remains an
answer set if we add rule a :- not c. However, the first reported answer set now is {c}.

Appendix B Proofs

Proof for Lemma 1

Let S=(T,υ) be a stream that underlies tick stream Ṡ=(K,v), such that K = 〈(t1,c1), . . . ,(tm,cm)〉.
By definition, T = [t1, tm] and υ(t) =

⋃
{v(t,c) | (t,c) ∈ K} for all t ∈ T . We recall that τn(S)

(resp. τn(Ṡ)) abbreviates τn(S, tm) (resp. τn(Ṡ,(tm,cm)). Thus, by definition, τn(Ṡ) = (K′,v|K′),
where K′ = {(t ′,c′) ∈ K | max{t1, t − n} ≤ t ′ ≤ t}, and τn(S) = (T ′,υ |T ′), where T ′ = [t ′, tm]
and t ′ = max{t1, t − n}. We observe that t ′ is the minimal time point selected also in K′, i.e.,
K′ = 〈(tk,ck), . . . ,(tm,cm)〉 implies tk = t ′. It remains to show that (υ |T ′)(t) =

⋃
{(v|K′)(t,c) |

(t,c) ∈ K′} for all t ∈ T ′. This is seen from the fact that neither τn(S) nor τn(Ṡ) drops any data
within T ′. We conclude that τn(S) underlies τn(Ṡ).

Proof Sketch for Lemma 2

The argument is similar as for Lemma 1. The central observation is that a tick stream provides
a more fine-grained control over the information available in streams by introducing an order
on tuples in addition to the temporal order. Each time point in a stream is assigned a set of
atoms, whereas each tick in a tick stream is assigned at most one atom. The tuple-based window
function #n always counts atoms backwards (from right end to left) and then selects the timeline
[t1, t] with the latest possible left time point t1 required to capture n atoms. While for tick streams,
the order is unique, but multiple options exist for streams in general. If the tuple window #n(S)
is based on the order in which atoms appeared in S, then it selects the same atoms as #n(Ṡ), and
thus the same timeline. Consequently, #n(S) underlies #n(Ṡ).

Proof Sketch for Proposition 1

The desired correspondence is based on two translations: a LARS program P (at a time t) into
a logic program P̂ = LarsToAsp(P, t) (due to Algorithm 1), and the encoding of a stream S as
set Ŝ of atoms. Given a fixed timeline T , we may view a stream S = (T,υ) as a set of pairs
{(a(~x), t) | a(~x) ∈ υ(t), t ∈ T}. This is the essence of a stream encoding Ŝ for the tick stream
Ṡ = (K,v); Ŝ includes the analogous time-pinned atoms: {a@(~x, t) | a(~x) ∈ v(t,c),(t,c) ∈ K}.
With respect to the correspondence, atoms of form a#(~x, t,c), cnt(c) and tick(t,c) in Ŝ can be
considered auxiliary, as well as the specific counts used in the tick pattern K to obtain time-
pinned atoms a@(~x, t). Counts play a role only for the specific selection of tuple-based windows,
which are assumed to reflect the order of the tick stream. Thus, we may view a stream encoding Ŝ
essentially as a different representation of stream S; additional atoms can be abstracted away as
they have no correspondence in the original LARS stream or program. We thus consider only the
time-pinned atoms in an encoded stream to read off a LARS stream.

Thus, it remains to argue the soundness of the transformation LarsToAsp, which returns a
program of form Q∪R∪{now(t)}, where now(t) is auxiliary. The set Q simply identifies time-
pinned atoms a@(~X , Ṅ) with a(~X) in case Ṅ is the current time point. This is the information
provided by predicate now for which a unique atom exists. Thus, Q ensures that a time-pinned

3

atom a@(~x, t) is available if a(~x, t) is derived, and vice versa; Q thereby only accounts for redun-
dant representations of atoms that currently hold.

Towards R, we get the translation by the function larsToAspRules which returns a set of en-
coded rules for every LARS rule r. First, the baseRule is the corresponding ASP rule, which
introduces a new symbol atm(e) for every extended atom in the rule that is not an ordinary atom.
In order to ensure that the base rule r̂ fires in an interpretation just if the original rule r fires in the
corresponding interpretation of program P, for each body element atm(e) in r̂ the set of rules to
derive atm(e) in lines (14)-(21) is provided; the correspondence between @T a(~X) and a@(~X ,T)
is already given by construction. Thus, each interpretation stream I ⊇ D for P has a correspond-
ing interpretation Î for LarsToAsp(P) in which besides the time-pinned atoms the atoms atm(e)
and spoile(~X) occur depending on support from (i.e., firing) of the rules in (14)-(21), such that
they correctly reflect the value of the window atoms e in I.

As each atom in an answer of an ordinary ASP program must derived by a rule, it is not hard
to see that every answer set of P̂ = LarsToAsp(P, t)∪ D̂ is of the form Î, where I ⊇ D is an
interpretation stream for D. We thus need to show the following: I ∈ AS(P,D, t) holds iff Î is an
answer set of P̂. We do this for ground P (the extension to non-ground P is straightforward).

(⇒) For the only-if direction, we show that if I ∈ AS(P,D, t), that is, I is a minimal model for
the reduct PM,t where M = 〈I,W,B〉, then (i) Î is a model of the reduct P̂Î , and (ii) no interpretation
J′ ⊂ Î is a model of P̂Î . As for (i), we can concentrate by construction of Î on the base rules
r̂ = baseRule(r) in P̂Î (all other rules will be satisfied). If Î satisfies B(r̂), then by construction I
satisfies B(r); as I is a model of PM,t , it follows that I satisfies H(r); but then, by construction,
Î satisfies H(r̂). As for (ii), we assume towards a contradiction that some J′ ⊂ Î satisfies P̂Î . We
then consider the stream J ⊇ D that is induced by J′, and any rule r in the reduct PM,t . If J does
not satisfy B(r), then J satisfies r; otherwise, if J satisfies B(r), then as r̂ is in the reduct P̂Î , we
have that Î falsifies each atom atm(e) in B−(r̂), and as J′ ⊂ Î, also J′ falsifies each such atm(e).
Furthermore, as J satisfies each atom e ∈ B+(r), from the rules for atm(e) among (14)-(21) in
the reduct P̂Î we obtain that J′ satisfies each atom atm(e) in B+(r̂). That is, J′ satisfies B(r̂). As
J′ satisfies r̂, we then obtain that J′ satisfies H(r̂). The latter means that J satisfies H(r), and thus
J satisfies r. As r was arbitrary from the reduct PM,t , we obtain that J ⊂ I is a model of PM,t ; this
however contradicts that I is a minimal model of PM,t , and thus (ii) holds.

(⇐) For the if direction, we argue similarly. Consider an answer set Î of P̂. To show that
I ∈ AS(P,D, t), we establish that (i) I is a model of PM,t and (ii) no model J ⊂ I of PM,t exists.
As for (i), since in Î the atoms atm(e) correctly reflect the value of the window atoms e in I, for
each r in PM,t the rule r̂ = baseRule(r) is in P̂Î ; as Î satisfies r̂, we conclude that I satisfies r. As
for (ii), we show that every model J of PM,t must contain I, which then proves the result.

To establish this, we use the fact that Î can be generated by a sequence ρ = r1,r2,r3 . . . ,rk

of rules from P̂Î with distinct heads such that (a) Î = {H(r1), . . .H(rk)} =: Îk and (b) Îi−1 =

{H(r1), . . . ,H(ri−1)} satisfies B+(ri), for every i = 1, . . . ,k.
In that, we use the assertion that no cyclic positive dependencies through time-based window

atoms �n2a occur. Formally, positive dependency is defined as follows: an atom @t1b positively
depends on an atom @t2a in a ground program P at t, if some rule r ∈ P exists with H(r) = @t1b
and such that either (a) @t2a ∈ B+(r), or (b) �n@t2a ∈ B+(r) or (c) �n ?a ∈ B+(r), ? ∈ {2,3},
where in (b) and (c) t2 ∈ [t − n, t] holds. As in LarsToAsp(P, t), all ordinary atoms a are here
viewed as @ta. A cyclic positive dependency through �n2a is then a sequence @t0a0, @t1a1,
. . . , @tk ak, k≥ 1, such that @tiai positively depends on @t(i+1) mod k a(i+1) mod k, for all i= 0, . . . ,k
and a0 = b and a1 = a for case (c) with ?=2.

4

Given that no positive cyclic dependencies through atoms �n2a occur in P at t, and thus in
PM,t , we can w.l.o.g. assume that whenever ri in ρ has a head ωe for a window atom e =�n2a,
each rule r j in ρ with a head a@(t ′), where t ′ ∈ [t−n, t], precedes ri, i.e., j < i holds.

By induction on i ≥ 1, we can now show that if H(ri) = atm(e), then every model J of PM,t

must satisfy e; consequently, at i = k, J must contain I. From the form of the rules baseRule(r)
and windowRules(e), the correspondence between P̂Î and PM,t , and the fact that the external
data are facts, only the case e = �n2a(~X) needs a further argument. Now if ri is the rule
ωe ← a(~X),not spoile(~X) on line (16), then Î must satisfy a and falsify spoile(~X); in turn, ev-
ery a@(t ′,~X) must be true in Î, for t ′ ∈ [t− n, t]. From the induction hypothesis, we obtain that
@t ′a(~X) is true in every model J of PM,t , t ′ ∈ [t− n, t], and thus e = �n2a(~X) is true as well.
This proves the claim and concludes the proof of the if-case, which in turn establishes the claimed
correspondence between AS(P,D, t) and the answer sets of P̂ = LarsToAsp(P, t)∪ D̂.

Remark. The condition on cyclic positive dependencies excludes that rules b←�n2a and a← b
occur jointly in a program. A stricter notion of dependency that allows for co-occurrence is to
request in (c) for ?=2 in addition t2 < t; then e.g. any LARS program where the rule heads are
ordinary atoms is allowed, and Proposition 1 remains valid.

Proof Sketch for Proposition 2

Assume a LARS program P and two tick data streams D= (K,v) and D′ = (K′,v′) at tick (tm,cm)

such that D′ ⊆ D and K′ = 〈(tk,ck), . . . ,(tm,cm)〉. Furthermore, assume that (*) all atoms/time
points accessible from any window in P are included in D′. We want to show ASI(P̂D,m) =

ASI(P̂D′,m). The central observation is that rules need to fire in order for intensional atoms to
be included in the answer set, and that no rules can fire based on outdated ticks. Thus, these ticks
can also be dropped.

In more detail, we assume ASI(P̂D,m) 6= ASI(P̂D′,m) towards a contradiction. That is to say, a
difference in evaluation arises based on data in D \D′, i.e., atoms appearing before tick (tk,ck).
Consider any extended atom e of a (LARS) rule r ∈ P, where the body holds only for one of the
two encodings (in the same partial interpretation). Due to the assumption (*), we can exclude a
difference arising from a window atom of form �w ?a, ? ∈ {3,2,@T}.

If e is an atom a, it holds in P̂D,m iff it holds in P̂D′,m since an ordinary atom in the answer
set of the encoding corresponds to an atom holding at the current time point, and both D and D′

include the current time point.
The last option is e = @T a, which may reach back beyond (tk,ck) but is viewed in the incre-

mental encoding as syntactic shortcut for �∞@T a. That is, in this case we have D′ = D and thus
the encodings coincide.

We conclude that assuming ASI(P̂D,m) 6= ASI(P̂D′,m) is contradictory due to these observations.
Spelling out the details fully involves essentially a case distinction on the incremental window
encodings and arguing about the relationship between (tk,ck), the respective expiration annota-
tions, and the fact that rules accessing atoms at ticks before (tk,ck) are have already expired.

Proof Sketch for Proposition 3

We argue based on the commonalities and differences of the static encoding P̂∪ D̂ and the in-
cremental encoding P̂D,m. Instead of body predicates now(Ṅ) and cnt(Ċ), that are instantiated in

5

P̂∪ D̂ due to the predicates now(t) and cnt(c), P̂D,m directly uses the instantiations of tick vari-
ables. In both encodings, the window atom is associated with a set of rules that needs to model
the temporal quantifier (3,2,@t) in the correct range of ticks as expressed by the LARS window
atom. This window always includes the last tick. While P̂∪ D̂ is based on a complete definition
how far the window extends, P̂D,m updates this definition tick by tick. In particular, the oldest tick
that is not covered by the window anymore corresponds to the expiration annotation in P̂D,m.

The case �n3a(~X) is as follows: in the static rule encoding,

ωe(~X)← now(Ṅ),a@(~X ,T) ,

given now(t), time variable T will be grounded with t−n, . . . , t−0. That is, we get a set of rules

(r0) ωe(~X) ← now(t),a@(~X , t)
...

(rn) ωe(~X) ← now(t),a@(~X , t−n) ,

where arguments ~X will be grounded due to data and inferences. We observe that (r0) is the rule
that is inserted to the incremental program P̂D,m at time t (minus predicate now(t), since in P̂D,m

variable T is instantiated directly with t to obtain a@(~X , t)), and all rules up to rn remain from
previous calls to IncrementalRules. Rule rn will expire at t+1, i.e., the exact time when it will not
be included in P̂∪ D̂ anymore. The cases for �n@T a(~X),�n2a(~X),�#n3a(~X) and �#n@T a(~X)

are analogous; the remaining case �#n2a(~X) has been argued earlier.
Finally, P̂D,m includes a stream encoding, which is also incrementally maintained: at each tick

(t,c) the tick atom tick(t,c) is added, and in case of a count increment, the time-pinned atom
a@(~X , t) and the tick-pinned atoms a#(~X , t,c) are added to P̂D,m as in D̂. This way, we have a full
correspondence with the static stream encoding D̂.

Thus, at every tick (t,c), P̂∪ D̂ and P̂D,m have the same data and express the same evaluations.
Disregarding auxiliary atoms, we conclude that their answer sets coincide.

Proof Sketch for Theorem 1

Given a LARS program P, a tick data stream D = (K,v) at tick (t,c) by Prop. 1 S is an answer
stream of P for D at t iff Ŝ is an answer set of P̂∪ D̂, where P̂ = LarsToAsp(P, t). By Prop. 3, for
any set X we have that X ∪{now(t),cnt(c)} is an answer set of P̂∪ D̂ iff X is an answer set of
P̂D,m (modulo auxiliary atoms). In particular this holds for X = Ŝ. As {now(t),cnt(c)} ⊆ Ŝ, we
obtain that S is an answer stream of P for D at t iff Ŝ is an answer set of P̂D,m, which is the result.

Appendix C Details of Evaluation Results

(See pages 6–7.)

6

Table C 1. Results for A1. Variable window size n. Results for 1000 timepoints in seconds.

Clingo Incremental
n ttotal tinit ttick ttotal tinit ttick

20 14.296 0.017 0.014 2.638 0.016 0.002
40 20.526 0.018 0.02 3.006 0.018 0.002
80 34.491 0.025 0.034 2.938 0.018 0.002
120 49.249 0.027 0.049 3.439 0.019 0.003
160 64.661 0.028 0.064 3.554 0.017 0.003
200 79.105 0.036 0.079 3.674 0.018 0.003

Table C 2. Results for A2. Variable window size n. Runtime for 1000 timepoints in seconds.

Clingo Incremental
n ttotal tinit ttick ttotal tinit ttick

20 15.259 0.02 0.015 2.869 0.016 0.002
40 23.123 0.02 0.023 3.201 0.018 0.003
80 35.962 0.022 0.035 3.365 0.019 0.003
120 49.068 0.026 0.049 3.547 0.02 0.003
160 61.983 0.03 0.061 3.842 0.018 0.003
200 80.899 0.036 0.08 3.7 0.019 0.003

Table C 3. Results for A1. Variable timepoints tp. Runtime for window size n = 60 in seconds.

Clingo Incremental
tp ttotal tinit ttick ttotal tinit ttick

100 2.78 0.026 0.027 0.368 0.023 0.003
200 5.49 0.022 0.027 0.674 0.02 0.003
300 8.269 0.022 0.027 1.072 0.026 0.003
400 11.379 0.026 0.028 1.307 0.02 0.003
500 14.192 0.024 0.028 1.695 0.017 0.003
600 16.709 0.023 0.027 1.945 0.02 0.003
700 20.049 0.021 0.028 2.217 0.017 0.003
800 22.534 0.021 0.028 2.627 0.018 0.003
900 25.892 0.024 0.028 3.183 0.022 0.003

1000 27.501 0.021 0.027 3.42 0.021 0.003

Table C 4. Results for A2. Variable timepoints tp. Runtime for window size n = 60 in seconds.

Clingo Incremental
tp ttotal tinit ttick ttotal tinit ttick

100 2.998 0.026 0.029 0.418 0.019 0.003
200 5.727 0.023 0.028 0.89 0.017 0.004
300 9.06 0.026 0.03 1.097 0.021 0.003
400 11.783 0.021 0.029 1.563 0.02 0.003
500 14.26 0.021 0.028 1.81 0.017 0.003
600 17.439 0.02 0.029 2.181 0.021 0.003
700 20.321 0.021 0.028 2.438 0.018 0.003
800 23.3 0.02 0.029 3.371 0.02 0.004
900 26.51 0.021 0.029 3.22 0.018 0.003

1000 30.077 0.024 0.03 3.5 0.019 0.003

7

Table C 5. Results for B1. Variable window size n. Runtime in seconds for 1000 timepoints.

Clingo Incremental
n ttotal tinit ttick ttotal tinit ttick

20 26.158 0.018 0.026 15.641 0.292 0.015
40 55.898 0.021 0.055 16.726 0.315 0.016
80 425.853 0.019 0.425 21.135 0.299 0.02
120 - - - 25.909 0.304 0.025
160 - - - 30.659 0.363 0.03
200 - - - 33.541 0.306 0.033

Table C 6. Results for B2. Variable window size n. Runtime for 1000 timepoints in seconds.

Clingo Incremental
n ttotal tinit ttick ttotal tinit ttick

20 24.138 0.018 0.024 34.717 0.292 0.033
40 38.478 0.019 0.038 35.744 0.333 0.034
80 71.827 0.024 0.071 25.767 0.298 0.025
120 104.723 0.023 0.104 33.788 0.29 0.033
160 148.257 0.031 0.148 31.1 0.303 0.03
200 181.991 0.028 0.181 37.612 0.33 0.036

Table C 7. Results for B1. Variable timepoints tp. Window size n = 60 in seconds.

Clingo Incremental
tp ttotal tinit ttick ttotal tinit ttick

100 8.57 0.026 0.085 1.895 0.32 0.015
200 16.392 0.022 0.081 3.971 0.293 0.018
300 31.568 0.022 0.105 6.82 0.475 0.021
400 40.927 0.025 0.102 8.518 0.332 0.02
500 55.313 0.021 0.11 10.64 0.351 0.02
600 69.548 0.021 0.115 12.816 0.353 0.02
700 - - - 15.773 0.333 0.021
800 - - - 16.756 0.318 0.02
900 - - - 16.96 0.298 0.018
1000 - - - 18.602 0.298 0.018

Table C 8. Results for B2. Variable timepoints tp. Window size n = 60 in seconds.

Clingo Incremental
tp ttotal tinit ttick ttotal tinit ttick

100 4.974 0.029 0.049 1.838 0.299 0.015
200 10.06 0.021 0.05 3.982 0.304 0.018
300 15.023 0.02 0.049 6.126 0.359 0.019
400 20.574 0.019 0.051 9.062 0.29 0.021
500 26.075 0.02 0.052 11.625 0.289 0.022
600 31.68 0.02 0.052 14.974 0.297 0.024
700 36.35 0.02 0.051 18.301 0.29 0.025
800 42.391 0.021 0.052 22.947 0.286 0.028
900 48.254 0.021 0.053 28.979 0.366 0.031
1000 54.35 0.02 0.054 28.993 0.334 0.028

8

References

GEBSER, M., GROTE, T., KAMINSKI, R., OBERMEIER, P., SABUNCU, O., AND SCHAUB, T. 2012.
Stream reasoning with answer set programming: Preliminary report. In Principles of Knowledge Repre-
sentation and Reasoning: Proceedings of the Thirteenth International Conference, KR 2012, Rome, Italy,
June 10-14, 2012, G. Brewka, T. Eiter, and S. A. McIlraith, Eds. AAAI Press.

GEBSER, M., GROTE, T., KAMINSKI, R., AND SCHAUB, T. 2011. Reactive answer set programming.
In Logic Programming and Nonmonotonic Reasoning - 11th International Conference, LPNMR 2011,
Vancouver, Canada, May 16-19, 2011. Proceedings, J. P. Delgrande and W. Faber, Eds. Lecture Notes in
Computer Science, vol. 6645. Springer, 54–66.

GEBSER, M., KAMINSKI, R., KAUFMANN, B., AND SCHAUB, T. 2014. Clingo = ASP + control: Prelim-
inary report. In Technical Communications of the Thirtieth International Conference on Logic Program-
ming (ICLP’14), M. Leuschel and T. Schrijvers, Eds. Vol. arXiv:1405.3694v1. Theory and Practice of
Logic Programming, Online Supplement.

GEBSER, M., KAMINSKI, R., OBERMEIER, P., AND SCHAUB, T. 2015. Ricochet robots reloaded: A case-
study in multi-shot ASP solving. In Advances in Knowledge Representation, Logic Programming, and
Abstract Argumentation - Essays Dedicated to Gerhard Brewka on the Occasion of His 60th Birthday,
T. Eiter, H. Strass, M. Truszczynski, and S. Woltran, Eds. Lecture Notes in Computer Science, vol. 9060.
Springer, 17–32.

