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Appendix

Shy existential rules

This section is devoted to recall the formal definition of shy ontologies and their syntactic proper-
ties, as defined in Leone et al. (2012). For notational convenience and without loss of generality,
we assume here that each pair of rules of an ontology share no variable. Let Σ be an ontology,
α be a m-arity atom, i ∈ {1, . . . ,m} be an index, pred(α) = a, and X be an existential variable
occurring in some rule of Σ. We say that position a[i] is invaded by X if there exists a rule ρ ∈ Σ

such that head(ρ) = α and

(i) α[i] = X ; or
(ii) α[i] is a universal variable of ρ and all of its occurrences in body(ρ) appear in positions

invaded by X .

Let φ(X) be a conjunction of atoms, and let X ∈ X. We say that X is attacked by a variable Y in
φ(X) if all the positions where X appears are invaded by Y . On the other hand, we say that X is
protected in φ(X), if it is attacked by no variable.

A rule ρ of an ontology Σ is called shy w.r.t. Σ if the following conditions are both satisfied:

(i) if a variable X occurs in more than one body atom, then X is protected in body(ρ);
(ii) if two distinct variables are not protected in body(ρ) but occur both in head(ρ) and in two

different body atoms, then they are not attacked by the same variable.

Finally, if each ρ ∈ Σ is shy w.r.t. Σ, then call Σ a shy ontology.

Example 6.1
Consider the following rules

ρ1 = s(X1) → ∃Y1 p(X1,Y1);
ρ2 = p(X2,Y2),u(Y2) → r(X2,Y2);
ρ3 = t(X3) → ∃Y3u(Y3).

Let Σ = {ρ1,ρ2,ρ3}. Clearly, ρ1 and ρ3 are shy rules w.r.t. Σ, since they are also linear rules,
namely rules with one single body atom, which cannot violate any of the two shy conditions.
Moreover, rule ρ2 is also shy w.r.t. Σ as the positions p[2] and u[1] are invaded by disjoint sets
of existential variables. Indeed, p[2] is invaded by the existential variable Y1 of the first rule, and
u[1] is invaded by the existential variable Y3 of the third rule. Therefore, Σ is a shy ontology.

Now, consider the further three existential rules

ρ4 = u(X4) → ∃Y4 p(Y4,X4);
ρ5 = u(X5) → ∃Y5 p(X5,Y5);
ρ6 = r(X6,X6) → v(X6).

Let Σ′ be the ontology Σ∪{ρ4}. It is easy to see that ρ1, ρ3 and ρ4 are shy w.r.t. Σ′. However,
ρ2 is not shy w.r.t. Σ′, as property (i) is not satisfied. Indeed, the variable Y2 occurring in two
body atoms in body(ρ2) is not protected, as the position p[2] and u[1] (the only positions in
which Y2 occurs) are invaded by the same existential variable, namely Y3. Therefore, Σ′ is not a
shy ontology.

Let Σ′′ be the ontology Σ∪{ρ5,ρ6}. Again, ρ1, ρ3, ρ5 and ρ6 are trivially shy w.r.t. Σ′′; and
again ρ2 is not shy w.r.t. Σ′′. However, this time, ρ2 is not shy because property (ii) is not sat-
isfied. Indeed, the universal variables X2 and Y2, occurring in two different body atoms and in
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head(ρ2), are not protected in body(ρ2), as the position p[1] and u[1] (in which occur X2 and Y2,
respectively) are attacked by the same variable Y3. Therefore, Σ′′ is not a shy ontology. C

Essentially, during every possible chase step, condition (i) guarantees that each variable that
occurs in more than one body atom is always mapped into a constant. Although this is the key
property behind shy, we now explain the role played by condition (ii) and its importance. To this
aim, we exploit again Σ′′, as introduced in the previous example, and we reveal why this second
condition, in a sense, turns into the first one. Indeed, the rule ρ6 bypasses the propagation of the
same null in ρ2 via different variables. However, one can observe that the rules ρ2 and ρ6 imply
the rule ρ ′6 : p(X6,Y6),u(X6)→ v(X6), which of course does not satisfy condition (i). Actually, it
is not difficult to see that every ontology can be rewritten (independently from D and q) into an en
equivalent one (w.r.t. query answering) where all the rules satisfy condition (i). As an example,
consider the following rule ρ

p(X1,Y1),r(Y1,Z1),u(Z1,Y1) → ∃W1 t(X1,Z1,W1),

and assume that it belongs to some ontology Σ and that it is not shy w.r.t. Σ because it violates
condition (i) only. Let us now construct Σ′ as Σ\{ρ} plus the following two rules:

p(X1,Y1),r(Y ′1,Z1),u(Z′1,Y
′′
1 ) → auxρ(X1,Y1,Y ′1,Z1,Z′1,Y

′′
1 );

auxρ(X1,Y1,Y1,Z1,Z1,Y1) → ∃W1 t(X1,Z1,W1).

Both the new rules satisfy now condition (i) w.r.t. Σ′. Moreover, it is not difficult to see that,
for every database D and for every UBCQ q, it holds that D∪Σ |= q if and only if D∪Σ′ |= q.
However, since ρ does not satisfy condition (i), this immediately implies that the first new rule
does not satisfy condition (ii).

The syntactic properties of shy make the class quite expressive since it strictly contains both
linear and datalog. Moreover, these properties are easy recognizable and guarantee efficient an-
swering to conjunctive queries, as experimentally shown in Leone et al. (2012). In fact, ontology-
based query answering over shy ontologies preservers the same data and combined complexity
of OBQA over datalog, namely PTIME-complete and EXPTIME-complete, respectively.

Formal Proofs

Proof of Proposition 3.2
We prove that R(chase(Dc,Σc)) = chase(D,Σ) by induction on the chase step. Let I0 = D⊂ I1 ⊂
. . .⊂ Im ⊂ . . . be a chase procedure of D and Σ; and let Ic

0 = Dc ⊂ Ic
1 ⊂ . . .⊂ Ic

m ⊂ . . . be a chase
procedure of Dc and Σc.

Clearly, the base case follows, since, by definition of the canonical rewriting of D, R(Dc) = D.
Then, assume that R(Ic

m) = Im. We have to prove that R(Ic
m+1) = Im+1. By definition of chase

step, there exist a rule ρ ∈ Σ and a homomorphism h from body(ρ) to Im, such that 〈ρ,h〉(Im) =

Im+1. That is, Im+1 = Im ∪ {h(head(ρ))}. By construction of a canonical rule, there exists a
safe substitution ς w.r.t. ρ , such that ς(ρ)c is a canonical rule and, by inductive hypothesis,
there exists a homomorphism hc from body(ς(ρ)c) to Ic

m. Consider the following homomorphism
(hc)′ = (h\h|X)∪hc|X ⊇ hc|X. Therefore, Ic

m+1 = Ic
m∪{(hc)′(head(〈ρ,ς〉))}. Moreover,

R(Ic
m+1) =R(Ic

m∪{(hc)′(head(ς(ρ)c))}) =

=R(Ic
m)∪R({(hc)′(head(ς(ρ)c))}) =

= Im∪{h′(R(head(ς(ρ)c)))} =

= Im∪{h′(head(ρ))} = Im+1.
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Finally, let qc be the canonical rewriting of the UBCQ q = ∃Y1ψ1(Y1)∨ . . .∨∃Ykψk(Yk). For
each j ∈ {1, . . . ,k}, consider the safe substitution ς j mapping each variable of ψ j(Y j) in a dif-
ferent null. Therefore, there exists a conjunction of atoms, say ψc

j (Y j) = ς j(ψ j(Y j))
c in qc,

such that R(ψc
j (Y j)) = ψ j(Y j), for each j ∈ {1, . . . ,k}. Hence, q⊆R(qc). Moreover, it is easy

to see that, each other safe substitution ς ′ w.r.t. some ψ j, produces a conjunction of atoms,
ς ′(ψ j(Y j))

c such that R(ς ′(ψ j(Y j))
c) is contained in R(ς j(ψ j(Y j))

c). Therefore, R(qc) ⊆ q.
Thus, R(qc) = q.

Proof of Theorem 3.1
We know that, for each database D, ontology Σ and UBCQ q, it holds that D∪Σ |= q if and only if
chase(D,Σ) |= q (Fagin et al. 2005). Therefore, also Dc∪Σc |= qc if and only if chase(Dc,Σc) |=
qc. Moreover, by Proposition 3.2, we have that R(chase(Dc,Σc)) = chase(D,Σ) and R(qc)≡ q.
Hence, remain to prove that R(chase(Dc,Σc)) |=R(qc) if and only if chase(Dc,Σc) |= qc.

We prove the “if” part, given that the “only if” part can be obtained retracing the chain of
the following implications. Suppose that chase(Dc,Σc) |= qc. Therefore, there is a homomor-
phism h from at least one disjunct of qc, say ς j(ψ j(Y j))

c (where ς j is a canonical substitu-
tion), to chase(Dc,Σc), that is h(ς j(ψ j(Y j))

c) ⊆ chase(Dc,Σc). Therefore, R(h(ς j(ψ j(Y j))
c))

⊆ R(chase(Dc,Σc)). Moreover, note that R(h(ς j(ψ j(Y j))
c)) = h(R(ς j(ψ j(Y j))

c)). Hence,
h(R(ς j(ψ j(Y j))

c)) ⊆ R(chase(Dc,Σc)). Thus, h is also a homomorphism from a disjunct of
R(qc) to R(chase(Dc,Σc)), that is R(chase(Dc,Σc)) |=R(qc).

Proof of Proposition 4.1
Let Σ be a shy ontology. Note that, for each rule ρ ∈ Σ, there exists a rule ς(ρ)c ∈ Σc such that
ς(X i) = ni for each variable X i occurring in ρ . It is easy to see that a such ς is a safe substitution.
We denote by Σ̄c the set of all and anly this kind of rules in Σc. Note that, if Σc is a shy ontology,
then Σ̄c ⊆ Σc is also a shy ontology.

By contradiction, suppose that Σ̄c is not a shy ontology.
First, suppose that there exists a rule ς(ρ)c ∈ Σ̄c such that there exists a variable, say X ,

occurring in more than one body atom and X is not protected in body(ς(ρ)c). Therefore, for
each existential variable Y , there exists an atom β ∈ body(ς(ρ)c) and some position pred(β )[i]
in which X occurs, and pred(β )[i] is not invaded by Y . Consider the unpacked rule R(ς(ρ)c) =

ρ ∈ Σ. Therefore, by construction, for each existential variable Y , there exists α ∈ body(ρ) and
some position pred(α)[ j] in which X occurs, and pred(α)[ j] is not invaded by Y . Hence, X
occurs in more than one body atom of ρ and X is not protected in body(ρ). So that, ρ is not a
shy rule, and, thus, Σ is not a shy ontology.

Then, suppose that there exists a rule ς(ρ)c ∈ Σ̄c such that there are two distinct universal
variables, say X and Y , that are not protected in body(ς(ρ)c); occur in head(ς(ρ)c); occur in
two different body atoms; and they are attacked by the same variable. Therefore, there exists an
existential variable Z such that X and Y occur only in invaded position by Z. Consider again the
unpacked rule R(ς(ρ)c) = ρ ∈ Σ. Then, by the unpacking function, X and Y are not protected in
body(ρ), and they occur in head(ρ), in two different body atoms, and only in invaded position
by Z. Thus, they are attacked by the same variable. Therefore, also in this case, ρ is not a shy

rule. Hence, Σ is not a shy ontology.
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Proof of Proposition 4.2
Let M be a finite model of D∪Σ. Clearly, if M is a well-supported finite model of D∪Σ, we
are done. Therefore, suppose that M is not a well-supported finite model of D∪Σ. Let Ω1 =

(α1, . . . ,αm) be an ordering of the atoms of M. Hence, by assumption, there exists α ∈M that is
not a well-supported atom w.r.t. Ω1. Let α j1 be the first atom in the ordering Ω1 that is not well-
supported. And consider a new ordering Ω2 = (α1, . . . ,α j1−1,α j1+1, . . . ,αm,α j1), where α j1 is
shifted from the position j1 to the position n. As M 6∈ wsfmods(D,Σ), then Ω2 is not a well-
supported ordering of M. Moreover, the first j1−1 atoms are well-supported w.r.t. Ω2. Therefore,
let α j2 be the first atom in the ordering Ω2 that is not well-supported. Again, we consider a new
ordering, say Ω3, where α j2 is shifted from position j2−1 to the position n. Iteratively, we build
a sequence Ω1,Ω2, . . . ,Ωm, . . . of orderings that are not well-supported. Note that, as the number
of different orderings is finite, there exist at least two orderings in the sequence that are the same.
Therefore, let Ωm1 and Ωm2 be the first two orderings of the sequence, with m2 > m1, such that
Ωm1 = Ωm2 (i.e., Ωm1 and Ωm2 are the same ordering). Consider the subset A ⊆ M containing
the first n− (m2−m1) elements in Ωm1 , and the set B of the last m2−m1 atoms in Ωm1 . By
construction, A is a well-supported instance. Moreover, each β ∈ B is not well-supported by A,
as Ωm2 = Ωm1 . That is, there is no rule ρ in Σ and no homomorphism h such that h(body(ρ))⊆ A
and h(head(ρ)) = {β}. Hence, as M is a model, whenever A |= body(ρ), there exists an atom α

in A, such that α |= head(ρ). Therefore, A is a model.
To complete the proof, let M be a finite minimal model of D∪Σ. As just proved, there exists

a well-supported finite model M′ ⊆M. By minimality of M, the model M′ must be equal to M.
Therefore, M is a well-supported finite model.

Proof of Theorem 4.3
We have to prove that for each M ∈ wsfmods(Dc,Σc

a), there exist M′ ∈ wsfmods(Dc,Σc) and a
homomorphism h′ such that h′(M′)⊆M. Indeed, by hypothesis, there exists a homomorphism h
such that h(q)⊆M′, and so (h′ ◦h)(q)⊆M.

Let M ∈ wsfmods(Dc,Σc
a), and let (α1, . . . ,αm) be a well-supported ordering of M, and let

(〈α1〉, . . . ,〈αm〉) be a propagation ordering of (α1, . . . ,αm). If there exists a join rule ρ ∈ Σc

satisfied by M with a null or a constant t in the join variables, then we consider the set of join
atoms in the body of ρ w.r.t. the term t, say A ⊆M. First, we substitute a term t of some α ∈ A
in position l, with the corresponding term 〈t, j,k〉 of 〈α〉, that can be considered as a fresh null.
This new atom is denoted by α ′, so that α ′[l] = 〈t, j,k〉. Then, for each αi ∈M such that 〈αi〉[l] =
〈t, j,k〉, for some position l, we set α ′i [l] = 〈t, j,k〉. Otherwise, α ′i [l] = αi[l]. In this way, we build
an instance M′ = {α ′ : α ∈M} of Σ, and a homomorphism h′ such that h′(〈t, j,k〉) = t, for each
introduced fresh null 〈t, j,k〉 to substitute t. By construction, it holds that h′(α ′) = α , so that
h′(M′) = M. Note that, by construction, M′ is a well-supported finite instance of Dc∪Σc.

Therefore, it remains to prove that M′ is a model of Dc ∪Σc. By contradiction, suppose that
M′ is not a model. Hence, there exists a rule ρ ∈ Σc such that M′ |= body(ρ), and M′ 6|= head(ρ).
We distinguish two cases.

(i) First, suppose that ρ is not a join rule. Then, there exists a safe substitution ς̂ , mapping each
variable in the atoms of ρ into a different null, so that ς̂(ρ)c ∈ Σc

a, as it is not a harmless
rule of Shy. By hypothesis, M′ |= body(ρ), so that there exists a homomorphism h′′ such that
h′′(body(ρ)) ⊆ M′. Therefore, h′(h′′(body(ρ))) ⊆ h′(M′) = M, and so M |= body(ρ). Hence,
also M |= body(ς̂(ρ)c). As M is a model of Σc

a, then M |= head(ς̂(ρ)c). Therefore, there ex-
ists a homomorphism h′′′ such that h′′′(head(ς̂(ρ)c)) = α j, for some j ∈ {1, . . . ,m}. Hence,
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α j ∈ M. Therefore, α ′j ∈ M′. Moreover, α ′j |= head(ρ), as h′(α ′j) = α j |= head(ρ). Therefore,
M′ |= head(ρ).

(ii) Now, suppose that ρ is a join rule. Since, by hypothesis, M′ |= body(ρ), then, the join variables
in the body of ρ are instantiated by the same null, as Dc ∪Σc is a constant-free logical theory.
However, by construction of M, it is not possible that the same term comes from an instantiation
of two different existential variables, since we replaced each such instantiation with a fresh null
in at least one joined term.

Therefore, M′ is a well-supported finite model of Dc∪Σc.


