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Appendix A Proof of Theorem 1

Recall that propositional programs consist of clauses of the form p ← L1, . . . , Ln, where

each Li is either a propositional variable or the negation of a propositional variable; the

Li are called literals, negative if they have negation and positive otherwise. As hinted in

Section 3, we need to consider propositional programs with a possibly countably infinite

number of clauses, as this is the case with the ground instantiation of a higher-order

program. Moreover, we must allow a positive literal Li to also be one of the constants

true and false. The reason for this is that in the ground instantiation of an H program,

there may exist ground expressions of the form (E1 ≈ E2) in the bodies of clauses.

These have specific meanings under the semantics of Section 5 and can not be treated as

propositional variables. In the case where the two expressions E1 and E2 are syntactically

identical, the expression (E1 ≈ E2) will be treated as the constant true (i.e., it is assumed

that I((E1 ≈ E2)) = true for every interpretation I of the ground instantiation), and

otherwise as the constant false.

We use, throughout all sections of the Appendix, the standard representation of partial

interpretations of propositional programs by 〈T, F 〉, where T and F are disjoint subsets of

the Herbrand base BP of a propositional program P (i.e., the set of propositional variables

appearing in P) denoting the sets of propositional variables considered to be true and

false, respectively, in the interpretation. Naturally, 〈T, F 〉 is a total interpretation if

T ∪ F = BP.

The truth ordering ≤ and Fitting ordering � of interpretations can be defined in two

equivalent ways:

Definition 20

If I = 〈T, F 〉 and I ′ = 〈T ′, F ′〉 are two partial interpretations of a propositional program

P then we say that I ≤ I ′ if T ⊆ T ′ and F ′ ⊆ F , or, equivalently, if I(p) ≤ I ′(p) for

every propositional variable p of P. Moreover, we say that I � I ′ if T ⊆ T ′ and F ⊆ F ′,

or, equivalently, if I(p) � I ′(p) for every propositional variable p of P.

A model M of a propositional program is as usual considered to be ≤-minimal (respec-
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tively, �-minimal) if there does not exist a different model N of P, such that N ≤ M

(respectively, N � M).

Theorem 1

Let P be a program and let Gr(P) be its ground instantiation. Also let M be a partial

interpretation of Gr(P) and letM be the Herbrand interpretation of P, such that vM(A) =

M(A) for every A ∈ UP,o. Then,M is a Herbrand model of P if and only if M is a model

of Gr(P). Moreover, M is ≤-minimal (respectively, �-minimal) if and only if M is ≤-

minimal (respectively, �-minimal).

Proof

Step 1 M is a model of Gr(P) ⇒ M is a Herbrand model of P: For every Herbrand

state s of P there exists a ground substitution θ such that θ(V) = s(V), and therefore

s(V) = Jθ(V)KM,s′ , for all states s′ and variables V in P. Also, for every clause A ←

L1, . . . , Lm in P there exists a respective ground instance Aθ ← L1θ, . . . , Lmθ in Gr(P).

As M is a model of Gr(P), M(Aθ) ≥ min{M(L1θ), . . . ,M(Lmθ)}. By assumption,

vM(Aθ) = M(Aθ) and vM(Liθ) = M(Liθ) for all i ≤ m. Moreover, it is easy to see (by

a trivial induction on the structure of the expression) that Aθ = JAKM,s, which implies

that vM(Aθ) = vM(JAKM,s). Similarly, vM(Liθ) = vM(JLiKM,s), for all i ≤ m. It

follows immediately that vM(JAKM,s) ≥ min{vM(JL1KM,s), . . . , vM(JLmKM,s)}, which

implies thatM is a model of P.

Step 2 M is a Herbrand model of P ⇒ M is a model of Gr(P): Every clause in Gr(P)

is a ground instance of a clause A ← L1, . . . , Lm in P and is therefore of the form

Aθ ← L1θ, . . . , Lmθ for some ground substitution θ. Consider a Herbrand state s,

such that s(V) = θ(V) for every variable V in P. BecauseM is a model of P, we have

that vM(JAKM,s) ≥ min{vM(JL1KM,s), . . . , vM(JLmKM,s)}. Again, it is easy to see that

Aθ = JAKM,s and therefore vM(Aθ) = vM(JAKM,s). Similarly, vM(Liθ) = vM(JLiKM,s)

for all i ≤ m. Additionally, vM(Aθ) = M(Aθ) and vM(Liθ) = M(Liθ) for all i ≤ m, so

M(Aθ) ≥ min{M(L1θ), . . . ,M(Lmθ)}, which implies that M is a model of Gr(P).

Step 3 M is minimal ⇒ M is minimal: Assume there exists a model N of P, distinct

fromM, such thatN ≤ M (respectively,N � M). Then we can construct an interpre-

tationN for Gr(P) such that for every ground atom A,N(A) = vN (A). It is obvious that

N ≤ M (respectively, N � M), since N(A) = vN (A) ≤ vM(A) = M(A) (respectively,

vN (A) � vM(A)). Also, N is distinct from M , since N(B) = vN (B) 6= vM(B) = M(B)

for at least one ground atom B. As we showed in Step 2, the fact that N is a model

of P implies that N is a model of Gr(P), which is of course a contradiction, since M

is a ≤-minimal (respectively, �-minimal) model of Gr(P). Therefore, M must be a

≤-minimal (respectively, �-minimal) model of P.

Step 4 M is minimal ⇒ M is minimal: By the reverse of the argument used in Step

3: Assume there exists a model N of Gr(P), distinct from M , such that N ≤ M

(respectively, N � M). Then we can construct an interpretation N for P such that

for every ground atom A, N(A) = vN (A). It is obvious that N ≤ M (respectively,

N � M), since vN (A) = N(A) ≤ M(A) = vM(A) (respectively, N(A) � M(A)). Also,

N is distinct from M, since their valuation functions are distinct. As we showed in

Step 1, the fact that N is a model of Gr(P) implies that N is a model of P, which is

of course a contradiction, sinceM is a ≤-minimal (respectively, �-minimal) model of

P. Therefore, M must be a ≤-minimal (respectively, �-minimal) model of Gr(P).
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Appendix B Proof of Lemma 1

For the proof of Lemma 1, which we present in this appendix, we rely on the method

of (Przymusinska and Przymusinski 1990) for the construction of the well-founded model.

We first give the necessary definitions from (Przymusinska and Przymusinski 1990).

Definition 21

Let P be a propositional program and let J be an interpretation of P. The operator ΘJ(·)

on the set of interpretations of P is defined as follows: for every interpretation I and every

propositional variable p of P,

ΘJ(I)(p) =



































true, there exists a clause p← L1, . . . , Ln in P s.t. for all i ≤ n,

either J(Li) = true or Li is a positive literal and I(Li) = true;

false, for all clauses p← L1, . . . , Ln in P there exists an i ≤ n, s.t.

either J(Li) = false or Li is a positive literal and I(Li) = false;

0, otherwise.

Moreover we define the following sequence of interpretations:

Θ↑0
J = 〈T0, F0〉 = 〈∅, BP〉

Θ
↑(n+1)
J = 〈Tn+1, Fn+1〉 = ΘJ(Θ

↑n
J )

Θ↑ω
J = 〈Tω, Fω〉 = 〈

⋃

n<ω Tβ ,
⋂

n<ω Fβ〉

It is shown in (Przymusinska and Przymusinski 1990) that, for any interpretation J , the

operator ΘJ has a unique least fixed-point given by Θ↑ω
J .

Definition 22

Let P be a propositional program. For every countable ordinal α ≤ γ, we define the

interpretation Mα as follows:

M0 = 〈T0, F0〉 = 〈∅, ∅〉

Mα+1 = 〈Tα+1, Fα+1〉 = Θ↑ω
Mα

, for a successor ordinal α+ 1

Mα = 〈Tα, Fα〉 = 〈
⋃

β<α Tβ ,
⋃

β<α Fβ〉, for a limit ordinal α

Again from (Przymusinska and Przymusinski 1990), there exists the least countable or-

dinal λ, such that Mλ = Θ↑ω
Mλ

and Mλ coincides with the well-founded model MP of the

propositional program P.

We now present the proof of Lemma 1.

Lemma 1

The Herbrand interpretationMP of the program of Example 4 is not extensional.

Proof

We repeat here the program of Example 4 for the reader’s convenience:

s Q ← Q (s Q)

p R ← R

q R ← ∼(w R)

w R ← ∼R
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Recall that the predicate variable Q is of type o → o and the predicate variable R is of

type o. The ground instantiation of the above program is infinite, as so:

s p ← p (s p)

s q ← q (s q)

s w ← w (s w)

p (s p) ← (s p)

p (s q) ← (s q)

p (s w) ← (s w)

q (s p) ← ∼(w (s p))

w (s p) ← ∼(s p)

q (s q) ← ∼(w (s q))

w (s q) ← ∼(s q)

q (s w) ← ∼(w (s w))

w (s w) ← ∼(s w)

. . .

The well-founded model MGr(P) of the above (infinite) propositional program is the val-

uation function of MP. It has already been argued in Section 6 and Section 8, that

MGr(P)(s p) 6= MGr(P)(s q) and this should be obvious to the reader who is familiar

with the well-founded model semantics; however, for reasons of completeness, we present

a formal argument in the second part of this proof. In the same sections, we claimed

that this is despite the fact that p ∼=MGr(P),o→o q, which we will immediately proceed to

prove. Of course, by Definitions 17 and 18, the facts that MGr(P)(s p) 6= MGr(P)(s q) and

p ∼=MGr(P),o→o q, renderMP not extensional.

First, we show that p ∼=MGr(P),o→o q, i.e. that for all A,A
′ ∈ UP,o such that A ∼=MGr(P),o A′,

p A ∼=MGr(P),o q A′ holds. By definition MGr(P) is a fixed-point of the operator ΘMGr(P)
(·),

therefore for any ground atom B we have that MGr(P)(B) equals to true, if there ex-

ists a clause B ← L1, . . . , Ln in Gr(P), such that MGr(P)(Li) = true for all i ≤ n; it

equals to false if for every clause B ← L1, . . . , Ln in Gr(P), we have that MGr(P)(Li) =

false for at least one i ≤ n; and it equals to 0 otherwise. Observe that there ex-

ists only one clause in Gr(P) such that p A is the head of the clause, in particular

it is the ground instance p A ← A of the clause p R ← R of P. This suggests that

MGr(P)(p A) = MGr(P)(A) (1). Similarly, the ground instance q A′ ← ∼(w A′) of the

clause q R ← ∼(w R) is the only clause in Gr(P) with q A′ as its head atom and from

this we can infer that MGr(P)(q A′) = MGr(P)(∼(w A′)) = ¬MGr(P)(w A′) (2). Finally,

the only clause in Gr(P), such that w A′ is the head of the clause, is the ground in-

stance w A′ ← ∼A′ of the clause w R ← ∼R of P, which implies that MGr(P)(w A′) =

MGr(P)(∼A
′) = ¬MGr(P)(A

′) (3). By (2) and (3) we have MGr(P)(q A′) = MGr(P)(A
′), and,

in conjunction with (1), thatMGr(P)(p A) = MGr(P)(q A′), because A ∼=MGr(P),o A′ implies,

by Definition 17, thatMGr(P)(A) = MGr(P)(A
′). Therefore, we also have p A ∼=MGr(P),o q A′

and, in consequence, p ∼=MGr(P),o→o q.

For the second part, we show that MGr(P)(s p) 6= MGr(P)(s q). We do this in two steps;

first we show that MGr(P)(s p) = false and then that MGr(P)(s q) = 0.

For the first step, it suffices to show that M1(s p) = Θ↑ω
M0

(s p) = false. For this, we

prove that Θ↑n
M0

(s p) = false and Θ↑n
M0

(p (s p)) = false, for all n < ω, by an induction
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on n. The basis case is trivial, as Θ↑0
M0

= 〈∅, UP,o〉, assigns the value false to every atom.

For the induction step, we show the statement for n + 1 assuming that it holds for n.

We see that there exists only one clause in Gr(P) such that s p is the head of the clause;

this is the ground instance s p ← p (s p) of the clause s Q ← Q (s Q) of P. By the

induction hypothesis, we have that Θ↑n
M0

(p (s p)) = false, therefore Θ
↑(n+1)
M0

(s p) =

false. Similarly, the only clause in Gr(P) with p (s p) as the head of the clause is

the ground instance p (s p) ← (s p) of the clause p R ← R of P. By the induction

hypothesis, we have that Θ↑n
M0

(s p) = false, therefore Θ
↑(n+1)
M0

(p (s p)) = false.

For the second step, we perform an induction on α, during which we simultaneously

show that Mα(s q) = 0, Mα(q (s q)) = 0 and Mα(w (s q)) = 0, for all countable

ordinals α. The basis case is trivial, as M0 = 〈∅, ∅〉 assigns the value 0 to all atoms. For

the induction step, we first prove the statement for a successor ordinal α+1, assuming that

it holds for all countable ordinals up to α. Indeed, there exists exactly one clause in Gr(P)

with w (s q) as its head atom, in particular the ground instance w (s q) ← ∼(s q)

of the clause q R ← ∼(w R). As ∼(s q) is a negative literal, for every n < ω the

value of Θ
↑(n+1)
Mα

(w (s q)) is defined by Mα(∼(s q)). By the induction hypothesis, we

have Mα(s q) = Mα(∼(s q)) = 0, therefore it follows that Θ
↑(n+1)
Mα

(w (s q)) = 0 and,

because this holds for every n < ω, that Mα+1(w (s q)) = 0. Moreover, the ground

instance q (s q) ← ∼(w (s q)) of the clause q R ← ∼(w R) is the only clause in

Gr(P) with q (s q) as its head atom. Again, ∼(w (s q)) is a negative literal and so

for every n < ω the value of Θ
↑(n+1)
Mα

(q (s q)) only depends on Mα(∼(w (s q))). By

the induction hypothesis, we have Mα(w (s q)) = Mα(∼(w (s q))) = 0, therefore

it follows that Θ
↑(n+1)
Mα

(q (s q)) = 0. Since this holds for every n < ω, we also have

that Mα+1(q (s q)) = 0. Finally, there exists only one clause in Gr(P) such that s

q is the head of the clause, in particular the ground instance s q ← q (s q) of the

clause s Q ← Q (s Q) of P. We have already shown that Θ
↑(n+1)
Mα

(q (s q)) = 0 for all

n < ω; moreover, by the induction hypothesis, Mα(q (s q)) = 0. Consequently, for all

n < ω, Θ
↑(n+2)
Mα

(s q) = 0 and thus Mα+1(s q) = 0. It remains to show Mα(s q) = 0,

Mα(q (s q)) = 0 and Mα(w (s q)) = 0 for a limit ordinal α. In this case, we have that

Mα = 〈
⋃

β<α Tβ ,
⋃

β<α Fβ〉. By the induction hypothesis, Mβ(s q) = 0 for all β < α,

which means that s q 6∈ Tβ and s q 6∈ Fβ . In other words, s q 6∈
⋃

β<α Tβ and s q 6∈
⋃

β<α Fβ , therefore Mα(s q) = 0. In the same way we can show that Mα(q (s q)) =

0 and Mα(w (s q)) = 0. This concludes the induction and so we have proven that

MGr(P)(s q) = 0.

Appendix C Proof of Theorem 2

Before we proceed with the proof of Theorem 2, we recall some necessary definitions. Note

that the proof makes use of a fixed-point characterization of the perfect model semantics

given in (Przymusinska and Przymusinski 1990), rather than the more traditional defini-

tion of (Przymusinski 1988). The following definition of the local stratification of possibly

infinite propositional programs is adapted to allow for the presence of expressions of the

form (E1 ≈ E2).

Definition 23

A propositional program P is called locally stratified if and only if it is possible to decom-
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pose the Herbrand base BP of P into disjoint sets (called strata) S1, S2, . . . , Sα, . . . , α < γ,

where γ is a countable ordinal, such that for every clause H← A1, . . . ,Am,∼B1, . . . ,∼Bn

in P, we have that for every i ≤ m, stratum(Ai) ≤ stratum(H) and for every i ≤ n,

stratum(Bi) < stratum(H), where stratum is a function such that stratum(C) = β, if the

propositional variable C ∈ BP belongs to Sβ and stratum(C) = 0, if C 6∈ BP and is a

constant (equivalently, of the form (E1 ≈ E2)). Any decomposition of the described form

is called a local stratification of P.

In (Przymusinska and Przymusinski 1990), for any interpretation J , the operator ΨJ is

defined and shown to have a unique least fixed-point given by Ψ↑ω
J of the next definition.

This is then used to give an iterated fixed-point characterization of the perfect model of

a locally stratified program.

Definition 24

Let P be a propositional program and let J be an interpretation of P. The opera-

tor ΨJ : 2BP → 2BP is defined as follows: for every I ⊆ BP, ΨJ(I) = {p ∈ BP |

there exists a clause p ← L1, . . . , Ln in P such that, for all i ≤ n, either J(Li) = true or

Li ∈ I}. Moreover we define the following sequence:

Ψ↑0
J = ∅

Ψ
↑(n+1)
J = ΨJ(Ψ

↑n
J )

Ψ↑ω
J =

⋃

n<ω Ψ↑n
J

We follow the usual convention of identifying a subset of the Herbrand base with a total

(two-valued) interpretation of the program and use the two notions interchangeably.

E.g., a set Ψ↑n
J of the above sequence is considered to be equivalent to the interpretation

〈Ψ↑n
J , BP −Ψ↑n

J 〉 and p ∈ Ψ↑n
J is considered to be equivalent to Ψ↑n

J (p) = true.

Given a local stratification S1, S2, . . . , Sα, . . ., α < γ, of a propositional program P, we

define the sets Bα =
⋃

β<α Sβ for every countable ordinal α ≤ γ. Clearly, BP = Bγ . Then

the perfect model of P can be constructed (Przymusinska and Przymusinski 1990) as the

last interpretation Nγ in an �-increasing sequence of partial interpretations of P:

Definition 25

Let P be a propositional program and let S1, S2, . . . , Sα, . . . , α < γ, where γ is a countable

ordinal, be a local stratification of P. For every countable ordinal α ≤ γ, we define the

interpretation Nα as follows:

N0 = 〈T0, F0〉 = 〈∅, ∅〉

Nα+1 = 〈Tα+1, Fα+1〉 = 〈Ψ
↑ω
Nα

,Bα+1 −Ψ↑ω
Nα
〉, for a successor ordinal α+ 1

Nα = 〈Tα, Fα〉 = 〈
⋃

β<α Tβ ,
⋃

β<α Fβ〉, for a limit ordinal α

Theorem 3 (Przymusinska and Przymusinski 1990)

Let P be a propositional program. The sequence N0, N1, . . . , Nα, . . . , Nγ is �-increasing.

Moreover, Nγ coincides with the perfect model NP of P.

The next lemma and its following corollary are the basis for our proof of Theorem 2.

Lemma 2

Let P be an H program. If P is stratified then the ground instantiation Gr(P) of P is

locally stratified.
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Proof

Consider a decomposition S1, . . . , Sr of the set of predicate constants of P such that the

requirements of Definition 19 are satisfied. This defines a decomposition S′
1, . . . , S

′
r of

UP,o, which is also the Herbrand base of Gr(P), as follows:

S′
i = {A ∈ UP,o | the leftmost predicate constant of A belongs to Si}

It is easy to check that S′
1, . . . , S

′
r corresponds to a local stratification of Gr(P).

An immediate result of the above lemma is that the model NP can be defined for every

stratified program of H:

Corollary 1

Let P be an H program. If P is stratified, then the perfect model NP of P exists and

coincides with its well-founded modelMP.

Proof

By Lemma 2, if P is stratified then Gr(P) is locally stratified. Therefore the unique

perfect model NGr(P) of Gr(P) exists (Przymusinski 1988) and NP is defined. Moreover,

the perfect model of a locally stratified propositional program, which is the valuation

function of NP, coincides with its well-founded model MGr(P) (Przymusinski 1988), i.e.

the valuation function ofMP. In other words, in this case NP andMP coincide, because

they have the same valuation function.

Theorem 2

The well-founded modelMP of a stratified program P is extensional.

Proof

By Corollary 1, if P is stratified then MP coincides with NP. Therefore, it suffices to

show that NP is extensional and for this we rely upon the constructive definition of

NGr(P) from (Przymusinska and Przymusinski 1990) presented above.

Consider a stratification S1, . . . , Sr of the set of predicate constants of P. As argued in

the proof of Lemma 2, the following decomposition S′
1, . . . , S

′
r of UP,o:

S′
i = {A ∈ UP,o | the leftmost predicate constant of A belongs to Si}

corresponds to a local stratification of Gr(P). Therefore, whenever a ground atom A

begins with a predicate constant p, we will have stratum(A) = stratum(p). Moreover,

by Theorem 3, NGr(P) = Nr.

Since the valuation function ofNP is NGr(P), essentially we need to show that E ∼=NGr(P),ρ

E, for every ground expression E of every argument type ρ. We perform an induction on

the structure of ρ. For the base types ι and o the statement holds by definition. For the

induction step, we prove the statement for a predicate type π = ρ1 → · · · → ρm → o,

assuming that it holds for all types simpler than π (i.e., for the types ρ1, . . . , ρm, o and,

recursively, the types that are simpler than ρ1, . . . , ρm). Let A be any atom of the following

form: A is headed by a predicate constant p and all variables in vars(A) are of types

simpler than π. Let θ, θ′ be ground substitutions, such that vars(A) ⊆ dom(θ), dom(θ′)

and θ(V) ∼=NGr(P),ρ θ′(V) for any V : ρ in vars(A). We claim it suffices to show the following

two properties P1(α) and P2(α), for all finite ordinals (i.e., natural numbers) α:
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P1(α): If Nα(Aθ) = true then NGr(P)(Aθ
′) = true.

P2(α): If Nα(Aθ) = false then NGr(P)(Aθ
′) = false.

To see why proving the above properties is enough to establish that E ∼=NGr(P),π E, observe

the following: first of all, we assumed that π is of the form ρ1 → · · · → ρm → o, so if

V1 : ρ1, . . . ,Vm : ρm are variables, then EV1 · · · Vm is an atom of the form described

above. As NGr(P) = Nr, if NGr(P)(E θ(V1) · · · θ(Vm)) = Nr(E θ(V1) · · · θ(Vm)) = true and

property P1(r) holds, then we can infer that NGr(P)(E θ′(V1) · · · θ
′(Vm)) = true. Because

the relations ∼=NGr(P),ρi
are symmetric, θ and θ′ are interchangeable. Therefore the same

argument can be used to infer the reverse implication, i.e. NGr(P)(E θ′(V1) · · · θ
′(Vm)) =

true ⇒ NGr(P)(E θ(V1) · · · θ(Vm)) = true, thus resulting to an equivalence. If P2(r) holds,

the analogous equivalence can be shown for the value false in the same way and so it

follows that E ∼=NGr(P),π E. Finally, r is determined by the stratification of the higher-order

program and is therefore finite, so we only need to prove properties P1(α) and P2(α) for

finite ordinals.

We will proceed by a second induction on α.

Second Induction Basis (α = 0) We have N0 = 〈∅, ∅〉. As this interpretation does

not assign the value true or the value false to any atom, both properties P1(0) and P2(0)

hold vacuously.

Second Induction Step (α + 1) We first show P1(α + 1). We have that Nα+1 =

〈Ψ↑ω
Nα

,Bα+1−Ψ↑ω
Nα
〉; observe that Ψ↑ω

Nα
(Aθ) = true if and only if there exists some n < ω

for which Ψ↑n
Nα

(Aθ) = true. Therefore, in order to prove P1(α + 1), we first need to

perform a third induction on n and prove the following property:

P ′
1(α+ 1, n): If Ψ↑n

Nα
(Aθ) = true then NGr(P)(Aθ

′) = true.

Third Induction Basis (n = 0) Property P ′
1(α+1, 0) holds vacuously, since Ψ↑0

Mα
= ∅,

i.e. it does not assign the value true to any atom.

Third Induction Step (n+1) We now show property P ′
1(α+1, n+1), assuming that

P ′
1(α + 1, n) holds. If Ψ

↑(n+1)
Nα

(Aθ) = true, then there exists a clause Aθ ← L1, . . . , Lk in

Gr(P) such that, for each i ≤ k, eitherNα(Li) = true or Li is an atom and Ψ↑n
Nα

(Li) = true.

This clause is a ground instance of a clause pV1 · · · Vm ← K1, . . . ,Kk in the higher-order

program and there exists a substitution θ′′, such that (pV1 · · · Vm)θ′′ = A and, for any

variable V 6∈ {V1, . . . ,Vm} appearing in the body of the clause, θ′′(V) is an appropriate

ground term, so that Li = Kiθ
′′θ for all i ≤ k. Observe that the variables appearing in

the clause (pV1 · · · Vm)θ′′ ← K1θ
′′, . . . ,Kkθ

′′ are exactly the variables appearing in A

and they are all of types simpler than π. We distinguish the following cases for each Kiθ
′′,

i ≤ k:

1. Kiθ
′′ is of the form (E1 ≈ E2): As remarked in Appendix A, an expression of the form

(E1 ≈ E2) has the same value in any interpretation. If Nα(Kiθ
′′θ) = Ψ↑n

Nα
(Kiθ

′′θ) = true,

by definition we have E1θ = E2θ. Since E1 and E2 are expressions of type ι, all variables

in E1 and E2 are also of type ι and, because ∼=NGr(P),ι is defined as equality, we will have

E1θ = E1θ
′ and E2θ = E2θ

′. Therefore E1θ
′ = E2θ

′ and NGr(P)(Kiθ
′′θ′) = true will also

hold.

2. Kiθ
′′ is an atom and starts with a predicate constant: As we observed, the variables

appearing in Kiθ
′′ are of types simpler than π. Because Kiθ

′′θ is an atom, either Nα(Li) =

Nα(Kiθ
′′θ) = true or Ψ↑n

Nα
(Li) = Ψ↑n

Nα
(Kiθ

′′θ) = true may hold. In the former case,
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by the second induction hypothesis we can apply property P1(α) and it follows that

NGr(P)(Kiθ
′′θ′) = true. Similarly, in the latter case, the same conclusion can be reached

by the third induction hypothesis and property P ′
1(α+ 1, n).

3. Kiθ
′′ is an atom and starts with a predicate variable: As in the previous case, it may be

Nα(Li) = Nα(Kiθ
′′θ) = true or Ψ↑n

Nα
(Li) = Ψ↑n

Nα
(Kiθ

′′θ) = true. Let Kiθ
′′ = VE1 · · · Em′

for some V ∈ vars(A). Then B = θ(V)E1 · · · Em′ is an atom that begins with a predicate

constant and, by vars(Kiθ
′′) ⊆ vars(A), all of the variables of B are of types simpler

than π. Hence, by the second induction hypothesis, B satisfies property P1(α) and if

Nα(Kiθ
′′θ) = Nα(Bθ) = true then it follows that NGr(P)(Bθ

′) = true (1). Similarly, by

the third induction hypothesis, B also satisfies property P ′
1(α+1, n), so if Ψ↑n

Nα
(Kiθ

′′θ) =

Ψ↑n
Nα

(Bθ) = true, then the same conclusion, that NGr(P)(Bθ
′) = true (1), is reached

again. Observe that the types of all arguments of θ(V), i.e. the types of Ejθ
′ for all

j ≤ m′, are simpler than the type of V and consequently, since V ∈ vars(A), simpler

than π. For each j ≤ m′, let ρj be the type of Ej and let ρ be the type of V; by

the first induction hypothesis, Ejθ
′ ∼=NGr(P),ρj

Ejθ
′. Moreover, by assumption we have

that θ(V) ∼=NGr(P),ρ θ′(V). Then, by definition and by (1) NGr(P)(θ(V)E1θ
′ · · · Em′θ′) =

NGr(P)(θ
′(V)E1θ

′ · · · Em′θ′) = NGr(P)(Kiθ
′′θ′) = true.

4. Kiθ
′′ is a negative literal and its atom starts with a predicate constant: Let Kiθ

′′ be of

the form ∼B, where B is an atom that starts with a predicate constant. It is Nα(∼Bθ) =

Nα(Kiθ
′′θ) = Nα(Li) = true and therefore Nα(Bθ) = false. Moreover, by vars(Kiθ

′′) ⊆

vars(A), all the variables of B are of types simpler than π, so we can apply the second

induction hypothesis, in particular property P2(α), to B and conclude that NGr(P)(Bθ
′) =

false. Then NGr(P)(∼Bθ
′) = NGr(P)(Kiθ

′′θ′) = true.

5. Kiθ
′′ is a negative literal and its atom starts with a predicate variable: Let Kiθ

′′ =

∼(VE1 · · · Em′) for some V ∈ vars(A). Then B = θ(V)E1 · · · Em′ is an atom that begins

with a predicate constant and, by vars(Kiθ
′′) ⊆ vars(A), all of the variables of B are

of types simpler than π. Also, Nα(∼Bθ) = Nα(Kiθ
′′θ) = Nα(Li) = true and therefore

Nα(Bθ) = false. Hence, by the second induction hypothesis and in particular property

P2(α), it follows that NGr(P)(Bθ
′) = NGr(P)(θ(V)E1θ

′ · · · Em′θ′) = false (1). Observe that

the types of all arguments of θ(V), i.e. the types of Ejθ
′ for all j ≤ m′, are simpler than

the type of V and consequently, since V ∈ vars(A), simpler than π. For each j ≤ m′,

let ρj be the type of Ej and let ρ be the type of V; by the first induction hypothesis,

Ejθ
′ ∼=NGr(P),ρj

Ejθ
′. Moreover, by assumption we have that θ(V) ∼=NGr(P),ρ θ′(V). Then, by

definition and by (1), NGr(P)(θ(V)E1θ
′ · · · Em′θ′) = NGr(P)(θ

′(V)E1θ
′ · · · Em′θ′) = false.

Obviously, this makes NGr(P)(∼(θ
′(V)E1θ

′ · · · Em′θ′)) = NGr(P)(Kiθ
′′θ′) = true.

We have shown that, for each i ≤ k, NGr(P)(Kiθ
′′θ′) = true. Since the clause Aθ′ ←

K1θ
′′θ′, . . . ,Kkθ

′′θ′ is in Gr(P) and NGr(P) is a model of Gr(P), we can conclude that

NGr(P)(Aθ
′) = true.

This concludes the proof for P ′
1(α+1, n). Notice that property P ′

1(α+1, n) immediately

implies property P1(α+1): as mentioned before, Nα+1(Aθ) = Ψ↑ω
Nα

(Aθ) = true if and only

if there exists some n < ω for which Ψ↑n
Nα

(Aθ) = true and then NGr(P)(Aθ
′) = true follows

from property P ′
1(α+1, n). It remains to prove property P2(α+1). Observe that the atoms

Aθ and Aθ′ both start with the same predicate constant p and recall that we have chosen

a local stratification for Gr(P), such that stratum(Aθ) = stratum(Aθ′) = stratum(p).

Moreover, we have that Nα+1 = 〈Ψ↑ω
Nα

,Bα+1 − Ψ↑ω
Nα
〉, so if Nα+1(Aθ) = false, it follows
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that Aθ ∈ Bα+1. Because stratum(Aθ) = stratum(Aθ′), it must also be Aθ′ ∈ Bα+1,

which implies that Nα+1(Aθ
′) can be either true (if Aθ′ ∈ Ψ↑ω

Nα
) or false (if Aθ′ 6∈ Ψ↑ω

Nα
),

but not 0. For the sake of contradiction, assume that Nα+1(Aθ
′) = true. As the relations

∼=NGr(P),ρi
are symmetric, θ and θ′ are interchangeable, so property P1(α+1) applies and

yields NGr(P)(Aθ) = true. Because (by Theorem 3) Nα+1 � NGr(P), this contradicts our

initial assumption that Nα+1(Aθ) = false. Therefore, it must be Nα+1(Aθ
′) = false and

so, again by Nα+1 � NGr(P), it follows that NGr(P)(Aθ
′) = false.


