
1

Online appendix for the paper

Hybrid Conditional Planning using
Answer Set Programming

published in Theory and Practice of Logic Programming

Ibrahim Faruk Yalciner, Ahmed Nouman, Volkan Patoglu, and Esra Erdem
Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey

{fyalciner,ahmednouman,vpatoglu,esraerdem}@sabanciuniv.edu

submitted 27 April 2017; revised 18 July 2017; accepted 31 August 2017

Appendix A ASP Programs

We consider ASP programs (i.e., nondisjunctive HEX programs (Eiter et al. 2005)) that
consist of rules of the form

Head ← A1, . . . , Am, not Am+1, . . . , not An

where n ≥ m ≥ 0, Head is an atom or ⊥, and each Ai is an atom or an external atom.
HEX programs can be extended by allowing classical negation ¬ in front of atoms. A rule
is called a fact if m = n = 0 and a constraint if Head is ⊥.

An external atom is an expression of the form &g [y1, . . . , yk](x1, . . . , xl) where y1, . . . , yk
and x1, . . . , xl are two lists of terms (called input and output lists, respectively), and &g is
an external predicate name. Intuitively, an external atom provides a way for deciding the
truth value of an output tuple depending on the extension of a set of input predicates. Ex-
ternal atoms allow us to embed results of external computations into ASP programs. They
are usually implemented in a programming language of the user’s choice, like C++. For
instance, the following rule

⊥ ← at(r, x1, y1, t), goto(r, x2, y2, t),

not &path exists[x1, y1, x2, y2]()

is used to express that, at any step t of the plan, a robot r cannot move from (x1, y1) to
(x2, y2) if there is no collision-free trajectory between them. Here collision check is done
by the external predicate &path exists implemented in C++, utilizing the bidirectional RRT
(Rapidly Exploring Random Trees) (Kuffner Jr and LaValle 2000) as in the OMPL (Sucan
et al. 2012) library.

In addition to the classical negation, ASP considers another sort of negation: “negation
as failure” (denoted not, and often called “default negation”). Intuitively, ¬p expresses that
we know that p does not hold, whereas not p expresses that we do not know that p holds.
This second sort of negation empowers ASP to express our assumptions (called “defaults”)
when we do not have complete knowledge. For instance, we can express that “every object
o in a kitchen is assumed to be on the counter unless they are known to be on the table” by

2

the following ASP rule

at(o,Counter, t)← not at(o,Table, t).

In ASP, we use special constructs to express nondeterministic choices, cardinality con-
straints, and optimization statements. For instance, the following ASP rule (called a ‘choice
rule”)

{sense(at(o), t)}
contains the choice expression sense(at(o), t) in the head. For every object o and time
step t, this choice expression describes a subset of the set {sense(at(o), t)}. Therefore, this
rule expresses that, for every object o and time step t, the action of sensing that the location
of o may occur at t.

The following ASP constraint (called a “cardinality constraint”)

← 2{atRob(l, t) : robloc(l)}

contains the cardinality expression 2{atRob(l, t) : robloc(l)} in the body. For every time
step t, this expression describes subsets of the set {atRob(l, t) : robloc(l)} whose cardi-
nality is at least 2. Therefore, this constraint is used to ensure that, for every time step t,
the robot cannot be at two different locations at t.

The following ASP expression (called an “optimization statement”)

#minimize [cost(r, c, t) : robot(r) = c] (A1)

is used to minimize the sum of all costs c of robotic actions performed in a plan, where
costs of actions performed by robot r at time step t are defined by atoms of the form
cost(r, c, t).

A version of external atoms (where predicate names are not passed as input arguments),
and all the constructs described above are supported by the ASP solver CLINGO used as
part of HCP-ASP. For more information about the input language of CLINGO, we refer
the reader to CLINGO’s manual: https://sourceforge.net/projects/potassco/
files/guide/2.0/guide-2.0.pdf (June 18, 2017).

Appendix B Hybrid Classical Planning in ASP

Classical planning considers complete knowledge (under full observability) over a dynamic
domain. A dynamic domain is defined by means of fluent constants and (actuation) ac-
tion constants: A world state can be characterized by an interpretation of fluent constants,
whereas an action is characterized by an interpretation of action constants. Then, dynamic
domains under full observability can be modeled as transition systems — directed graphs
where nodes denote the world states of the domain, and edges denote the transitions be-
tween these states caused by occurrences or nonoccurrences of actions in that domain. Note
that such transition systems respect the Markov principle (i.e., actions do not have delayed
effects).

Given an initial state s0, goal conditions G, and a nonnegative integer k, classical plan-
ning asks for a sequence P = 〈a0, a1, ..., ak−1〉 of actions, which characterizes a path
X = 〈s0, s1, ..., sk−1, sk〉 from s0 to a goal state sk in this transition system such that every

3

edge (si, si+1) in the path characterizes an occurrence of action ai. This sequence P of ac-
tions is called a plan, with makespan k. The history H = 〈s0, a0, s1, a1, ..., sk−1, ak−1, sk〉
of a plan describes the path X by depicting also the relevant actions. Classical planning is
NP-complete for polynomially bounded plans (Erol et al. 1995).

For robotic domains, to ensure executability of classical plans, e.g., to ensure continu-
ous movements along collision-free trajectories, further checks need to be performed. This
requires combining classical planning with feasibility checks. We call this problem hybrid
classical planning. As discussed in Section 2 of the main paper, there are different meth-
ods of integrating planning with feasibility checks. We consider solving hybrid classical
planning problems in ASP, using HEX programs, with respect to appropriate methods of
integration (Erdem et al. 2016a).

Representing hybrid action domains in ASP We formalize hybrid dynamic domains in
ASP, under full observability and as a transition system, in the spirit of (Erdem et al. 2016).
Such a description of a hybrid dynamic domain in ASP relies on three important forms of
rules.

For a formula H and an index i (for time step), let us denote by H(i) the formula
obtained from H by replacing every atom q by q(i). Intuitively, H(i) expresses that the
formula H holds at time step i.
Effect rules: Direct outcomes of actions are expressed with effect rules of the form

E(i+ 1)← A(i), F (i) (B1)

where A is a conjunction of action atoms, E is a fluent literal, and F is conjunction of
fluent literals. This rule indicates that if the actions in A are executed at time step i where
F holds then at the next state E holds. For instance, the following effect rule describes an
effect of a “move” action of a mobile robot r navigating to a location l at time step i:

at(r, l, i+ 1)← move(r, l, i).

It expresses that, as a direct effect of this action, the location of robot r changes to l at the
next time step i+ 1.
Precondition rules: Preconditions of actions are expressed with precondition rules of the
form

← A(i), F (i), not G(i). (B2)

where A is a conjunction of action atoms, and F and G are conjunctions of fluent literals.
The precondition rule above expresses that, to execute an action A at time step i at a state
where F holds, the action’s preconditions G must hold. For instance, according to the
following precondition rule

← move(r, l, i), at(r, l, i)

action move(r, l) is possible if the robot is not already at the destination location l.
Hybrid rules: A hybrid rule is a rule where the right hand side of ← includes external
atoms. External atoms (Eiter et al. 2005) are not fluent or action constants; their truth
values are computed externally (out of ASP).

These rules are important for robotics applications since low-level feasibility checks

4

for each action can be computed externally and then integrated into transition system de-
scription by means of external atoms. For instance, the following hybrid precondition rule
ensures that, at time step i, a robot r can move from its current location x to its destination
location l if there is a collision-free trajectory between them:

← at(r, x, i),move(r, l, i), not &move is feasible[r, l, x]().

The external atom &move is feasible[r, l, x]() passes r, l, x as inputs to the external com-
putation (e.g., a Python program) that calls a motion planner to check the existence of a
collision free trajectory for r from x to l, and then returns the result of the computation to
the precondition rule.

Defining planning problems in ASP Once the domain is described in ASP, we can specify
the initial state of the world in different ways, e.g., by a set of facts, like

atRob(Table, 0),

by choice rules accompanied with constraints, like

{atRob(l, 0)}
← not atRob(Table, 0),

or by assumptions, like

atRob(Table, 0)← ¬ atRob(Table, 0).

We can describe the goal conditions by a set of rules, and add constraints to ensure their
reachability, as in the examples below:

goal← atRob(Table, t)
← not goal.

Then, with a domain description and planning problem description, plans of actuation
actions can be computed using the ASP solver CLINGO.

Appendix C An Example for Hybrid Conditional Planning: Kitchen Domain

As a benchmark for hybrid conditional planning, we consider a dynamic service robotics
scenario, where a bimanual mobile manipulator is responsible for setting up a kitchen
table, as depicted in Figure C 1. This domain is introduced in (Nouman et al. 2016): “The
mobile manipulator can navigate around the kitchen to pick up and place objects as long
as collision free trajectories exist. Kitchenware, such as mugs, spoons, knives, plates may
be found in cabinets or may be left on other flat surfaces, such as counter tops or shelves.
In the kitchen, there also exists a faucet to clean kitchenware as required. Finally, there is a
kitchen table, where the proper kitchenware must be placed on to comply with table setting
etiquette.”

In this domain, there are four actuation actions: goto, pickup, placeon and clean. For
the feasibility of these actions, existence of a collision-free trajectory is implemented based
on OMPL (Sucan et al. 2012) (to be used as a precondition of goto action), while reachabil-
ity, graspability and inverse kinematics checks are implemented based on OPENRAVE (Di-
ankov 2010) (to be used as preconditions of pickup and placeon actions).

5

Fig. C 1: The robot is manipulating a bowl from Cabinet B in dynamic simulation (top) and a fork
during physical implementation (bottom).

This domain contains three types of uncertainties. First, the person might have differ-
ent food preferences (e.g., soup, pizza, salad), which can only be revealed when directly
communicated with the user during plan execution. Second, the locations of some kitchen-
ware may not be known by the robot during the planning phase. These locations can be
reliably gathered only if the robot actively searches for these objects when it needs to use
them. Third, the cleanliness/dirtiness of the objects may not be known in advance for sure.
Along these lines, three sensing actions are considered: checkFoodType, checkLoc and
checkisClean.

An ASP description of this domain presented to HCP-ASP, in the input language of
CLINGO, is provided in Figures C 2–C 8. The description consists of three parts, appropri-
ate for incremental grounding (and thus incremental computation of plans), and preceded
by the expressions #program base, #program step(t), and #program check(t).
Intuitively, the first part describes the domain predicates and the general knowledge about
the world at time step 0; so it is instantiated once. The second part describes the states at
time step t and transitions of the world for time steps t-1 and t. Here, the value of t
increases one by one starting from 1 until a plan is found; so this part is instantiated incre-
mentally. This incremental grounding guarantees finding a plan with a minimum length.
The direct/indirect effects of actions, inertia, and action occurrences are defined in the sec-
ond part. The third part describes all the constraints to be checked at every time step t.
Here, the value of t also increases one by one starting from 0 until a plan is found; so this
part is instantiated incrementally as well. The preconditions of actions, state constraints,
transition constraints, concurrency constraints, and the goal are defined in the third part.

The actuation actions are defined as described in Appendix B, whereas the sensing ac-
tions are defined as described in Section 5 of the main paper.

Appendix D Experimental comparison of HCP-ASP with ASCP

As discussed in Section 2 of the main paper, although not compilation-based, the offline
non-hybrid conditional planner ASCP also uses ASP to compute conditional plans. There-
fore, we have compared these two ASP-based conditional planners, over one of the bench-
marks of ASCP: Bomb in the Toilet with Sensing Actions (BTS) (Weld et al. 1998). In
this domain, it has been alarmed that there is a bomb in the toilet. There are m suspicious

6

packages, and one of them contains the bomb. The bomb can be defused by dunking the
package with bomb into the toilet; dunking a package clogs the toilet and flushing the toilet
unclogs it. The existence of a bomb in a package can be sensed by a metal detector, by a
dog to sniff the bomb, or by an x-ray machine. Initially, the bomb is armed and the toilet is
not clogged; the goal is that the bomb is disarmed and the toilet is not clogged.

We have experimented with ASCP using the ASP encoding of BTS (bt 3sa.smo)1

transformed from Ac
K with the ASP solver CLINGO. The results of experiments for m =

10, 11, .., 17 are shown in Table D 1; the computation time for ASCP does not contain the
time for transformation.

According to these results, finding a tree with one call of CLINGO (using ASCP) takes
more time, compared to computing and combining the branches of the tree in parallel
(using HCP-ASP). For instance, for m = 17, it takes more than an hour to compute a tree
with ASCP whereas it takes about a second for HCP-ASP.

Table D 1: Comparison of ASCP with HCP-ASP.
No of Package Max Depth Tree Size ASCP Time HCP-ASP Time

[sec] (parallel with 20 threads) [sec]
10 10 19 21 0.4
11 11 21 21 0.5
12 12 23 46 0.6
13 13 25 433 0.5
14 14 27 406 0.7
15 15 29 1953 0.9
16 16 31 2896 0.8
17 17 33 5807 1.0

References

DIANKOV, R. 2010. Automated construction of robotic manipulation programs. Ph.D. thesis,
Carnegie Mellon University, Robotics Institute.

EITER, T., IANNI, G., SCHINDLAUER, R., AND TOMPITS, H. 2005. A Uniform Integration of
Higher-Order Reasoning and External Evaluations in Answer-Set Programming. In Proc. of IJCAI.
90–96.

ERDEM, E., GELFOND, M., AND LEONE, N. 2016. Applications of answer set programming. AI
Magazine 37, 3, 53–68.

ERDEM, E., PATOGLU, V., AND SCHÜLLER, P. 2016a. A systematic analysis of levels of integration
between high-level task planning and low-level feasibility checks. AI Commun. 29, 2, 319–349.

EROL, K., NAU, D. S., AND SUBRAHMANIAN, V. S. 1995. Complexity, decidability and undecid-
ability results for domain-independent planning. Artif. Intell. 76, 1–2, 75–88.

KUFFNER JR, J. AND LAVALLE, S. 2000. RRT-connect: An efficient approach to single-query path
planning. In Proc. of ICRA. 995–1001.

NOUMAN, A., YALCINER, I. F., ERDEM, E., AND PATOGLU, V. 2016. Experimental evaluation of
hybrid conditional planning for service robotics. In Proc. of ISER.

SUCAN, I. A., MOLL, M., AND KAVRAKI, L. E. 2012. The open motion planning library. Robotics
& Automation Magazine, IEEE 19, 4, 72–82.

WELD, D. S., ANDERSON, C. R., AND SMITH, D. E. 1998. Extending graphplan to handle uncer-
tainty & sensing actions. In Proc. of AAAI. 897–904.

1 https://www.cs.nmsu.edu/˜tson/ASPlan/Sensing/test/bt_3sa.smo.

7

#include <incmode>.

% maximum plan length
#const step_limit=40.

#program base.

% robotic manipulators
manip(manip_R;manip_L).

% objects and their types
object(bowl_0). object(bowl_1). object(spoon_0). object(spoon_1).
object(fork_0). object(fork_1). object(knife_0). object(knife_1).
object(plate_0). object(plate_1). object(wineGlass_0).
object(wineGlass_1). object(waterGlass_0). object(waterGlass_1).

type(bowl,bowl_0). type(bowl,bowl_1). type(spoon,spoon_0).
type(spoon,spoon_1). type(fork,fork_0). type(fork,fork_1).
type(wineGlass,wineGlass_0). type(wineGlass,wineGlass_1).
type(knife,knife_0). type(knife,knife_1).
type(plate,plate_0). type(plate,plate_1).
type(waterGlass,waterGlass_0). type(waterGlass,waterGlass_1).

% number of objects in each type
type_T(T) :- type(T,O).
type_no(T,N) :- #count{O: type(T,O)}=N, type_T(T).

% possible locations of objects
objlocnotonhold(extratable; cabinetA; cabinetB; faucet; table).
objloc(L) :- objlocnotonhold(L).
objloc(M) :- manip(M).
#const objloc_size= 7.

% possible locations of the robot
robloc(L):- objlocnotonhold(L).

% food types
food(soup; pizza; chicken).

% which utensils are expected to be on the table for which food type
expected_T(soup,bowl). expected_T(soup,spoon).
expected_T(soup,waterGlass).
expected_T(pizza,fork). expected_T(pizza,knife).
expected_T(pizza,plate). expected_T(pizza,wineGlass).
expected_T(chicken,fork). expected_T(chicken,knife).
expected_T(chicken,plate). expected_T(chicken,bowl).
expected_T(chicken,wineGlass).
unexpected(F,O) :- type(T,O), not expected_T(F,T), food(F).

Fig. C 2: Kitchen table setting domain presented to HCP-ASP, in the input language of CLINGO:
Part 1 – Domain predicates.

8

% time_min = 0

% ramifications for t=0

% if an object is located at L1 then it is not anywhere else
-atObj(O,L,time_min) :- atObj(O,L1,time_min), object(O), objloc(L),

objloc(L1), L!=L1.
% if a food type is requested, no other food type can be requested
-requested(F,time_min) :- requested(F1,time_min), food(F),

food(F1), F!=F1.

% if an object’s location is unknown then it cannot be on
% the robot’s hand either.
-atObj(O,M,time_min) :- {atObj(O,L,time_min):objloc(L)}0,

manip(M), object(O).

% if an object O is not at any of the object locations (except L),
% then it should be at L
atObj(O,L,time_min) :-

objloc_size-1{-atObj(O,L1,time_min):objloc(L1),L1!=L}objloc_size-1,
objloc(L), object(O).

% by default the objects are not on the table
-atObj(O,table,time_min) :- not atObj(O,table,time_min), object(O).

% actions are initially exogenous
{move(L,time_min)} :- robloc(L).
{pickUp(M,O,time_min)} :- manip(M), object(O).
{place(M,time_min)} :- manip(M).
{clean(M,time_min)} :- manip(M).
{sense(cleanObj(O),time_min)} :- object(O).
{sense(locObj(O),time_min)} :- object(O).
{sense(food_request,time_min)}.

Fig. C 3: Kitchen table setting domain presented to HCP-ASP, in the input language of CLINGO:
Part 2 – State constraints and possible action occurrences initially.

9

#program step(t).

% inertia for fully observed fluents
% (with uniqueness and existence constraints)
{atRob(L,t+time_min)} :- atRob(L,t+time_min-1), robloc(L).

% inertia for partially observed fluents
atObj(O,L,t+time_min) :- not -atObj(O,L,t+time_min),

atObj(O,L,t+time_min-1), object(O), objloc(L).
-atObj(O,L,t+time_min) :- not atObj(O,L,t+time_min),

-atObj(O,L,t+time_min-1), object(O), objloc(L).

isclean(O,t+time_min) :- not -isclean(O,t+time_min),
isclean(O,t+time_min-1), object(O).

-isclean(O,t+time_min) :- not isclean(O,t+time_min),
-isclean(O,t+time_min-1), object(O).

requested(F,t+time_min) :- not -requested(F,t+time_min),
requested(F,t+time_min-1), food(F).

% ramifications for t>0

% if an object is located at L1 then it is not anywhere else
-atObj(O,L,t+time_min) :- atObj(O,L1,t+time_min), object(O),

objloc(L), objloc(L1), L!=L1.

% if a food type is requested, no other food type can be requested
-requested(F,t+time_min) :- requested(F1,t+time_min), food(F),

food(F1), F!=F1.

% if an object’s location is unknown then it cannot be on
% the robot’s hand either.
-atObj(O,M,t+time_min) :- {atObj(O,L,t+time_min):objloc(L)}0,

manip(M), object(O).

% if an object O is not at any of the object locations (except L),
% then it should be at L
atObj(O,L,t+time_min) :-

objloc_size-1{-atObj(O,L1,t+time_min):objloc(L1),L1!=L}objloc_size-1,
objloc(L), object(O).

Fig. C 4: Kitchen table setting domain presented to HCP-ASP, in the input language of CLINGO:
Part 3 – Inertia and ramifications.

10

% action occurrences
{move(L,t+time_min)} :- robloc(L).
{pickUp(M,O,t+time_min)} :- manip(M), object(O).
{place(M,t+time_min)} :- manip(M).
{clean(M,t+time_min)} :- manip(M).
{sense(cleanObj(O),t+time_min)} :- object(O).
{sense(locObj(O),t+time_min)} :- object(O).
{sense(food_request,t+time_min)}.

% direct effects of actions
% move(R,L)
atRob(L,t+time_min) :- move(L,t+time_min-1), robloc(L).

% pickUp(R,M,O)
atObj(O,M,t+time_min) :- pickUp(M,O,t+time_min-1),

object(O), manip(M).

% place(robot,man,loc)
atObj(O,L,t+time_min) :- place(M,t+time_min-1),

atObj(O,M,t+time_min-1), atRob(L,t+time_min-1),
manip(M), object(O), objlocnotonhold(L).

% clean(R,M)
isclean(O,t+time_min) :- clean(M,t+time_min-1),

atObj(O,M,t+time_min-1), manip(M), object(O).

% sensing actions
1{isclean(O,t+time_min);-isclean(O,t+time_min)}1 :-

sense(cleanObj(O),t+time_min-1), object(O).
1{atObj(O,L,t+time_min):objlocnotonhold(L)}1 :-

sense(locObj(O),t+time_min-1), object(O).
1{requested(F,t+time_min):food(F)}1 :-

sense(food_request,t+time_min-1).

Fig. C 5: Kitchen table setting domain presented to HCP-ASP, in the input language of CLINGO:
Part 4 – Action occurrences and their direct effects.

11

#program check(t).

% uniqueness and existence constraints
:- 2{atRob(L,t+time_min): robloc(L)}.
:- {atRob(L,t+time_min): robloc(L)}0.

:- 2{atObj(O,M,t+time_min):object(O)}, manip(M).

% preconditions of actions
% the robot cannot move to L if it is already there
:- move(L,t+time_min), atRob(L,t+time_min), robloc(L).

% the robot cannot pick up an object
% if it is already holding one
pickUpRM(M,t+time_min) :- pickUp(M,O,t+time_min),

object(O), manip(M).
:- pickUpRM(M,t+time_min), 1{atObj(O,M,t+time_min):object(O)},

manip(M).

% the robot cannot pick up an object
% if the object is not at the same place as robot.
pickUpRO(O,t+time_min) :- pickUp(M,O,t+time_min),

manip(M), object(O).
:- pickUpRO(O,t+time_min), not atRob(L,t+time_min),

atObj(O,L,t+time_min), object(O), robloc(L).
:- pickUpRO(O,t+time_min), atRob(L,t+time_min),

not atObj(O,L,t+time_min), object(O), robloc(L).

% the robot cannot place an object if it is not holding any
:- place(M,t+time_min), {atObj(O,M,t+time_min):object(O)}0,

manip(M).

% the robot cannot clean if it is not at the faucet
cleanR(t+time_min) :- clean(M,t+time_min), manip(M).
:- cleanR(t+time_min), not atRob(faucet,t+time_min).
:- clean(M,t+time_min), {atObj(O,M,t+time_min):object(O)}0,

manip(M).
:- clean(M,t+time_min), atObj(O,M,t+time_min),

object(O), manip(M),
{isclean(O,t+time_min); -isclean(O,t+time_min)}0.

% sensing is not possible if the values of relevant
% fluents are known
:- sense(cleanObj(O),t+time_min),

1{isclean(O,t+time_min); -isclean(O,t+time_min)},
object(O).

:- sense(cleanObj(O),t+time_min),
{atObj(O,M,t+time_min): manip(M)}0, object(O).

:- sense(locObj(O),t+time_min),
1{atObj(O,L,t+time_min): objloc(L)}.

:- sense(food_request,t+time_min),
1{requested(F,t+time_min): food(F)}.

Fig. C 6: Kitchen table setting domain presented to HCP-ASP, in the input language of CLINGO:
Part 5 – State constraints and preconditions of actions.

12

% feasibility checks

:- move(L1,t+time_min), atRob(L,t+time_min),
robloc(L), robloc(L1), @move_feasible(L,L1)!=1.

:- pickUp(M,O,t+time_min), manip(M), object(O),
atRob(L,t+time_min), atObj(O,L,t+time_min),
robloc(L), @pickUp_feasible(M,O,L)!=1.

:- place(M,t+time_min), atObj(O,M,t+time_min),
manip(M), object(O), atRob(L,t+time_min),
robloc(L), @place_feasible(M,O,L)!=1.

% concurrency constraints

moveR(t+time_min) :- move(L,t+time_min), robloc(L).
pickUpR(t+time_min) :- pickUp(M,O,t+time_min), manip(M), object(O).
placeR(t+time_min) :- place(M,t+time_min), manip(M).

% the robot cannot pick/place/clean an object while moving
:- moveR(t+time_min), pickUpR(t+time_min).
:- moveR(t+time_min), placeR(t+time_min).
:- moveR(t+time_min), cleanR(t+time_min).

% the robot cannot pick/place an object while cleaning it
:- pickUpRM(M,t+time_min), clean(M,t+time_min), manip(M).
:- place(M,t+time_min), clean(M,t+time_min), manip(M).
:- place(M,t+time_min), pickUpRM(M,t+time_min), manip(M).

actAction(t+time_min):- moveR(t+time_min).
actAction(t+time_min):- pickUpR(t+time_min).
actAction(t+time_min):- placeR(t+time_min).
actAction(t+time_min):- cleanR(t+time_min).

sensAction(t+time_min):- sense(cleanObj(O), t+time_min), object(O).
sensAction(t+time_min):- sense(locObj(O), t+time_min), object(O).
sensAction(t+time_min):- sense(food_request, t+time_min).

% no sensing action and actuation action can occur
% at the same time
:- actAction(t+time_min), sensAction(t+time_min).

% no two sensing actions are allowed at the same time
:- 2{sense(cleanObj(O),t+time_min):object(O);

sense(locObj(O1),t+time_min):object(O1);
sense(food_request,t+time_min)}.

Fig. C 7: Kitchen table setting domain presented to HCP-ASP, in the input language of CLINGO:
Part 6 – Feasibility checks and concurrency constraints.

13

% goal conditions

% what is expected on the table wrt food type
expected(F,T,t+time_min) :-

1{atObj(O,table,t+time_min):type(T,O),isclean(O,t+time_min)}1,
N-1{-atObj(O,table,t+time_min):type(T,O)}N-1,
food(F), expected_T(F,T), type_no(T,N).

% the goal is not satisfied
% if the expected objects are not on the table or
% if there is an unexpected object on the table
notgoal(t+time_min) :- not expected(F,T,t+time_min),

expected_T(F,T), requested(F,t+time_min), food(F).
notgoal(t+time_min) :- not -atObj(O,table,t+time_min),

unexpected(F,O), object(O), requested(F,t+time_min), food(F).

% the goal is satisfied otherwise
goal(t+time_min) :- not notgoal(t+time_min),

expected(F,_,t+time_min), requested(F,t+time_min), food(F).

% ensure that goal is reached some time before step_time
:- query(t), not goal(t+time_min).

Fig. C 8: Kitchen table setting domain presented to HCP-ASP, in the input language of CLINGO:
Part 7 – Goal conditions.

