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Appendix A Unfounded sets by Knorr et al.

In the proof of Proposition 7 of (Knorr et al. 2011), conditions are given which are similar

to, but do not coincide with, the conditions in Def 3.1 of this paper. In fact, as shown below,

when applied to arbitrary partitions, their definition becomes problematic for our purpose.

Let Pn, Nn be the sequences of Pω and Nω , i.e., the sequences in computing the coherent

well-founded partition. Let U be the set of all KH �∈ Γ′K (Pn). Note that OBO,Pn must be

consistent. Then, for each KH ∈U , the following conditions are satisfied:

(U1) for each KH← body in P , at least one of the folllowing holds:

(U1a) some modal K -atom KA appears in body and in U ∪KA(K )\Nn;

(U1b) some modal not -atom notB appear in body and in Pn;

(U1c) OBO,Pn |= ¬H.

(U2) for each S with S ⊆ Pn, on which KH depends, there is at least one modal K -atom

KA such that OBO,S\KA �|= H and KA ∈U ∪KA(K )\Nn.

In a footnote, the authors commented that these conditions resemble the notion of un-

founded sets in (Van Gelder et al. 1991).

By this definition, let us consider Example 2 again.

Example 6
Recall K2 = (O2,P2), where π(O2) = (a⊃ b) and P2 consists of

Ka← notc. Kc← nota. Kb←Kb.

By the alternating fixpoint construction, its coherent well-founded partition is ( /0,{Ka,Kb,Kc}),
i.e., it has all K-atoms undefined, which is correctly captured by the alternating fixpoint

construction as well as by their definition of unfounded set. Thus, their notion of unfounded

set serves the purpose of proving the properties of a well-founded semantics.

However, the difference shows up when applied to arbitrary partitions. Let (T,F) =

( /0,{Kb}). Then, based on the above definition, the unfounded set is /0. That is, even that

Kb is false in the given partition is lost in the result of computing unfounded set. In con-

trast, by our definition, Definition 3.1, the unfounded set is {Ka,Kb}.

Appendix B Proofs

Proposition 3.1
Let K be a normal hybrid MKNF knowledge base, (T,F) a partial partition of KA(K ).

If X1 and X2 are unfounded sets of K w.r.t. (T,F), then X1∪X2 is an unfounded set of K

w.r.t. (T,F).

Proof
For each Ka ∈ X1 and the corresponding MKNF rule r, that body+(r)∩X1 �= /0 implies

body+(r)∩ (X1 ∪X2) �= /0. Similarly for each Ka ∈ X2, then X1 ∪X2 is also an unfounded

set of K w.r.t. (T,F).

Proposition 3.2
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Let K be a normal hybrid MKNF knowledge base, (T,F) a partial partition of KA(K ),

and U an unfounded set of K w.r.t. (T,F). For any MKNF model M of K with M |=MKNF∧
Ka∈T Ka∧∧Kb∈F ¬Kb, M |=MKNF ¬Ku for each Ku ∈U .

Proof
Assume that there exists such an MKNF model M with M |=MKNF Ku for some Ku ∈U .

Let U∗ be the greatest unfounded set of K w.r.t. (T,F) and

M′ = {I′ | I′ |= OBO,T and I′ |= a,∀a ∈ KA(K )\U∗ with M |=MKNF Ka}.
Note that, OBO,T �|= u for each u ∈U∗, and thus M′ ⊃M.

Clearly, (I′,M′,M) |= Kπ(O) for each I′ ∈ M′, M′ |=MKNF ¬Ku for each u ∈U∗, and

{Ka ∈ KA(K ) |M |=MKNF Ka}\U∗ = {Ka ∈ KA(K ) |M′ |=MKNF Ka}. Let us denote

the last set by T ∗.
For each r ∈P , if body+(r) ⊆ T ∗ and K(body−(r))∩ T ∗ = /0, then head(r) ⊆ T ∗ and

head(r)∩U∗ = /0. So M′ |=MKNF π(r). It then follows that (I′,M′,M) |= π(K ) for each

I′ ∈M′, which contradicts the precondition that M is an MKNF model of K . Therefore,

M |=MKNF ¬Ku for each Ku ∈U .

Proposition 3.3
Let K = (O,P) be a normal hybrid knowledge base and M an MKNF model of K .

Define (T,F) by T = {Ka ∈ KA(K ) |M |=MKNF Ka} and F = KA(K ) \T . Then, F is

the greatest unfounded set of K w.r.t. (T,F).

Proof
Let U∗ be the greatest unfounded set of K w.r.t. (T,F). We prove F = U∗. That U∗ ⊆ F
follows from Proposition 3.2 under the special case that the given partition (T,F) satisfies

T = {Ka ∈ KA(K ) |M |=MKNF Ka} and F = KA(K )\T .

To show F ⊆U∗, assume Ka �∈U∗, from which for any unfounded set U of K w.r.t.
(T,F), Ka �∈U . By definition (Def. 3.1), for each R⊆P such that head(R)∪OBO,T |=Ka
and head(R)∪OBO,T ∪{¬b} is consistent for any Kb ∈ F , no rule r ∈ R satisfies any of

the three conditions in Def. 3.1, which implies body+(r)⊆ T and K(body−(r))⊆ F and,

as M is an MKNF model of K , head(R) ⊆ T and it follows Ka ∈ T . By definition, that

Ka ∈ T implies Ka �∈ F .

Theorem 3.1
Let K be a normal hybrid MKNF knowledge base and (T,F) a partial partition of KA(K ).

UK (T,F) = KA(K )\AtmostK (T,F).

Proof
We first prove that KA(K )\AtmostK (T,F) is an unfounded set of K w.r.t. (T,F), then

we prove that for any other unfounded set U , U ⊆ KA(K )\AtmostK (T,F).

(1) Let X = KA(K )\AtmostK (T,F). If X is not an unfounded set of K w.r.t. (T,F),

then there exist a K-atom Ka ∈ X and a set of MKNF rules R ⊆P such that head(R)∪
OBO,T |= a and head(R)∪OBO,T ∪{¬b} is consistent for each Kb∈F , and for each r ∈R:

• body+(r)∩F = /0,

• K(body−(r))∩T = /0, and
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• body+(r)∩X = /0.

Note that for each r ∈ R, body+(r)⊆ AtmostK (T,F). Let Y = {Kh | h ∈ head(R)}. From

the definition of V (T,F)
K , Y ⊆ AtmostK (T,F). It follows Ka ∈ AtmostK (T,F), which con-

tradicts the precondition that Ka ∈KA(K )\AtmostK (T,F). So X is an unfounded set of

K w.r.t. (T,F).

(2) For the sake of contradiction, assume U is an unfounded set of K w.r.t. (T,F)

such that U �⊆ KA(K ) \AtmostK (T,F). Then there exists a K-atom Ka ∈ U such that

Ka ∈ AtmostK (T,F).

(a) If there exists an MKNF rule r ∈P , Ka ∈ head(r), body+(r) ⊆ AtmostK (T,F),

body+(r)∩F = /0, K(body−(r))∩T = /0, and {a,¬b}∪OBO,T is consistent for each Kb∈
F , then body+(r)∩U �= /0.

If {Ka} = body+(r)∩U , then there exists another MKNF rule r′ ∈ P with Ka ∈
head(r′), body+(r′) ⊆ AtmostK (T,F), body+(r′)∩ F = /0, K(body−(r′))∩ T = /0, and

{a,¬b}∪OBO,T is consistent for each Kb ∈ F . The process can continue until there exists

such an MKNF rule r∗ with {Ka} �= body+(r∗)∩U .

If {Ka} �= body+(r)∩U , then there exists another K-atom Ka1 ∈U ∩atmostK (T,F).

The argument can repeat indefinitely, which results in a contradiction to the precondition

that the set KA(K ) is finite. So there does not exist such an MKNF rule and Case (a) is

impossible.

(b) If OBO,AtmostK (T,F) |= a, then for each set of MKNF rules R ⊆P with {Kh | h ∈
head(R)} ⊆ AtmostK (T,F), OBO,{Kh|h∈head(R)} |= a, and for each r ∈ R, body+(r) ⊆
AtmostK (T,F), body+(r)∩F = /0, K(body−(r))∩ T = /0, and {a,¬b}∪OBO,T is con-

sistent for each Kb ∈ F , there exists an MKNF rule r∗ ∈ R such that body+(r∗)∩U �= /0.

Note that, since such a set R always exists, so does such an MKNF rule r∗. However,

from the proof for (a), there does not exist such an MKNF rule r∗. Thus Case (b) is impos-

sible.

So for each unfounded set U of K w.r.t. (T,F), U ⊆ KA(K )\AtmostK (T,F).

From (1) and (2), UK = KA(K )\AtmostK (T,F).

Theorem 3.2
Let K be a normal hybrid MKNF knowledge base. WK ( /0, /0) = (Pω , KA(K )\Nω).

Proof
By induction we can prove that (Pω , KA(K )\Nω)
WK ( /0, /0). In the following we show

that WK ( /0, /0)
 (Pω , KA(K )\Nω).

Let W ( /0, /0)
K ↑k = (Tk,Fk). Clearly, (T0,F0)
 (Pω , KA(K )\Nω). Assuming that (Ti,Fi)


(Pω , KA(K )\Nω), we want to prove that W ( /0, /0)
K (Ti,Fi)
 (Pω , KA(K )\Nω).

T ( /0, /0)
K (Ti,Fi) = T ∗K ,KA(K )\Fi

(Ti)⊆ Pω , AtmostK (Ti, /0) = Γ′K (Ti)⊇ Γ′K (Pω). By induc-

tion, we can assume that AtmostK (Tk,Fj)⊇ Γ′K (Pω) for each 0≤ k≤ i and 0≤ j < i. We

want to prove that AtmostK (Ti,Fi)⊇ Γ′K (Pω).

Let Fi = KA(K ) \AtmostK (Ti−1,Fi−1). If Γ′K (Pω) �⊆ AtmostK (Ti,Fi), then there are

two possible cases.

Case 1: There exists r ∈P such that body+(r)⊆ Γ′K (Pω) and body+(r)∩Fi �= /0. Then

Γ′K (Pω)∩ (KA(K ) \ AtmostK (Ti−1,Fi−1)) �= /0, thus Γ′K (Pω) �⊆ AtmostK (Ti−1,Fi−1),

which conflicts to the assumption for the induction. So this case is impossible.
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Case 2: There exists Ka ∈ KA(K ) such that Ka ∈ Γ′K (Pω), Ka /∈ AtmostK (Ti,Fi),

{a,¬b}∪OBO,Ti for some Kb ∈ Fi is inconsistent, and {a}∪OBO,Ti is consistent. Then

OBO,Ti |= a ⊃ b, thus Kb ∈ Γ′K (Pω). Kb ∈ Fi implies Kb /∈ AtmostK (Ti−1,Fi−1). Then

Γ′K (Pω) �⊆ AtmostK (Ti−1,Fi−1), which conflicts to the assumption for the induction. So

this case is also impossible.

Then it is impossible that Γ′K (Pω) �⊆ AtmostK (Ti,Fi). So Γ′K (Pω) ⊆ AtmostK (Ti,Fi)

and UK (Ti,Fi) ⊆ KA(K ) \Nω . So W ( /0, /0)
K (Ti,Fi) 
 (Pω , KA(K ) \Nω) and WK ( /0, /0) 


(Pω , KA(K )\Nω).

Theorem 3.3
Let K be a normal hybrid MKNF knowledge base and (T,F) a partial partition of KA(K ).

(P(T,F)
i , KA(K )\N(T,F)

i )
WK (T,F)
 EK (T,F), for each i > 0.

Proof
Let WK (T,F) = (T ∗,F∗). We start with (P(T,F)

0 ,KA(K )\N(T,F)
0 ) = (T,F). It can be veri-

fied that (P(T,F)
1 ,KA(K )\N(T,F)

1 )
 (T ∗,F∗). Assuming that (P(T,F)
i ,KA(K )\N(T,F)

i )

(T ∗,F∗) (i > 0), we want to prove that (ΓK (N(T,F)

i ), KA(K ) \Γ′K (P(T,F)
i )) 
 (T ∗,F∗),

which can be similarly proved by the proof for Theorem 3.2. So (P(T,F)
i , KA(K )\N(T,F)

i )

WK (T,F), for each i > 0.

Theorem 5.1
Let K be a normal hybrid MKNF knowledge base and (T,F) the well-founded partition

of K . An MKNF interpretation M is an MKNF model of K iff M is an MKNF model of

K (T,F).

Proof
We use M (K ) to be the set of all MKNF models of K . Assuming that for a par-

tial partition (T ′,F ′) of KA(K ), M (K ) = M (K (T ′,F ′)) and for each M ∈M (K ),

M |=MKNF
∧

Ka∈T ′Ka∧∧Kb∈F ′ ¬Kb. We want to prove that M (K ) =M (K W ( /0, /0)
K (T ′,F ′))

and for each M ∈M (K ), M |=MKNF
∧

Ka∈T ( /0, /0)
K (T ′,F ′) Ka∧∧

Kb∈U( /0, /0)
K (T ′,F ′)¬Kb.

From Proposition 3.2, it is easy to verify that, for each M ∈M (K ), M |=MKNF
∧

Ka∈T ( /0, /0)
K (T ′,F ′) Ka∧

∧

Kb∈U( /0, /0)
K (T ′,F ′)¬Kb. Then M (K ) = M (K W ( /0, /0)

K (T ′,F ′)).

Then the theorem can be proved from the fact that the well-founded partition is equiva-

lent to W ( /0, /0)
K ↑∞.


