
1

Online appendix for the paper

Productive Corecursion in Logic Programming
published in Theory and Practice of Logic Programming

EKATERINA KOMENDANTSKAYA
Heriot-Watt University, Edinburgh, Scotland, UK

ek19@hw.ac.uk

YUE LI
Heriot-Watt University, Edinburgh, Scotland, UK

yl55@hw.ac.uk

submitted 02 May 2017; revised 20 June 2017; accepted 04 July 2017

Appendix A Supplementary Materials and Full Proofs

A.1 Least and Greatest Complete Herbrand Models

We recall the least and greatest complete Herbrand model constructions for LP (Lloyd
1988). We express the definitions in the form of a big-step semantics for LP, thereby ex-
posing duality of inductive and coinductive semantics for LP in the style of (Sangiorgi
2011). We start by giving inductive interpretations to logic programs. We say that σ is a
grounding substitution for t if σ(t) ∈ GTermω(Σ), and is just a ground substitution if its
codomain is GTermω(Σ).

Definition Appendix A.1
Let P be a logic program. The big-step rule for P is given by

P |= σ(B1), . . . ,P |= σ(Bn)

P |= σ(A)

where A← B1, . . .Bn is a clause in P and σ is a grounding substitution.

Following standard terminology (Aczel 1977; Sangiorgi 2011), we say that an inference
rule is applied forward if it is applied from top to bottom, and that it is applied backward
if it is applied from bottom to top. If a set of terms is closed under forward (backward)
application of an inference rule, we say that it is closed forward (resp., closed backward)
under that rule. If the ith clause of P is involved in an application of the big-step rule for P,
then we may say that we have applied the big-step rule for P(i).

Definition Appendix A.2
The least Herbrand model for a program P is the smallest set MP ⊆ GTerm(Σ) that is
closed forward under the big-step rule for P.



2

Example Appendix A.1
The least Herbrand model for the program of Example 1.1 is {nat(0), nat(s(0)), nat(s2(0), . . .}.
We use s2(0) for s(s(0)), s3(0) for s(s(s(0))) and so on.

The requirement that MP ⊆GTerm(Σ) entails that only ground substitutions are used in
the forward applications of the big-step rule involved in the construction of MP. Next we
give coinductive interpretations to logic programs. For this we do not impose any finiteness
requirement on the codomain terms of σ .

Definition Appendix A.3
The greatest complete Herbrand model for a program P is the largest set Mω

P ⊆GTermω(Σ)

that is closed backward under the big-step rule for P.

Example Appendix A.2 (Complete Herbrand model)
The greatest complete Herbrand model for the program of Example 1.1 is {nat(0), nat(s(0)),
nat(s2(0)) . . .}

⋃
{nat(sω)}. Indeed, there is an infinite inference for nat(sω)= nat(s(s(...)))

obtained by repeatedly applying the big-step rule for this program backward.

Definitions Appendix A.2 and Appendix A.3 could alternatively be given in terms of
least and greatest fixed point operators, as in, e.g., (Lloyd 1988). To ensure that GTerm(Σ)

and GTermω(Σ) are non-empty, and thus that the least and greatest Herbrand model con-
structions are as intended, it is standard in the literature to assume that Σ contains at least
one function symbol of arity 0. We will make this assumption throughout the remainder of
this paper.

A.2 Proof of Productivity Lemma 4.1

Let P be an observationally productive and universal program and let t ∈ Term(Σ). Let D
be an infinite S-resolution derivation given by G0 = t ;S G1 ;

S G2 ;
S . . ., then for every

Gi ∈ D, there is a G j ∈ D, with j > i, such that, given computed mgus θi, . . . ,θ1 up to Gi

and the computed mgus θ j, . . . ,θ1 up to G j, d(t∞,θi, . . . ,θ1(t)) > d(t∞,θ j, . . . ,θ1(t)), for
some term t∞ ∈ Term∞(Σ).

The proof has two parts, as follows. Part 1 shows that, under the imposed productivity
and universality conditions, no infinite sequence of trivial unifiers is possible for infinite
S-resolution derivations. Therefore, an infinite S-resolution derivation must contain an in-
finite number of non-trivial substitutions. Part 2 uses this fact and shows that a composition
of an infinite number of non-trivial substitutions must result in an infinite term (this holds
under universality condition only).

Proof
Recall that, by definition of S-resolution reductions, each step Gk ;

S Gk+1 is a combi-
nation of a finite number of steps Gk →n [A1, . . . ,An] and one substitution+rewriting step
[A1, . . . ,A j, . . . ,An]→ ◦ ↪→ Gk+1, this final step involves computation of an mgu (but not
mgm) θk+1 of some clause C←C1, . . . ,Cn and some A j. So in fact

Gk+1 = [θk+1(A1), . . . ,θk+1(A j−1),θk+1(C1), . . . ,θk+1(Cn),θk+1(A j+1), . . . ,θk+1(An)]

Moreover, since θk+1 is not an mgm, we have that:
θk+1 is a non-trivial substitution for at least one variable X in A j. (**)



3

We will use the above facts implicitly in the proof below.
To proceed with our proof, first we need to show that
(1) For all k > 1 in G0 = t ;S G1 ;

S G2 ;
S . . .;S Gk ;

S . . ., the composition θk . . .θ1

is non-trivial for t.
We prove this by induction.
Base case. By (∗∗), θ1 is necessarily non-trivial for initial goal t.

Inductive case. If θk is non-trivial for term θk−1 . . .θ1(t), then by universality of P and (∗∗),
θk+1 is non-trivial for term θk . . .θ1(t). Then by induction, for all k > 1, the composition
θk . . .θ1 is non-trivial for t.

Next, we need to show that the property (1) implies that

(2) we can define the limit term t∞ using the infinite sequence

t, θ1(t), θ2θ1(t), θ3θ2θ1(t), . . .

To prove (2), we prove the following property:
(2.1) For each n ∈ N, there exists θkn , so that for all k, if k > kn, then truncation of

θk . . .θ1(t) at depth n is the same as the truncation of θkn . . .θ1(t) at depth n.
We prove this fact by contradiction. Assume the negation of our proposition, which says

there exists depth value n such that for all substitution subscript k, there exists some kn,
so that kn > k and truncation of θkn . . .θ1(t) at depth n is different from the truncation of
θk . . .θ1(t) at depth n. This is impossible because this implies that non-trivial substitution
can be infinitely applied within the truncation at depth n but no finitely branching tree can
accommodate infinite amount of variables up to any fixed depth.

This gives us a way to prove (2):
We build t∞ inductively, for each depth n of t∞. For depth n = 0, we let t∞ have as its

root symbol the predicate symbol t(ε) of initial atomic goal t. If t∞ is defined up till depth
n≥ 0, then, by (2.1) we know that there is some kn such that for all k > kn,

γ
′(n,θk . . .θ1(t)) = γ

′(n,θkn . . .θ1(t))

We also know by (2.1) that there is some kn+1 such that for all k > kn+1,

γ
′((n+1),θk . . .θ1(t)) = γ

′((n+1),θkn+1 . . .θ1(t))

Then we find the greater value κ in {kn,kn+1}, or set κ = kn if kn = kn+1, and define the
nodes at depth n+1 for t∞ in the same way as θκ . . .θ1(t).

A.3 Proof of Theorem 4.1 Soundness and Completeness of Infinite S-resolution
Relative to SLD-computations at Infinity

Let P be an observationally productive and universal program, and let t ∈Term(Σ). There
is an infinite fair S-resolution derivation for t iff there is a t ′ ∈ Term∞(Σ), such that t ′ is
SLD-computable at infinity by t.

Proofs in both directions start with establishing operational equivalence of infinite S-
resolution and SLD-resolution derivations. Coinductive proof principle is employed in this
part of the proof. The proof in the left-to-right direction proceeds by using this equivalence,



4

and by applying Lemma 4.1 to show that an infinite fair S-resolution derivation must result
in an SLD-computation of an infinite term at infinity. The other direction is proven trivially
from the operational equivalence of infinite S-resolution and SLD-resolution derivations.

Proof
1. Suppose D = t ;S G1 ;S G2 ;S . . . is an infinite fair S-derivation. It is easy to

construct a corresponding SLD-resolution derivation D∗, we prove this fact by coin-
duction. Consider t ;S G1, which in fact can be given by one of two cases:

(a) t ↪→ θ(t)→G1, i.e. if t does not match, but is unifiable with some clause P(i) via
a substitution θ . In this case, the first step in D∗ will be to apply SLD-resolution
reduction to t and P(i): t ; G1.

(b) t→n [A1, . . . ,A j, . . . ,An] ↪→ [θ(A1), . . . ,θ(A j), . . . ,θ(An)]→G1; obtained by re-
solving A j with a clause P(i) and computing a substitution θ . Then, in D∗, we
will have n steps by SLD-resolution reductions involving exactly the resolvents
of goal atoms and clauses used in t→n [A1, . . . ,An] (note that mgms used in→n

are also mgus by definition). These n steps in D∗ will be followed by one step of
SLD-resolution reduction, resolving A j with P(i) using substitution θ .
We can proceed coinductively to construct D∗ from D starting with G1 ∈ D.

We now need to show that such D∗ is fair and non-failing. By definition, t ;S G1 ;
S

G2 ;
S . . . should contain atoms which are resolved against finitely often. This means

that corresponding derivation D∗ will be fair. Because D is non-terminating and non-
failing, D∗ using the same resolvents will be non-terminating and non-failing, too.
Finally, we need to show that D∗ = t ; G∗1 ; G∗2 ; . . . constructed as described
above involves computation of an infinite term t ′ at infinity. This can only happen if,
for every G∗i ∈ D∗, there is a G∗j ∈ D∗, with j > i, such that, given computed mgus
θi, . . . ,θ1 up to G∗i and the computed mgus θ j, . . . ,θ1 up to G∗j , d(t ′,θi, . . . ,θ1(t))>
d(t ′,θ j, . . . ,θ1(t)). For this to hold, the S-resolution derivation D should satisfy the
same property, but this follows from Lemma 4.1.

2. The proof proceeds by coinduction. Consider the SLD-resolution derivation D∗ =
t ; G∗1 ; G∗2 ; . . . that computes an infinite term t ′ at infinity. Consider the substi-
tution θ associated with t ; G∗1. If it is an mgm of t and some clause P(i), then we
can construct the first step of S-resolution reduction using the rewriting reduction:
t → G∗1. If θ is not an mgm, i.e. it is an mgu, then we can construct first two steps
of the S-resolution reduction: t ↪→ θ(t)→ G∗1. We can proceed building D from D∗

in the same way, now starting from G∗1. We only need to show that D is fair and
non-failing, but that follows trivially from properties of D∗.

A.4 Standard co-SLD-resolution and Proof of Soundness of Co-S-resolution

In this subsection, we introduce the standard definition of co-SLD-derivations (Ancona and
Dovier 2015), and re-use the proof of their soundness with respect to the greatest complete
Herbrand models to establish a similar result for co-S-resolution.

Definition Appendix A.4 (Co-SLD-reductions (Ancona and Dovier 2015))



5

Given a logic program P, we distinguish the following reductions in the context of co-
inductive logic programming.

• SLD reduction (G ; G′): Let G = [(A1,S1), . . . ,(An,Sn)]. If B0 ≈θ Ak for some pro-
gram clause B0← B1, . . . ,Bm and some k, then let S′ = Sk ∪{Ak}, we derive

G′ = θ
(
[(A1,S1), . . . ,(Ak−1,Sk−1),(B1,S′), . . . ,(Bm,S′),(Ak+1,Sk+1), . . . ,(An,Sn)]

)
• loop detection (G→∞ G′): Let G = [(A1,S1), . . . ,(An,Sn)]. If Ak ≈θ B for some k

and some B ∈ Sk, we derive

G′ = θ
(
[(A1,S1), . . . ,(Ak−1,Sk−1),(Ak+1,Sk+1), . . . ,(An,Sn)]

)
• co-SLD reduction (G ;co G′): G ;co G′ if G ; G′ or G→∞ G′.

Co-SLD-resolution is proven sound in (Ancona and Dovier 2015; Simon et al. 2006), i.e.
if a logic program P and an atomic goal G have a co-SLD-refutation with computed answer
substitution θ , then all ground instances of θ(G) are in the greatest complete Herbrand
model of P.

An important property of co-S-resolution is coinductive soundness.

Proposition Appendix A.1 (Soundness of co-S-resolution)
If a logic program P and an atomic initial goal G have a co-S-refutation with computed
answer substitution θ , then all ground instances of θ(G) are in the greatest complete Her-
brand model of P.

We will base the proof on the soundness of co-SLD resolution (Ancona and Dovier 2015;
Simon et al. 2006).

Proof
If loop detection is not used at all in the co-S-refutation, then the co-S-refutation reduces
to a S-refutation, which is sound w.r.t to least Herbrand model, thus also being sound w.r.t
the greatest complete Herbrand model.

Let us assume loop detection is used for at least once. We show that for any co-S-
refutation there exists a corresponding co-SLD refutation. Any substitution+rewriting step
Gi ↪→ Gi+1 → Gi+2 corresponds to one step of SLD reduction (in co-SLD setting) Gi ;

Gi+2. Any rewriting reduction step Gi→Gi+1 that does not follow a substitution reduction
step also constitutes a SLD-reduction step Gi ; Gi+1. In this way any co-S-refutation can
be converted to a refutation that only involves SLD-reduction and loop detection, thus con-
stituting a co-SLD refutation, which is sound w.r.t the greatest complete Herbrand model.

A.5 Proof of Theorem 5.1 of Soundness of Co-S-resolution Relative to
SLD-Computations at Infinity

Let P be an observationally productive and universal logic program, and t ∈ Term(Σ) be
an atomic goal. If there exists a co-S-refutation for P and t that involves the restricted loop
detection rule, and computes the substitution θ then

1. there exists an infinite fair S-derivation for P and t, and



6

2. there is a term t∞ ∈ Term∞(Σ) SLD-computed at infinity that is a variant of θ(t).

The proof will proceed according to the following scheme. For the sake of the argu-
ment, we take some arbitrary logic program that satisfies the productivity and universality
conditions. We first show that the use of (any) loop detection necessarily results in com-
putation of circular substitutions. Next, we analyse the effect of the restriction that was
introduced to loop detection in Definition 5.1 and build the infinite regular S-derivation
starting at the point where the restricted loop detection was once used. Finally, we show
that the sequence of (non-circular) unifiers computed by the infinite S-derivation is equiv-
alent to the single (circular) unifier computed by the restricted loop detection of Definition
5.1. If there are several uses of the restricted loop detection rule, then each implies a sep-
arate infinite derivation, and they can be interleaved to form an infinite fair S-derivation.
This argument relies only on the observational productivity, leading to the conclusion that
for an observationally productive program, if it has a co-S-refutation then there exists an
infinite fair S-derivation in which a sequence of computed unifiers “unfolds” the circular
unifier. A program that is also universal is a special case, where (by Theorem 4.1) the in-
finite sequence of unifiers instantiates the initial goal into an infinite formula, which shall
be a variant of the formula computed by co-S-refutation.

Before proceeding with the full proof, we first need to introduce the method of decir-
cularization. A circular substitution means a substitution of infinite regular terms for vari-
ables. For e.g. {X 7→ s(X)} is equivalent to {X 7→ sω}, where sω is obtained by continued
substitution of s(X) for X , which can further be regarded as applying an infinite succession
of non-circular substitutions s(X1) for X , s(X2) for X1, s(X3) for X2, and so on. We coin the
term decircularization for the process of obtaining from a circular substitution σ an equiv-
alent infinite succession of non-circular substitutions σ1,σ2, . . .. In the following proof we
relate co-S-resolution’s answers to terms SLD-computable at infinity by showing that the
circular substitutions computed by co-S-refutation have decircularization computed by in-
finite S-derivation. Formal definition of decircularization (with motivating examples) is
given below.

Definition Appendix A.5 (Decircularization)
Let σ = {. . . ,Xk 7→ t, . . .} be a circular substitution where Xk 7→ t a circular component
and FV (t) = {X1, . . . ,Xk, . . . ,Xm}. Xk 7→ t can be decircularized into an infinite set R =

{Xk 7→ t(1),Xk(1) 7→ t(2),Xk(2) 7→ t(3), . . .} where t(n) is a variant of t obtained by applying
renaming {Xi 7→ Xi(n) | ∀i ∈ [1,m]} to t. We call the set R a decircularization of Xk 7→
t. The decircularization of σ is the union of all decircularizations of individual circular
components of σ .

Example Appendix A.3 (Decircularization)
Let σ = {A1 7→ f (A1,B1,C1),B1 7→ s(B1)}. The decircularization of σ is RA ∪RB where
RA = {A1 7→ f (A1(1) ,B1(1) ,C1(1)),A1(1) 7→ f (A1(2) ,B1(2) ,C1(2)),A1(2) 7→ f (A1(3) ,B1(3) ,C1(3)), . . .}.
and RB = {B1 7→ s(B1(1)),B1(1) 7→ s(B1(2)),B1(2) 7→ s(B1(3)), . . .}. With the understanding
that subscriptions merely serve the purpose of distinguishing names, we can simplify the
decircularization into RA = {A1 7→ f (A2,B2,C2),A2 7→ f (A3,B3,C3),A3 7→ f (A4,B4,C4), . . .}
and RB = {B1 7→ s(B2),B2 7→ s(B3),B3 7→ s(B4), . . .}. Note the way A’s and B’s interact in
the decircularization.



7

Example Appendix A.4
Consider program:
r(f(A,B,C), s(B))← r(A,B).

A co-S-refutation D is:
[
(
r(X ,Y ), /0

)
] ↪→X 7→ f (A1,B1,C1),Y 7→s(B1) [

(
r( f (A1,B1,C1),s(B1)), /0

)
]→

[
(
r(A1,B1),{r( f (A1,B1,C1),s(B1))}

)
]→A1 7→ f (A1,B1,C1),B1 7→s(B1)

co [ ]

If we continue the derivation from the underlined goal in D, but now use S-resolution,
we have an infinite S-derivation D∗ as follows:
[r(X ,Y )] ↪→X 7→ f (A1,B1,C1),Y 7→s(B1) [r( f (A1,B1,C1),s(B1))]→
[r(A1,B1)] ↪→A1 7→ f (A2,B2,C2),B1 7→s(B2) [r( f (A2,B2,C2),s(B2))]→
[r(A2,B2)] ↪→A2 7→ f (A3,B3,C3),B2 7→s(B3) [r( f (A3,B3,C3),s(B3))]→
[r(A3,B3)] · · ·

Note that the mgu’s computed by infinite S-derivation starting from the underlined goal
in D∗ is a decircularization of the circular substitution computed by co-S-resolution from
the corresponding goal in D. The details of computing decircularization for the circular
substitution of this example is given in Example Appendix A.3. We see that in this example
co-S-resolution is a perfect finite model for corresponding infinite S-resolution.

Proof
We first take an arbitrary coinductive logic program that satisfies our productivity and
universality conditions.

1. We first show that the use of loop detection (no matter restricted or not) necessarily
results in creation of circular substitutions.
Generally, consider some subgoal of the form (A,{A1, . . .An}) where for all Ai in the
ancestors set of A, Ai is added to the ancestors set later than Ai+1. By definition of
co-S-derivation, there exists some program clause instances (or variants)

An← . . . ,An−1, . . .
...
A2← . . . ,A1, . . .

A1← . . . ,A, . . .
where all A and Ak (1≤ k≤ n) are finite, so are the omitted atoms (which are repre-
sented by “. . .” ) in the above set of clauses.
Assume restricted loop detection is applicable for the subgoal under consideration.
This means that A unifies with some Ai (occurs check switched off) under mgu σ ,
and A ≺ A′i where A′i is a fresh-variable variant of Ai. Each of the two conditions
A≈σ Ai and A≺ A′i has implication.
Note that σ is a circular substitution: if σ is not a circular substitution, then we have
the set of program clause instances (or variants)

σ(Ai)← . . . ,σ(Ai−1), . . .
...
σ(A2)← . . . ,σ(A1), . . .

σ(A1)← . . . ,σ(A), . . .
where σ(A) = σ(Ai) (because A ≈σ Ai) and all atoms are finite. Then there exists



8

non-terminating rewriting reduction steps for σ(Ai) and thus breaks the observa-
tional productivity condition. Therefore σ is circular.

2. Next we construct the general form of the repeating derivation pattern by analysing
the effect of the restricted loop detection. This pattern is then used to build the infinite
regular derivation that can start at the point where the restricted loop detection was
once used.
An infinite sequence {γn}n≥0 of trivial substitutions is defined as follows. Let γ0 be
the empty substitution and γ1 be a variable renaming substitution for Ai with fresh
names. Let {γn}n≥1 be an infinite sequence of renaming substitutions, such that,
for all n ≥ 2, the domain of γn equals to the image of γn−1, while the image of γn is
disjoint from the set of all variables that occur in the domain of one of γk (1≤ k≤ n).
For example, if γ1 = {X1 7→ X2}, then the sequence of renaming substitutions {X1 7→
X2},{X2 7→ X3},{X3 7→ X4}, . . . conforms to the above description for {γn}n≥1.
For all n ≥ 0, γn+1 · · ·γ0(Ai) is an instance of γn · · ·γ0(A), as is implied by A ≺ A′i.
Let σn+1 denote the matcher for the pair γn · · ·γ0(A) and γn+1 · · ·γ0(Ai), we have the
important equation

σn+1γn . . .γ0(A) = γn+1 . . .γ0(Ai), for all n≥ 0

We also have a set of program clause instances (or variants) for all n≥ 0:
γn+1 . . .γ0(Ai) ← . . . , γn+1 . . .γ0(Ai−1), . . .
...
γn+1 . . .γ0(A2) ← . . . , γn+1 . . .γ0(A1), . . .

γn+1 . . .γ0(A1) ← . . . , γn+1 . . .γ0(A), . . .
Using the above clauses for rewriting reductions, we have that for all n ≥ 0, there
exists the repeating S-derivation pattern:

[. . . , γn · · ·γ0(A), . . .] ↪→ [. . . , σn+1γn . . .γ0(A), . . .]→i [. . . , γn+1 . . .γ0(A), . . .]

Therefore an infinite S-derivation starting from goal [. . . ,A, . . .] can be given in the
form
[. . . , γ0(A), . . .] ↪→ [. . . , σ1γ0(A), . . .]→i

[. . . , γ1γ0(A), . . .] ↪→ [. . . , σ2γ1γ0(A), . . .]→i

[. . . , γ2γ1γ0(A), . . .] ↪→ ·· ·
3. Finally we show that the collection of (non-circular) unifiers computed by the infinite

derivation is equivalent to the single (circular) unifier computed by restricted loop
detection.
Consider a circular component X 7→ t[X ] of σ . This circular component corresponds
to a mapping Xn 7→ t[Xn+1] in each matcher σn+1 (n ≥ 0) . Therefore the collection
of all such Xn 7→ t[Xn+1] constitutes a decircularization of X 7→ t[X ], and all other
circular components of σ are similarly decircularized. Therefore σ has the decircu-
larization

⋃
∞
n=1 σn.

If there are several use of restricted loop detection, then each implies a separate infinite
derivation, which can be interleaved to form an infinite fair S-derivation.

So far only the observational productivity condition has been used, and the conclusion
is that



9

For observationally productive programs, if there is a co-S-refutation involving restricted
loop detection and a circular unifier θ , then 1) there exists an infinite fair co-S-derivation
that 2) computes an infinite sequence of unifiers equivalent to the circular unifier θ . (?)

A program that is also universal is a special case of (?), which, by 1) of (?), has an
infinite fair S-derivation whose unifiers, instantiate the initial goal into an infinite formula
(by Theorem 4.1). But then by 2) of (?), a composition of these unifiers must compute a
variant of the formula computed by co-S-refutation.

A.6 Implementation of Co-S-resolution

The co-S-resolution meta-interpreter is written in SWI-Prolog, and is available at
https://github.com/coalp/Productive-Corecursion. It adopts left first computa-
tion rule and depth first search rule in the SLD tree.

The entry procedure requires a unary predicate named clause tree, which takes a
conjunctive goal or an atomic goal as an input. After assignment of an empty ancestors set
to the goal, a case analysis on the shape of the goal passes an atomic goal to procedures
corresponding to reduction rules, or disassembles a conjunctive goal into its head and tail,
and processes the head and the tail separately and recursively, starting with a case analysis
on their shape.

Three kinds of reduction rule: rewriting reduction, substitution reduction and restricted
loop detection are coded separately as three alternative procedures to process an atomic
goal. Since object programs to be processed by the meta-interpreter are intended to be
non-terminating, and given the execution model of Prolog, it is necessary to put the loop
detection rule ahead of other rules, otherwise in a non-terminating derivation it will never
be called. The rewriting reduction is put at the second place, and the substitution reduction
is tried only when both the loop detection and the rewriting reduction are not applicable.
The ordering of the rules, therefore, also makes sure that rewriting happens after each sub-
stitution reduction, because if a sub-goal cannot be reduced by loop detection, an instance
of this sub-goal from substitution reduction still cannot be reduced by loop detection.

References

ACZEL, P. 1977. An introduction to inductive definitions. Studies in Logic and the Foundations of
Mathematics 90, 739 – 782.

ANCONA, D. AND DOVIER, A. 2015. A theoretical perspective of coinductive logic programming.
Fundam. Inform. 140, 3-4, 221–246.

LLOYD, J. 1988. Foundations of Logic Programming, 2nd ed. Springer-Verlag.
SANGIORGI, D. 2011. Introduction to Bisimulation and Coinduction. Cambridge University Press.
SIMON, L., MALLYA, A., BANSAL, A., AND GUPTA, G. 2006. Coinductive logic programming. In

ICLP’06. 330–345.


