
1

Online appendix for the paper

Annotated Defeasible Logic
published in Theory and Practice of Logic Programming

Guido Governatori
Data61, CSIRO, Australia

E-mail: guido.governatori@data61.csiro.au

Michael J. Maher
Reasoning Research Institute, Australia

E-mail: michael.maher@reasoning.org.au

submitted 2 May 2017; revised 20 June 2017; accepted 5 July 2017

Inference Rules

Defeasible logics are usually defined via their proof mechanism. Here we present the inference
rules for the four defeasible logics we integrate within annotated defeasible logic. Each inference
rule is labelled by the kind of conclusions it infers. The presentation is adapted from (Billington
et al. 2010). A defeasible logic is determined by the inference rules it allows. For example,
DL(∂) allows +∂ and −∂, while DL(δ) allows +δ, −δ, +σδ , and −σδ .

A proof P is a sequence of conclusions. The conclusion at position i in the sequence is denoted
by P (i), and a prefix of the proof of length i is denoted by P [1..i]. The inference rules establish
when a conclusion can be drawn at position i+1, given the conclusions already proved (P [1..i]).
Where q is a literal, Rsd[q] denotes the set of strict or defeasible rules with head q, while R[q]

denotes the set of all rules (including defeaters) with head q. For a rule r, A(r) denotes the
antecedent (or body) of r.

+∂) Infer P (i+ 1) = +∂q if either
.1) +∆q ∈ P [1..i]; or
.2) The following three conditions all hold.

.1) ∃r ∈ Rsd[q] ∀a ∈ A(r),+∂a ∈ P [1..i], and

.2) −∆∼q ∈ P [1..i], and

.3) ∀s ∈ R[∼q] either
.1) ∃a ∈ A(s),−∂a ∈ P [1..i]; or
.2) ∃t ∈ Rsd[q] such that

.1) ∀a ∈ A(t),+∂a ∈ P [1..i], and

.2) t > s.

−∂) Infer P (i+ 1) = −∂q if
.1) −∆q ∈ P [1..i], and
.2) either

.1) ∀r ∈ Rsd[q] ∃a ∈ A(r),−∂a ∈ P [1..i]; or

.2) +∆∼q ∈ P [1..i]; or

.3) ∃s ∈ R[∼q] such that
.1) ∀a ∈ A(s),+∂a ∈ P [1..i], and
.2) ∀t ∈ Rsd[q] either

.1) ∃a ∈ A(t),−∂a ∈ P [1..i]; or

.2) not(t > s).



2

+δ) Infer P (i+ 1) = +δq if either
.1) +∆q ∈ P [1..i]; or
.2) The following three conditions all hold.

.1) ∃r ∈ Rsd[q] ∀a ∈ A(r),+δa ∈ P [1..i], and

.2) −∆∼q ∈ P [1..i], and

.3) ∀s ∈ R[∼q] either
.1) ∃a ∈ A(s),−σδa ∈ P [1..i]; or
.2) ∃t ∈ Rsd[q] such that

.1) ∀a ∈ A(t),+δa ∈ P [1..i], and

.2) t > s.

−δ) Infer P (i+ 1) = −δq if
.1) −∆q ∈ P [1..i], and
.2) either

.1) ∀r ∈ Rsd[q] ∃a ∈ A(r),−δa ∈ P [1..i]; or

.2) +∆∼q ∈ P [1..i]; or

.3) ∃s ∈ R[∼q] such that
.1) ∀a ∈ A(s),+σδa ∈ P [1..i], and
.2) ∀t ∈ Rsd[q] either

.1) ∃a ∈ A(t),−δa ∈ P [1..i]; or

.2) not(t > s).

+σδ) Infer P (i+ 1) = +σδq if either
.1) +∆q ∈ P [1..i]; or
.2) ∃r ∈ Rsd[q] such that

.1) ∀a ∈ A(r),+σδa ∈ P [1..i], and

.2) ∀s ∈ R[∼q] either
.1) ∃a ∈ A(s),−δa ∈ P [1..i]; or
.2) not(s > r).

−σδ) Infer P (i+ 1) = −σδq if
.1) −∆q ∈ P [1..i], and
.2) ∀r ∈ Rsd[q] either

.1) ∃a ∈ A(r),−σδa ∈ P [1..i]; or

.2) ∃s ∈ R[∼q] such that
.1) ∀a ∈ A(s),+δa ∈ P [1..i], and
.2) s > r.

+∂∗) Infer P (i+ 1) = +∂∗q if either
.1) +∆q ∈ P [1..i]; or
.2) ∃r ∈ Rsd[q] such that

.1) ∀a ∈ A(r),+∂∗a ∈ P [1..i], and

.2) −∆∼q ∈ P [1..i], and

.3) ∀s ∈ R[∼q] either
.1) ∃a ∈ A(s),−∂∗a ∈ P [1..i]; or
.2) r > s.

−∂∗) Infer P (i+ 1) = −∂∗q if
.1) −∆q ∈ P [1..i], and
.2) ∀r ∈ Rsd[q] either

.1) ∃a ∈ A(r),−∂∗a ∈ P [1..i]; or

.2) +∆∼q ∈ P [1..i]; or

.3) ∃s ∈ R[∼q] such that
.1) ∀a ∈ A(s),+∂∗a ∈ P [1..i], and
.2) not(r > s).

+δ∗) Infer P (i+ 1) = +δ∗q if either
.1) +∆q ∈ P [1..i]; or
.2) ∃r ∈ Rsd[q] such that

.1) ∀a ∈ A(r),+δ∗a ∈ P [1..i], and

.2) −∆∼q ∈ P [1..i], and

.3) ∀s ∈ R[∼q] either
.1) ∃a ∈ A(s),−σ∗δ∗a ∈ P [1..i]; or
.2) r > s.

−δ∗) Infer P (i+ 1) = −δ∗q if
.1) −∆q ∈ P [1..i], and
.2) ∀r ∈ Rsd[q] either

.1) ∃a ∈ A(r),−δ∗a ∈ P [1..i]; or

.2) +∆∼q ∈ P [1..i]; or

.3) ∃s ∈ R[∼q] such that
.1) ∀a ∈ A(s),+σ∗δ∗a ∈ P [1..i], and
.2) not(r > s).

+σ∗δ∗) Infer P (i+ 1) = +σ∗δ∗q if either
.1) +∆q ∈ P [1..i]; or
.2) ∃r ∈ Rsd[q] such that

.1) ∀a ∈ A(r),+σ∗δ∗a ∈ P [1..i], and

.2) ∀s ∈ R[∼q] either
.1) ∃a ∈ A(s),−δ∗a ∈ P [1..i]; or
.2) not(s > r).

−σ∗δ∗) Infer P (i+ 1) = −σ∗δ∗q if
.1) −∆q ∈ P [1..i], and
.2) ∀r ∈ Rsd[q] either

.1) ∃a ∈ A(r),−σ∗δ∗a ∈ P [1..i]; or

.2) ∃s ∈ R[∼q] such that
.1) ∀a ∈ A(s),+δ∗a ∈ P [1..i], and
.2) s > r.



3

Original Meta-programs

The original metaprograms (Maher and Governatori 1999; Antoniou et al. 2000) for the four
main forms of defeasibility are outlined below. They consist of clauses c1 and c2, defining
definitely, clauses defining rule and supportive rule (see body of the paper), and a se-
lection of the following clauses for each form of defeasibility.

c21 defeasibly(X) :-
definitely(X).

c22 defeasibly(X) :-
not definitely(∼X),
supportive rule(R,X, [Y1, . . . , Yn]),
defeasibly(Y1),. . . ,defeasibly(Yn),
not overruled(R,X).

c23 overruled(R,X) :-
rule(S,∼X, [U1, . . . , Un]),
defeasibly(U1),. . . ,defeasibly(Un),
not defeated(S,∼X).

c24 defeated(S,∼X) :-
sup(T, S),
supportive rule(T,X, [V1, . . . , Vn]),
defeasibly(V1),. . . ,defeasibly(Vn).

c25 supported(X) :-
definitely(X).

c26 supported(X) :-
supportive rule(R,X, [Y1, . . . , Yn]),
supported(Y1),. . . ,supported(Yn),
not beaten(R,X).

c27 beaten(R,X) :-
rule(S,∼X, [W1, . . . ,Wn]),
defeasibly(W1),. . . ,defeasibly(Wn),
sup(S,R).

c28 overruled(R,X) :-
rule(S,∼X, [U1, . . . , Un]),
supported(U1),. . . ,supported(Un),
not defeated(S,∼X).

c29 overruled(R,X) :-
rule(S,∼X, [U1, . . . , Un]),
defeasibly(U1),. . . ,defeasibly(Un),
not sup(R,S).

c30 overruled(R,X) :-
rule(S,∼X, [U1, . . . , Un]),
supported(U1),. . . ,supported(Un),
not sup(R,S).

The selection of clauses for each meta-program is as follows:
M∂ contains the clauses c21 - c24.
Mδ contains the clauses c21 - c22, c28, c24, and c25 - c27.
M∂∗ contains the clauses c21 - c22, and c29.
Mδ∗ consists of the clauses c21 - c22, c30, and c25 - c27.



4

Proofs of results

We present (sketches of) proofs for the results in the paper.

Theorem 1
Let D = (F,R,>) be a defeasible theory, and α be an annotation function for that theory. Let
d ∈ {δ∗, δ, ∂∗, ∂}.

Suppose α(R) contains only annotations free and d, and there is no fail-expression in R.
Then, for every literal q

• M(α(D)) |=K defeasiblyd(d q) iffMd(D) |=K defeasibly(q)

• M(α(D)) |=K ¬defeasiblyd(d q) iffMd(D) |=K ¬defeasibly(q)

Furthermore, if d ∈ {δ∗, δ},

• M(α(D)) |=K supportedd(d q) iffMd(D) |=K supported(q)

• M(α(D)) |=K ¬supportedd(d q) iffMd(D) |=K ¬supported(q)

Proof
(Sketch) The proof of this theorem is similar for each tag d. For brevity, we only provide the
details for δ. The proof is based on unfoldingM(α(D)) until it has essentially the same form as
an unfolding ofMd(D). The form of unfolding we use uses clauses from the current program,
and may be applied as long as no clause is used to unfold an atom in its own body. Such unfolding
preserves the Kunen semantics (i.e. 3-valued models of the Clark-completion) of a logic program
by essentially the same argument that it preserves the 2-valued models (Maher 1988). Clauses
c1, c2, and c5 are the same in bothM andMd, so we will essentially ignore them.

In bothM(α(D)) andMδ(D) we unfold all occurrences of the predicates used to represent
the annotated defeasible theory, and rule and supportive rule. Then, inM(α(D)), we un-
fold all occurrences of the predicates specifying the type of each tag: ambiguity propagating,
ambiguity blocking, proof tag, team, and indiv. At this point clauses derived from c6-c8
are ground, while clauses derived from c10 only have a single, unused variable X in their heads.
Similarly, clauses derived from c14 and c15 are ground.

Then unfold all defeasiblyZ(free L) atoms. This will not result in a clause unfolding it-
self: in c3 because Z is not free, and in c6 because Y is not free. Similarly, we unfold all
supportedZ(free L) atoms. As a result, free only occurs in the head of clauses derived from
c3 and c11.

Finally, unfold all M(α(D)) and defeated atoms in Mδ(D). At this stage, clauses de-
rived from Mδ(D) are essentially the same as some of the clauses derived from M(α(D))

with subscript δ; the differences are in the name/arity of predicates (e.g., defeasibly ver-
sus defeasiblyδ) and the presence of rules with heads of the form defeasiblyδ(free L),
supportedδ(free L), defeasiblyδ(fail L) or supportedδ(fail L). However, no atom
with subscript δ depends on a predicate with a different subscript, nor on clauses with free

or fail in the head. Hence, the consequences of M(D) of the form defeasiblyδ(q) and
supportedδ(q) are unaffected by the presence or absence of such rules, and so we delete them
all.

Consequently, the two transformed programs are the same (modulo predicate renaming), and
hence have the same conclusions. Since the transformations preserve the semantics of the pro-
grams, the result follows.



5

Corollary 2
Suppose that αF is the free annotation function for D. Let d ∈ {δ∗, δ, ∂∗, ∂}. Then, for every
literal q,

• M(αF (D)) |=K defeasiblyd(q) iff D ` +dq

• M(αF (D)) |=K ¬defeasiblyd(q) iff D ` −dq

Furthermore, if d ∈ {δ∗, δ},

• M(αF (D)) |=K supportedd(q) iff D ` +σdq

• M(αF (D)) |=K ¬supportedd(q) iff D ` −σdq

Proof
The corollary follows from applying the previous theorem for each tag d to the case where α is
the free annotation function, and the correctness of the individual meta-programs.

Theorem 3 (Inclusion Theorem)
Let D be an annotated defeasible theory.

(a) +∆(D) ⊆ +δ∗(D) ⊆ +δ(D) ⊆ +∂(D) ⊆ +σδ(D) ⊆ +σδ∗(D)

(b) −σδ∗(D) ⊆ −σδ(D) ⊆ −∂(D) ⊆ −δ(D) ⊆ −δ∗(D) ⊆ −∆(D)

(c) +∂(D) ⊆ +σ∂(D) ⊆ +σδ(D)

(d) −σδ(D) ⊆ −σ∂(D) ⊆ −∂(D)

(e) +δ∗(D) ⊆ +∂∗(D) ⊆ +σ∂∗(D) ⊆ +σδ∗(D)

(f) −σδ∗(D) ⊆ −σ∂∗(D) ⊆ −∂∗(D) ⊆ −δ∗(D)

Proof
(Sketch) Let Φ = ΦM(D) be Fitting’s semantic function for the logic programM(D) (Fitting
1985). Recall that Kunen’s semantics is the set of all consequences of Φ ↑ n for any finite n.
We prove the containments by induction on the iteration of Φ. For brevity, we omit parts of the
induction hypothesis related to proving (a). We also omit the parts related to (b), (d) and (f)
since, by the Principle of Strong Negation (Antoniou et al. 2000), their statements and proof are
symmetric to those for the positive conclusions. The induction hypothesis contains

supported∂∗ ⊆ supportedδ∗ ∧ beatenδ∗ ⊆ beaten∂∗ ∧
supported∂ ⊆ supportedδ ∧ beatenδ ⊆ beaten∂ ∧

defeasibly∂∗ ⊆ supported∂∗ ∧ beaten∂∗ ⊆ overruled∂∗ ∧
defeasiblyδ∗ ⊆ defeasibly∂∗ ∧ overruled∂∗ ⊆ overruledδ∗ ∧
defeasibly∂∗ ⊆ supportedδ∗ ∧ beatenδ∗ ⊆ overruled∂∗

Clearly this statement holds in the empty interpretation. It is mostly straightforward to show
that if the induction hypothesis holds in Φ ↑ n then it holds in Φ ↑ n+1. For example, con-
sider the first two containments in the induction hypothesis. If they hold in Φ ↑ n (and also
defeasiblyδ∗ ⊆ defeasibly∂∗ holds) then, applying clause c15, the second containment
holds in Φ ↑ n+1 and, applying clause c14, the first containment holds in Φ ↑ n+1. To address
fail-expressions we also need the corresponding versions of these containments and arguments
for negative conclusions.

One containment, defeasibly∂ ⊆ supported∂ is not easily proved by induction, but it



6

has a direct proof. For a set S = Φ ↑ n, if defeasibly∂(x) ∈ Φ(S) then there is a sup-
portive rule r whose body literals are defeasibly true in S (i.e. defeasibly∂(wi) ∈ S) and
not overruled∂(r, x) ∈ S. Now not overruled∂(r, x) ∈ S only if, for every rule s for ∼x
whose body literals are defeasibly true in S, there is a supportive rule twhose body literals are de-
feasibly true in S and t > s. Since D is finite and > is acyclic, for some such t, for every such s,
s 6> t. This t can now be used as r in clauses c14 and c15 to show that supported∂(x) ∈ Φ(S).

As mentioned in the body of the paper, it is straightforward to compute the consequences of
an annotated defeasible theory in quadratic time. We outline the proof.

Proposition 4
Let D be an annotated defeasible theory, and |D| be the number of symbols in D. Then the set
of consequences C(D) can be computed in time O(|D|2).

Proof
(Sketch) Consider the grounding of the clauses, by unfolding with the input representation of
the defeasible theory and related facts, and the worst-case (i.e. maximum) size of the result.
Unfolding with facts like proof tag produces an increase in rules by a constant factor, because
the number of tags is fixed. Unfolding clauses for rule etc. produces a set of ground instances
linear in the size of rules in D. For clauses c1 and c2, the size of ground instances is proportional
to the size of facts/strict rules in D. The size of ground instances of clauses c6, c14, and c15 is
proportional to the size of rules in D. The size of ground instances of clauses c10 is proportional
to the number of superiority statements in D. The size of ground instances of clauses c3 – c5 and
c11 – c13 is proportional to the number of literals in D.

For clauses c7 and c8, the size of the ground instances is proportional to the product of the
number of rules inD and the maximum size of rules inD. The size of ground instances of clauses
c9 is proportional to the product of the number of superiority statements and the maximum size
of rules in D.

Thus the size of all ground clauses is bounded above by |D|2. The ground rules form an
essentially propositional logic program. Computing the consequences of a propositional logic
program under the Kunen semantics is linear in the size of the program. Consequently, the cost
of computing the conclusions is O(|D|2).

Recall that S = {partial stable,well–founded , regular ,L–stable,Kunen,Fitting} is a set
of semantics. These semantics (and the stable semantics) are preserved by unfolding (with the
Kunen semantics requiring the restriction on a rule unfolding itself). This was established for the
well-founded (Seki 1993; Aravindan and Dung 1995) and stable models (Maher 1990; Aravindan
and Dung 1995), and in (Maher 2017) for the partial stable models and the L-stable models. For
the Kunen and Fitting semantics it follows the same proof as in (Maher 1988) for the 2-valued
Clark completion semantics. Consequently, Theorem 1 extends to the semantics in S:

Theorem 6
Let D = (F,R,>) be a defeasible theory, and α be an annotation for that theory. Let d ∈
{δ∗, δ, ∂∗, ∂}. Supposeα(R) contains only annotations free and d, and there is no fail-expression
in R. Let S ∈ S. Then

• M(α(D)) |=S defeasiblyd(q) iffMd(D) |=S defeasibly(q)



7

• M(α(D)) |=S ¬defeasiblyd(q) iffMd(D) |=S ¬defeasibly(q)

and, if d ∈ {δ∗, δ},

• M(α(D)) |=S supportedd(q) iffMd(D) |=S supported(q)

• M(α(D)) |=S ¬supportedd(q) iffMd(D) |=S ¬supported(q)

More generally, the S-models of M(α(D)) restricted to defeasiblyd are identical (up to
predicate renaming) to the S-models ofMd(D) restricted to defeasibly.

Proof
The proof of Theorem 1 also applies to this theorem, since unfolding (without self-unfolding)
preserves models for all semantics in S (see Theorem 3.2 of (Maher 2017)), as does deletion of
irrelevant clauses.

Examples

We present some counterexamples, to show that Figure 1 does not omit any containments and
that all the containments are strict. For these examples we do not need to use any annotations:
they equally apply to (unannotated) defeasible theories, and we present them in that form.

There are four possible containments we must show do not hold: δ 6⊆ ∂∗, σδ 6⊆ σ∂∗ , ∂ 6⊆ σδ ,
and δ 6⊆ σ∂∗ . We have two examples that demonstrate these four points.

Example 7
Let the defeasible theory D consist of the rules

r1 : ⇒ p

r2 : ⇒ ¬p
r3 : ⇒ q

r4 : ¬p ⇒ ¬q
r5 : q ⇒ s

r6 : ⇒ ¬s

with r5 > r6.
Rules r1 - r4 are a standard example distinguishing ambiguity blocking and propagating be-

haviours. +∂∗q and−δq can be concluded. Thus, δ 6⊆ ∂∗. In addition, we conclude−σ∂∗¬s and
+σδ¬s. Thus, σδ 6⊆ σ∂∗ .

Now we show that ∂ 6⊆ σδ and δ 6⊆ σ∂∗ .

Example 8
Consider the following defeasible theory D:

r1 : p ⇒ ¬q r5 : ⇒ p

r2 : ⇒ q r6 : ⇒ p

r3 : q ⇒ ¬s r7 : ⇒ ¬p
r4 : ⇒ s r8 : ⇒ ¬p

with r1 > r2, r5 > r7, r6 > r8
Then we have +δp and −∂∗p. Consequently, we have −σδq and +∂∗q. Hence, ∂ 6⊆ σδ .

Furthermore, we have +δs and −∂∗s. Hence δ 6⊆ σ∂∗ .



8

Hence, there are no containments missing from Figure 1.
That the containments in the top row of Figure 1 are strict was mostly established in (Billington

et al. 2010). The strictness of containments between forms of support follows straightforwardly
from the strictness of containment for the corresponding forms of defeasibility. For the remaining
containments, consider the following example.

Example 9
Consider the following defeasible theory D:

r1 : p ⇒ q

r2 : ⇒ ¬q
r3 : ⇒ p

r4 : ⇒ ¬p

We have −∂∗p (and −∂∗¬p) but +σδ∗p. Consequently, we have +∂∗¬q but −δ∗¬q, showing
that δ∗ ⊂ ∂∗ on D.

Note also that we have conclusions −dp and +σdp for any defeasible proof tag d. Hence
+∂ ⊂ σ∂ and +∂∗ ⊂ σ∂∗

Hence all the containments in Figure 1 are strict.

References

ANTONIOU, G., BILLINGTON, D., GOVERNATORI, G., AND MAHER, M. J. 2000. A flexible framework
for defeasible logics. In AAAI/IAAI. AAAI Press / The MIT Press, 405–410.

ARAVINDAN, C. AND DUNG, P. M. 1995. On the correctness of unfold/fold transformation of normal and
extended logic programs. J. Log. Program. 24, 3, 201–217.

BILLINGTON, D., ANTONIOU, G., GOVERNATORI, G., AND MAHER, M. J. 2010. An inclusion theorem
for defeasible logics. ACM Trans. Comput. Log. 12, 1, 6.

FITTING, M. 1985. A Kripke-Kleene semantics for logic programs. J. Log. Program. 2, 4, 295–312.
MAHER, M. J. 1988. Correctness of a logic program transformation system. Tech. Rep. RC 13496, IBM

T.J. Watson Research Center.
MAHER, M. J. 1990. Reasoning about stable models (and other unstable semantics). Tech. rep.
MAHER, M. J. 2017. Relating concrete defeasible reasoning formalisms and abstract argumentation. Fun-

dam. Inform. 153, 1, 1–28.
MAHER, M. J. AND GOVERNATORI, G. 1999. A semantic decomposition of defeasible logics. In

AAAI/IAAI. AAAI Press, 299–305.
SEKI, H. 1993. Unfold/fold transformation of general logic programs for the well-founded semantics. J.

Log. Program. 16, 1, 5–23.


