Online appendix for the paper
ASPeR+X, a First Order Forward Chaining

Approach for Answer Set Computing
published in Theory and Practice of Logic Programming

Claire Lefevre

LERIA, University of Angers, 2 Boulevard Lavoisier, 49045 Angers Cedex 01, France
claire@info.univ-angers.fr

Christopher Béatrix

LERIA, University of Angers, 2 Boulevard Lavoisier, 49045 Angers Cedex 01, France
beatriz@info.univ-angers.fr

Igor Stéphan

LERIA, University of Angers, 2 Boulevard Lavoisier, 49045 Angers Cedex 01, France
stephan@info.univ-angers.fr

Laurent Garcia

LERIA, University of Angers, 2 Boulevard Lavoisier, 49045 Angers Cedex 01, France
garcia} @info.univ-angers. fr

submitted 24 March 2014; revised 24 November 2014; accepted 25 February 2015

Appendix A Hanoi example
The following ASP program is the Hanoi example with 4 discs.
h—————= Initial settings

number_of_moves (10000) .
largest_disc(4).

Ypm=———e Initial state
initial_state(towers(1(4,1(3,1(2,1(1,nil)))),nil,nil)).

% ————— Goal state
goal (towers(nil, nil, 1(4,1(3,1(2,1(1,nil)))))).

% ———— all discs involved ——----—
disc(1..4).



% —————- legal stacks —------
legalStack(nil).
legalStack(1(T,nil)) :- disc(T).

legalStack(1(T,1(T1,8))) :- legalStack(1(T1,S)), disc(T), T > T1.

h —————= possible moves ------
possible_state(0,towers(S1,52,S3))

:— initial_state(towers(S1,S2,S3)),

legalStack(S1), legalStack(S2), legalStack(S3).
possible_state(I,towers(S1,52,83))

:— possible move(I,T,towers(S1,52,S83)).

% From stack one to stack two.

possible move (J,towers(1(X,S1),82,83) ,towers(S1,1(X,S2),83))
:— possible_state(I,towers(1(X,S1),S2,S3)),
number_of moves(N), I<=N, legalStack(l(X,S2)), J=I+1, not

% From stack one to stack three.

possible move (J,towers(1(X,S1),52,83) ,towers(S1,52,1(X,S3)))
:— possible_state(I,towers(1(X,S1),S2,S3)),
number_of moves(N), I<=N, legalStack(1(X,S3)), J=I+1, not

% From stack two to stack one.

possible move (J,towers(S1,1(X,S2),S83),towers(1(X,S1),52,83))
:— possible_state(I,towers(S1,1(X,S52),S3)),
number_of moves(N), I<=N, legalStack(1(X,S1)), J=I+1, not

% From stack two to stack three.

possible move (J,towers(S1,1(X,S2),S83),towers(S1,52,1(X,S3)))
:— possible_state(I,towers(S1,1(X,S52),S3)),
number_of moves(N), I<=N, legalStack(1(X,S3)), J=I+1, not

% From stack three to stack one.

possible move(J,towers(S1,S2,1(X,S3)) ,towers(1(X,S1),S2,83))
:— possible_state(I,towers(S1,32,1(X,S3))),
number_of moves(N), I<=N, legalStack(1l(X,S1)), J=I+1, not

% From stack three to stack two.

possible move (J,towers(S1,82,1(X,S3)) ,towers(S1,1(X,S2),83))
:— possible_state(I,towers(S1,52,1(X,S83))),
number_of moves(N), I<=N, legalStack(l(X,S2)), J=I+1, not

h=————= actual moves ------
% a solution exists if and only if there is a "possible_move"
% leading to the goal.

ok(I).

ok(I).

ok(I).

ok(I).

ok(I).

ok(I).



% in this case, starting from the goal, we proceed backward
% to the initial state to single out the full set of moves.

% Choose from the possible moves.
move (I,towers(S1,82,S3))
:— goal(towers(S1,52,53)), possible_state(I,towers(S1,52,83)).
ok(I) :- move(I,towers(S1,S2,53)), goal(towers(S1,52,S3)).
win :- ok(I).
:- not win.

move (J,towers(S1,S82,83))
:— move(I,towers(A1,A2,A3)),
possible move(I,towers(S1,S2,S53),towers(A1,A2,A3)), J=I-1,
not nomove(J,towers(S1,82,S3)).

nomove (J,towers(S81,52,83))
:— move(I,towers(Al1,A2,A3)),
possible move(I,towers(S1,S52,S53),towers(A1,A2,A3)), J=I-1,
not move(J,towers(S1,82,S3)).

h—————- precisely one move at each step --————-
moveStepI(I) :- move(I,T).

:— legalMoveNumber(I), ok(J), I<J, not moveStepI(I).
:- legalMoveNumber(I), move(I,T1), move(I,T2), T1!=T2.
legalMoveNumber (0) .

legalMoveNumber (K)
:— legalMoveNumber (I), number_of moves(J), I < J, K=I+1.

#hide.
#show move/2.

Appendix B Proofs
B.1 Proof of Theorem 2

We first give some material needed in the proof. Auxiliary Lemma 1 is used in the
proof of Lemma 2. Lemmas 2 and 3 establish completeness and correctness.
Lemma 1 shows that the generating rules of a program can be ordered so as
to correspond to the order of application of rules in an ASPeRiX computation.
Condition (1) says that a rule used at step i is supported at this step. Condition
(2) says that if a rule is a member of A, at step ¢ but is used at a later stage j,



4

then all rules used at steps between 7 and j are members of A, at step 7. In other
words, condition (2) says that propagation is entirely completed before making a
choice.

Lemma 1. Let P be a normal logic program and X be an answer set of P. Then,
there exists an enumeration (ri);c; ,,; of GRp(X), the set of generating rules of
X, such that for all ¢ € [1..n] the following two conditions are satisfied:

(1) body™(ri) C head({ry | k < i})
(2) for all j > i, if body™ (r;) C head({ry | k < i}) and body~ (r;) C body~ ({ry |
k < i}) then body~ (r;) C body™ ({re | k <i}).

Proof. (of Lemma 1) Let P be a normal logic program and X be an answer set of
P. By a theorem from (Konczak et al. 2006), there exists an enumeration (r;);c(;
of GRp(X) such that Vi € [1..n], body™(r;) C head({ry | k < i}), i.e. such that
condition (1) is satisfied. This enumeration can be recursively modified in the fol-
lowing way in order to verify condition (2). For each i € [1..n], if r; satisfies (2)
then r; remains at rank 4, else there exists r; with j > ¢ that falsifies condition
(2). In this last case, it suffices to swap the two rules in the enumeration to satisfy
condition (2) at rank 4. O

Notation. If P is a normal logic program and (R;, (IN;, OUT;));=, is a sequence
of ground rule sets R; and partial interpretations (IN;, OUT;), then A;m
Apro(P, {(IN;,OUT;), R;) and Al denotes Acpo(P, (IN;, OUT;), R;).

cho

denotes

Lemma 2. Let P be a normal logic program and X be an answer set of P. Then
there exists an ASPeRiX computation that converges to X.

Proof. (of Lemma 2) Let P be a normal logic program and X be an answer set of P.
Then, there exists an enumeration (r);c(; ) of GRp(X) that satisfies conditions
(1) and (2) from Lemma 1.

Let (R;, (IN;,OUT;)):2, be the sequence defined as follows.

[ ROZ(Z), INOZ(Z)aHdOUTOZ{J_}

(] V’L,]. S ) S n, Rz = Ri,1 @] {7"7;}, INZ = INZ',1 @] {head(m)} and OUCTZ =
OUT;_1 Ubody~(r;)

e Vi>n, R, =R;_1,IN;,=1IN;_; and oUT; =0UT;_1

For all i € [1..n], we have:

(*1) X = head(GRp(X)) (by Theorem 1)

(*2) IN; = Uézl{head(rj)} and INo, = J;2 o IN; = X (by (*1))

(*3) OUT; = U;Zl body~ (r;) and therefore OUT; N X = (0 (by Definition 2 of
GRp(X))

(*4) Apro(P, (IN;, OUT;), R;) € GRp(X)

Property (*4) can be proved as follows. By definition 5, A? | = {r € ground(P)\

R; | body™ (r) C IN; and body~ (r) € OUT;}. And by (*2) and (*3), IN; C X and
OUT;N X =0. Thus Al , C GRp(X).



5

We are now able to prove that the sequence (R;, (IN;, OUT;));", is an ASPeRiX
computation.

Let us first note that Vi, (IN;,OUT;) is a partial interpretation since IN; N
OUT; =0 (by (*2) and (*3)).

Now we prove that Revision principle holds for each ¢ > 1. Let i such that
1 <i < n, then r; is such that body™ (r;) C head({ry | k <i}) = IN;,_;. Two cases
are possible. First, if body™ (r;) C body™ ({ry | k < i}) = OUT;_y, then r; € AL}
and Revision principle holds at rank i. Second, if body~ (r;) € body~ ({ry | k < i})
then, by definition of enumeration <Ti>ie[1..n]v there is no rule r; with j > 4 such
that body™ (r;) € IN;_y and body~ (r;) € OUT;_y. So AL NGRp(X) = (. And
as AL} C GRp(X) (by (*4)), AL} = 0. Moreover, r; is a generating rule, thus
body~ (r;)NX = 0 and body~ (r;)NIN;_1 = () (since IN;_; C X). Thereby r; € Azg
and Revision principle holds. If ¢ > n, Revision principle trivially holds (Stability).

At step n, we have IN,, = Jj_,{head(r;)} = X and R, = U;_,{r;} = GRp(X).
AL = L € ground(P) \ R, | body*(r) C X and body~(r) N X = 0}. Thus

AL — . Convergence principle holds and INo, = IN, = X. O

cho

Lemma 3. Let P be a normal logic program and (R;, (IN;,OUT;)):, be an
ASPeRiX computation for P. Then, I N, is an answer set of P.

Proof. (of Lemma 3) Let (R;, (IN;, OUT;));= be an ASPeRiX computation for P.

We first prove that Vi > 0, Vj > i —1, R; € GRp(INj). For each rule r;,
body™ (r;) C IN,_1 and IN set increases monotonically, thus body™ (r;) C IN;,Vj >
1—1.Ifr; € A;,;(}, then body~ (r;) C OUT;_1 and OUT;_1 N IN;_1 = (. Since IN
and OUT sets grow monotonically with an empty intersection, body™ (r;) N IN; =
0,¥j > i— 1. If r, € A’} then body™(r;) N IN;—1 = 0. And, since OUT; =
OUT;_1 Ubody~ (r;), we have Vj > i,body~ (r;) € OUTj, and thus, with the same
reasonning as above (r; € AL L), body™ (r;) NIN; = 0,Vj >i— 1.

R; = U,_,{rx} and, since ¥j > k — 1, 7, € GRp(IN;), ry € GRp(IN;). Thus
Ri € GRp(IN;).

By Convergence principle we have Ji, A%, = {r € ground(P)\ R; | body™(r) C
IN; and body~ (r)NIN; = 0} = 0, then GRp(IN;) C R;. Since Vi, R; C GRp(IN;),
GRp(IN;) = R;. And IN; = head(R;) (by definition of an ASPeRiX computation),
thus IN; = head(GRp(IN;)) and IN; is an answer set of P (by Theorem 1). [

Proof. (of Theorem 2) Lemmas 2 and 3 prove each one direction of the equivalence.
O

B.2 Proof of Theorem 3
Lemmas 4 and 5 establish completeness and correctness.

Lemma 4. Let P be a normal logic program and X be an answer set for P. Then
there exists a mbt ASPeRiX computation for P that converges to X.

Proof. (of Lemma 4) Let P be a normal logic program and X an answer set for
P. By Theorem 2, there exists an ASPeRiX computation (R;, (IN;, OUT;)):<, with



6

INs = X.Let C = (K;, R;, (IN;, MBT;,OUT;));°, with K; = MBT; =0, Vi > 0.
C is clearly a mbt ASPeRiX computation for P where “Rule exclusion” is never used
and thus “Mbt-propagation” is not used either. O

Lemma 5. Let P be a normal logic program and (K;, R;, (IN;, MBT;, OUT;)):*
be a mbt ASPeRiX computation for P. Then I N, is an answer set of P.

Proof. (of Lemma 5) Let (K;, R;, (IN;, MBT;,OUT;)).Z, a mbt ASPeRiX compu-
tation for P. Then C' = (R;, (IN;,OUT;));°, is an ASPeRiX computation for P:
it satisfies Revision principles of an ASPeRiX computation and it trivially satisfies
Convergence too. By Theorem 2, C' converges to an answer set I N. O

Proof. (of Theorem 3) Lemmas 4 and 5 prove each one direction of the equivalence.
O



