
1

Online appendix for the paper

ASPeRiX, a First Order Forward Chaining
Approach for Answer Set Computing

published in Theory and Practice of Logic Programming

Claire Lefèvre

LERIA, University of Angers, 2 Boulevard Lavoisier, 49045 Angers Cedex 01, France
claire@info.univ-angers.fr

Christopher Béatrix

LERIA, University of Angers, 2 Boulevard Lavoisier, 49045 Angers Cedex 01, France

beatrix@info.univ-angers.fr

Igor Stéphan

LERIA, University of Angers, 2 Boulevard Lavoisier, 49045 Angers Cedex 01, France

stephan@info.univ-angers.fr

Laurent Garcia

LERIA, University of Angers, 2 Boulevard Lavoisier, 49045 Angers Cedex 01, France

garcia}@info.univ-angers.fr

submitted 24 March 2014; revised 24 November 2014; accepted 25 February 2015

Appendix A Hanoi example

The following ASP program is the Hanoi example with 4 discs.

%------ Initial settings

number of moves(10000).

largest disc(4).

%------ Initial state

initial state(towers(l(4,l(3,l(2,l(1,nil)))),nil,nil)).

% ------ Goal state

goal(towers(nil, nil, l(4,l(3,l(2,l(1,nil)))))).

% ------ all discs involved ------

disc(1..4).

2

% ------ legal stacks ------

legalStack(nil).

legalStack(l(T,nil)) :- disc(T).

legalStack(l(T,l(T1,S))) :- legalStack(l(T1,S)), disc(T), T > T1.

% ------ possible moves ------

possible state(0,towers(S1,S2,S3))

:- initial state(towers(S1,S2,S3)),

legalStack(S1), legalStack(S2), legalStack(S3).

possible state(I,towers(S1,S2,S3))

:- possible move(I,T,towers(S1,S2,S3)).

% From stack one to stack two.

possible move(J,towers(l(X,S1),S2,S3),towers(S1,l(X,S2),S3))

:- possible state(I,towers(l(X,S1),S2,S3)),

number of moves(N), I<=N, legalStack(l(X,S2)), J=I+1, not ok(I).

% From stack one to stack three.

possible move(J,towers(l(X,S1),S2,S3),towers(S1,S2,l(X,S3)))

:- possible state(I,towers(l(X,S1),S2,S3)),

number of moves(N), I<=N, legalStack(l(X,S3)), J=I+1, not ok(I).

% From stack two to stack one.

possible move(J,towers(S1,l(X,S2),S3),towers(l(X,S1),S2,S3))

:- possible state(I,towers(S1,l(X,S2),S3)),

number of moves(N), I<=N, legalStack(l(X,S1)), J=I+1, not ok(I).

% From stack two to stack three.

possible move(J,towers(S1,l(X,S2),S3),towers(S1,S2,l(X,S3)))

:- possible state(I,towers(S1,l(X,S2),S3)),

number of moves(N), I<=N, legalStack(l(X,S3)), J=I+1, not ok(I).

% From stack three to stack one.

possible move(J,towers(S1,S2,l(X,S3)),towers(l(X,S1),S2,S3))

:- possible state(I,towers(S1,S2,l(X,S3))),

number of moves(N), I<=N, legalStack(l(X,S1)), J=I+1, not ok(I).

% From stack three to stack two.

possible move(J,towers(S1,S2,l(X,S3)),towers(S1,l(X,S2),S3))

:- possible state(I,towers(S1,S2,l(X,S3))),

number of moves(N), I<=N, legalStack(l(X,S2)), J=I+1, not ok(I).

%------ actual moves ------

% a solution exists if and only if there is a "possible move"

% leading to the goal.

3

% in this case, starting from the goal, we proceed backward

% to the initial state to single out the full set of moves.

% Choose from the possible moves.

move(I,towers(S1,S2,S3))

:- goal(towers(S1,S2,S3)), possible state(I,towers(S1,S2,S3)).

ok(I) :- move(I,towers(S1,S2,S3)), goal(towers(S1,S2,S3)).

win :- ok(I).

:- not win.

move(J,towers(S1,S2,S3))

:- move(I,towers(A1,A2,A3)),

possible move(I,towers(S1,S2,S3),towers(A1,A2,A3)), J=I-1,

not nomove(J,towers(S1,S2,S3)).

nomove(J,towers(S1,S2,S3))

:- move(I,towers(A1,A2,A3)),

possible move(I,towers(S1,S2,S3),towers(A1,A2,A3)), J=I-1,

not move(J,towers(S1,S2,S3)).

%------ precisely one move at each step ------

moveStepI(I) :- move(I,T).

:- legalMoveNumber(I), ok(J), I<J, not moveStepI(I).

:- legalMoveNumber(I), move(I,T1), move(I,T2), T1!=T2.

legalMoveNumber(0).

legalMoveNumber(K)

:- legalMoveNumber(I), number of moves(J), I < J, K=I+1.

#hide.

#show move/2.

Appendix B Proofs

B.1 Proof of Theorem 2

We first give some material needed in the proof. Auxiliary Lemma 1 is used in the

proof of Lemma 2. Lemmas 2 and 3 establish completeness and correctness.

Lemma 1 shows that the generating rules of a program can be ordered so as

to correspond to the order of application of rules in an ASPeRiX computation.

Condition (1) says that a rule used at step i is supported at this step. Condition

(2) says that if a rule is a member of ∆pro at step i but is used at a later stage j,

4

then all rules used at steps between i and j are members of ∆pro at step i. In other

words, condition (2) says that propagation is entirely completed before making a

choice.

Lemma 1. Let P be a normal logic program and X be an answer set of P . Then,

there exists an enumeration 〈ri〉i∈[1..n] of GRP (X), the set of generating rules of

X, such that for all i ∈ [1..n] the following two conditions are satisfied:

(1) body+(ri) ⊆ head({rk | k < i})
(2) for all j > i, if body+(rj) ⊆ head({rk | k < i}) and body−(rj) ⊆ body−({rk |

k < i}) then body−(ri) ⊆ body−({rk | k < i}).

Proof. (of Lemma 1) Let P be a normal logic program and X be an answer set of

P . By a theorem from (Konczak et al. 2006), there exists an enumeration 〈ri〉i∈[1..n]
of GRP (X) such that ∀i ∈ [1..n], body+(ri) ⊆ head({rk | k < i}), i.e. such that

condition (1) is satisfied. This enumeration can be recursively modified in the fol-

lowing way in order to verify condition (2). For each i ∈ [1..n], if ri satisfies (2)

then ri remains at rank i, else there exists rj with j > i that falsifies condition

(2). In this last case, it suffices to swap the two rules in the enumeration to satisfy

condition (2) at rank i.

Notation. If P is a normal logic program and 〈Ri, 〈INi, OUTi〉〉∞i=0 is a sequence

of ground rule sets Ri and partial interpretations 〈INi, OUTi〉, then ∆i
pro denotes

∆pro(P, 〈INi, OUTi〉, Ri) and ∆i
cho denotes ∆cho(P, 〈INi, OUTi〉, Ri).

Lemma 2. Let P be a normal logic program and X be an answer set of P . Then

there exists an ASPeRiX computation that converges to X.

Proof. (of Lemma 2) Let P be a normal logic program and X be an answer set of P .

Then, there exists an enumeration 〈ri〉i∈[1..n] of GRP (X) that satisfies conditions

(1) and (2) from Lemma 1.

Let 〈Ri, 〈INi, OUTi〉〉∞i=0 be the sequence defined as follows.

• R0 = ∅, IN0 = ∅ and OUT0 = {⊥}
• ∀i, 1 ≤ i ≤ n, Ri = Ri−1 ∪ {ri}, INi = INi−1 ∪ {head(ri)} and OUTi =

OUTi−1 ∪ body−(ri)

• ∀i > n, Ri = Ri−1, INi = INi−1 and OUTi = OUTi−1

For all i ∈ [1..n], we have:

(*1) X = head(GRP (X)) (by Theorem 1)

(*2) INi =
⋃i

j=1{head(rj)} and IN∞ =
⋃∞

i=0 INi = X (by (*1))

(*3) OUTi =
⋃i

j=1 body
−(rj) and therefore OUTi ∩ X = ∅ (by Definition 2 of

GRP (X))

(*4) ∆pro(P, 〈INi, OUTi〉, Ri) ⊆ GRP (X)

Property (*4) can be proved as follows. By definition 5, ∆i
pro = {r ∈ ground(P) \

Ri | body+(r) ⊆ INi and body−(r) ⊆ OUTi}. And by (*2) and (*3), INi ⊆ X and

OUTi ∩X = ∅. Thus ∆i
pro ⊆ GRP (X).

5

We are now able to prove that the sequence 〈Ri, 〈INi, OUTi〉〉∞i=0 is an ASPeRiX

computation.

Let us first note that ∀i, 〈INi, OUTi〉 is a partial interpretation since INi ∩
OUTi = ∅ (by (*2) and (*3)).

Now we prove that Revision principle holds for each i ≥ 1. Let i such that

1 ≤ i ≤ n, then ri is such that body+(ri) ⊆ head({rk | k < i}) = INi−1. Two cases

are possible. First, if body−(ri) ⊆ body−({rk | k < i}) = OUTi−1, then ri ∈ ∆i−1
pro

and Revision principle holds at rank i. Second, if body−(ri) 6⊆ body−({rk | k < i})
then, by definition of enumeration 〈ri〉i∈[1..n], there is no rule rj with j > i such

that body+(rj) ⊆ INi−1 and body−(rj) ⊆ OUTi−1. So ∆i−1
pro ∩ GRP (X) = ∅. And

as ∆i−1
pro ⊆ GRP (X) (by (*4)), ∆i−1

pro = ∅. Moreover, ri is a generating rule, thus

body−(ri)∩X = ∅ and body−(ri)∩INi−1 = ∅ (since INi−1 ⊆ X). Thereby ri ∈ ∆i−1
cho

and Revision principle holds. If i > n, Revision principle trivially holds (Stability).

At step n, we have INn =
⋃n

j=1{head(rj)} = X and Rn =
⋃n

j=1{rj} = GRP (X).

∆n+1
cho = {r ∈ ground(P) \ Rn | body+(r) ⊆ X and body−(r) ∩ X = ∅}. Thus

∆n+1
cho = ∅. Convergence principle holds and IN∞ = INn = X.

Lemma 3. Let P be a normal logic program and 〈Ri, 〈INi, OUTi〉〉∞i=0 be an

ASPeRiX computation for P . Then, IN∞ is an answer set of P .

Proof. (of Lemma 3) Let 〈Ri, 〈INi, OUTi〉〉∞i=0 be an ASPeRiX computation for P .

We first prove that ∀i > 0, ∀j ≥ i − 1, Ri ⊆ GRP (INj). For each rule ri,

body+(ri) ⊆ INi−1 and IN set increases monotonically, thus body+(ri) ⊆ INj ,∀j ≥
i− 1. If ri ∈ ∆i−1

pro , then body−(ri) ⊆ OUTi−1 and OUTi−1 ∩ INi−1 = ∅. Since IN

and OUT sets grow monotonically with an empty intersection, body−(ri) ∩ INj =

∅,∀j ≥ i − 1. If ri ∈ ∆i−1
cho , then body−(ri) ∩ INi−1 = ∅. And, since OUTi =

OUTi−1 ∪ body−(ri), we have ∀j ≥ i, body−(ri) ⊆ OUTj , and thus, with the same

reasonning as above (ri ∈ ∆i−1
pro), body−(ri) ∩ INj = ∅,∀j ≥ i− 1.

Ri =
⋃i

k=1{rk} and, since ∀j ≥ k − 1, rk ∈ GRP (INj), rk ∈ GRP (INi). Thus

Ri ⊆ GRP (INi).

By Convergence principle we have ∃i, ∆i
cho = {r ∈ ground(P) \Ri | body+(r) ⊆

INi and body−(r)∩INi = ∅} = ∅, then GRP (INi) ⊆ Ri. Since ∀i, Ri ⊆ GRP (INi),

GRP (INi) = Ri. And INi = head(Ri) (by definition of an ASPeRiX computation),

thus INi = head(GRP (INi)) and INi is an answer set of P (by Theorem 1).

Proof. (of Theorem 2) Lemmas 2 and 3 prove each one direction of the equivalence.

B.2 Proof of Theorem 3

Lemmas 4 and 5 establish completeness and correctness.

Lemma 4. Let P be a normal logic program and X be an answer set for P . Then

there exists a mbt ASPeRiX computation for P that converges to X.

Proof. (of Lemma 4) Let P be a normal logic program and X an answer set for

P . By Theorem 2, there exists an ASPeRiX computation 〈Ri, 〈INi, OUTi〉〉∞i=0 with

6

IN∞ = X. Let C = 〈Ki, Ri, 〈INi,MBTi, OUTi〉〉∞i=0 with Ki = MBTi = ∅, ∀i ≥ 0.

C is clearly a mbt ASPeRiX computation for P where “Rule exclusion” is never used

and thus “Mbt-propagation” is not used either.

Lemma 5. Let P be a normal logic program and 〈Ki, Ri, 〈INi,MBTi, OUTi〉〉∞i=0

be a mbt ASPeRiX computation for P . Then IN∞ is an answer set of P .

Proof. (of Lemma 5) Let 〈Ki, Ri, 〈INi,MBTi, OUTi〉〉∞i=0 a mbt ASPeRiX compu-

tation for P . Then C = 〈Ri, 〈INi, OUTi〉〉∞i=0 is an ASPeRiX computation for P :

it satisfies Revision principles of an ASPeRiX computation and it trivially satisfies

Convergence too. By Theorem 2, C converges to an answer set IN∞.

Proof. (of Theorem 3) Lemmas 4 and 5 prove each one direction of the equivalence.

